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PAANa-induced ductile SEI of bare micro-sized FeS
enables high sodium-ion storage performance
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ABSTRACT High-capacity metal chalcogenides often suffer
from low initial coulombic efficiency (ICE) and serious capa-
city fading owing to the shuttle effect and volumetric expan-
sion. Various carbon-coating and fixing methods were used to
improve the above-mentioned performance. However, the
synthesis processes of them are complex and time-consuming,
limiting their engineering applications. Herein, polar polymer
binder sodium polyacrylate (PAANa) is selected as an example
to solve the problems of metal chalcogenides (bare micro-sized
FeS) without any modification of the active materials. The
special function of the polymer binder in the interface between
the active material particles and the electrolytes demonstrates
that a PAANa-induced network structure on the surface of ion
sulfide microparticles not only buffers the mechanical stress of
particles during discharging-charging, but also participates in
forming a ductile solid electrolyte interphase (SEI) with high
interfacial ion transportation and enhanced ICE. The cyclic
stability and rate performance can be simultaneously im-
proved. This work not only provides a new understanding of
the binder on electrode, but also introduces a new way to im-
prove the performance of batteries.
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INTRODUCTION
The continuous growth of demand for energy greatly
facilitates the development of clean and renewable energy,
and efficient and environmentally friendly energy storage
systems [1–4]. Sodium metal batteries [5,6], sodium-ion
batteries (SIBs) [7–9], sodium-sulfur batteries [10–12]
and high-temperature liquid sodium batteries [13] have
widely attracted researchers’ attention owing to their
abundant natural resources and cost-effectiveness [14–16]

in large-scale grid energy storage application for dis-
tributed energy sources. Recently, SIBs [17,18] have been
studied with other substances replacing the Na elemental
anode, such as carbon and metal sulfides, to ensure the
safety. Therefore, high-capacity, long-cycling-life anode is
extensively expected for the application of SIBs.
Various types of materials [19–23], such as hard carbon

[19], alloy-based materials [24,25], organic compounds
[26,27], and metal sulfides [28], have been widely in-
vestigated as anodes for SIBs. Hard carbon is one of the
promising anode materials for commercial production
because of its cost effectiveness and simple processing
technology. However, low initial coulombic efficiency
(ICE) and reversible capacity hamper its practical appli-
cation. Alloy-based materials with high special capacity
(400–2600 mA h g−1) have received the attention of re-
searchers. Nevertheless, serious volume changes (126%–
520%) during charge/discharge lead to pulverization of the
active materials and poor cycling performance. Organic
compounds have the advantages of green chemistry con-
trollable and designable chemical structure. However,
these compounds dissolve in electrolytes and have poor
electrical conductivity. Metal sulfides, especially iron sul-
fides, have several merits, namely, excellent economic
benefits, environmental friendliness, high theoretical ca-
pacity, and good safety [29–32]. However, the pulveriza-
tion of particles and volume expansion during cycling lead
to a short lifespan [33–35]. Carbon-composite design [36],
nanotechnology engineering [37], and other strategies
[38,39] have been developed to solve these problems.
These architecture designs are time-consuming with
complicated synthesis process and various expensive raw
materials, thereby significantly hindering the large-scale
engineering applications. Large micro-sized particles will
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enhance the volumetric energy density more than the
nanotechnology, thereby implying great practical potential.
Polymer binder can fasten the active particles and

conductive additives with current collector in the elec-
trodes; these materials are often used in batteries industry
to improve batteries’ performance, especially the cycling
stability [40]. Poly(vinylidene fluoride) (PVDF) is the
most widely used in lithium-ion batteries (LIBs) and SIBs
among various binders for many years [41]. However,
PVDF needs to be dissolved in N-methyl pyrrolidone,
which is a toxic and environmentally polluting reagent,
for preparing the electrode. Water-based binders, such as
polyacrylic acid [42], carboxymethyl cellulose (CMC)
[43], and gum arabic [44], are environmentally friendly
and inexpensive. Those binders with carboxyl groups on
the polymer chains can form chemical or hydrogen bond
with hydroxyl on the surface of silicon particles in LIBs.
Conductive [45,46] and self-healing polymer binders [47]
have also been applied for specific functions, such as
enhancing the conductivity, repairing electrodes’ crack
[48] and extending the voltage window [49]. However,
the understanding of the function of polymer binder in
the construction of solid electrolyte interphase (SEI) and
coulombic efficiency is constrained even though they are
important in keeping the cycling stability of anodes [50].
Herein, an environmentally friendly water-based so-

dium polyacrylate (PAANa) is selected as an example to
investigate its function on the micro-sized FeS anode
without any modification for SIBs. This PAANa is also
used in the construction of SEI, apart from its good
binding ability to prevent the loss of active materials.
PAANa can improve the ICE, cycling stability, and rate
performance. This work provides not only a new un-
derstanding of binders on electrode but also insights into
the new way to improve the performance of batteries.

EXPERIMENTAL SECTION

Materials preparation
FeS was prepared by simple thermal treatment of FeS2
precursor which was synthesized through a solvent
thermal method [51]. Firstly, 2 mmol FeSO4·7H2O, 10
mmol urea and 12.5 mmol sublimed sulfur were added
into a mixed solvent (30 mL N,N-dimethylformamide
(DMF) and 40 mL ethylene glycol (EG)). Then the mix-
ture was poured into a 100-mL Tefon-lined sealed auto-
clave and kept at 180°C for 12 h. The product was washed
with deionized water and alcohol. After drying in vacuum
at 80°C for 12 h, the precursor FeS2 was annealed at
800°C in argon for 2 h to obtain FeS.

Electrochemical measurement
To prepare the electrode, FeS, acetylene black (AB), and
the binder (PAANa or CMC, the binders PAANa and
CMC were used without any treatment.) were mixed in a
70:15:15 wt.% ratio with deionized water as the solvent.
Gels could be formed by stiring the mixed slurry, and
then the uniform slurry was coated on the copper foil and
cut into 13 mm round pieces after being dried at 60°C for
24 h. The loading of electrode materials was 0.8–
1.06 mg cm−2. The half cells (CR2025) were assembled in
argon-filled glove box with metal sodium as the counter
electrode and reference electrode, and glass fiber as the
separator. NaCF3SO3 (1 mol L−1) dissolved in diethylene
glycol dimethyl ether (DGM) was selected as the elec-
trolyte. The galvanostatic charge-discharge measurements
were performed with a NEWARE battery test system at a
voltage range of 0.1–3.0 V. Before the cycling process at 1,
3 and 5 C (1 C = 609 mA h g−1), the cell was activated for
three cycles at 0.1 C. The cyclic voltammetry (CV) ex-
periments were conducted with a CHI600e electro-
chemical workstation. CV curves were recorded at a
constant scan rate of 0.1 mV S−1 between 0.1 and 3.0 V vs.
Na/Na+. Electrochemical impedance spectroscopy (EIS)
was recorded on the CHI604e electrochemical work-
station by using 5 mV of alternating voltage and fre-
quency ranging from 10 mHz to 100 KHz. Galvanostatic
intermittent titration (GITT) measurement was per-
formed by discharging and charging the cells for 10 min
at 0.2 C followed by a 1-h relaxation [52] and the GITT
curves were tested in the 3rd cycle.

Materials characterization
Scanning electron microscope (SEM, ZEISS Merlin Com-
pact) with energy dispersive X-ray spectroscopy (EDX,
Oxford X-Max), and X-ray photoelectron spectroscopy
(XPS, Thermo Escalab 250Xi) were used to characterize the
morphology and surface chemical composition of the ac-
tive materials and electrodes. In-depth analysis of SEI
component of the electrode characterized by XPS using Ar
ion sputtering and the etching rate was about 0.26 nm s−1

based on the measurement of the standard substance TaS2
by the instrument. The Fourier transform infrared (FT-IR)
spectra were used to characterize the structure of polymer
binders and electrodes. The crystal information of FeS was
characterized by X-ray diffraction (XRD, X' Pert PRO)
with a scaning rate of 8° min−1.

RESULTS AND DISCUSSION
The micro-sized FeS was synthesized via a solvothermal
method [53] (Fig. S1). The XRD pattern of the as-
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synthesized FeS is shown in Fig. 1a and the diffraction
peaks are assigned to FeS (JCPDF No. 89-6926). The
slurry of the electrode components can form stable gels
according to the favorable gelatinization feature of the
PAANa binder in water (Fig. 1b). However, slurry with
CMC binder is sticky liquid with mobility. The gel-like
electrode slurry has a stable structure, and the compo-
nents of electrode are uniformly distributed (Fig. 1f, g).
Fig. 1d demonstrates that the PAANa binder has a flexible
chain structure. The CMC molecule has a complex six-
element ring structure and poor molecular flexibility
(Fig. S2). At the same mass, PAANa binder could provide
more polar groups (–COO–) than those of the CMC
binder; thus, it can form chelation with FeS and improve
the adhesion stress. The prepared electrode slice with
PAANa binder, denoted as the FeS-PAANa electrode,
shows a flat surface after drying (Fig. 1c and Fig. S3a).
The obtained composite electrode displays a network
structure with coating of PAANa binder on the surface of
the FeS particles and uniform embedding of the con-

ductive agent (Fig. 1f). By contrast, the FeS-CMC elec-
trode (the electrode with CMC binder) has a mass of bare
FeS particles exposed, and the CMC binder is fibrous in
the electrode (Fig. S3b, c). This network structure is de-
rived from chelation between the FeS and polar sodium
carboxylate group (–COONa) in PAANa’s soft chains
(Fig. 1d); the structure can also buffer the mechanical
stress of particles during discharging-charging [54]. The
uniform adherence of PAANa on the surface of the FeS
particles is shown in Fig. 1f, g. In the FT-IR spectroscopy
(Fig. 1e), the main absorption peaks of PAANa binder at
1573.89 and 1404.01 cm−1 are related to –COO−. The
absorption peaks of –COO− shift to low wavenumbers at
1532.14 and 1386.14 cm−1 [55]. This finding indicates that
the chemical interaction might be from two aspects.
Firstly, carboxylic groups in PAANa can bond with the
unsaturated orbitals of Fe in the FeS interface. Secondly,
FeS in the dispersant of water can ionize a small amount
of Fe ions, which, as ionic cross-linker, provides metal
coordination interactions with carboxylic groups; thus, a

Figure 1 The morphology and component characterization. (a) XRD pattern of FeS, (b) digital images of the slurries for FeS-PAANa and FeS-CMC
electrodes, respectively, and (c) FeS-PAANa electrode with the slurry coated on a copper foil after drying. (d) Scheme of the network structure of FeS-
PAANa electrode and the molecular structure formula of PAANa. (e) FT-IR spectra of PAANa and FeS-PAANa electrodes. (f) SEM image of the FeS-
PAANa electrode after freeze-drying. (g) SEM image of the FeS-PAANa electrode and the corresponding EDS mapping of elements Fe, S, C, O and Na.
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loose network to fix iron sulfide particles is maintained
[56]. The network structure of the FeS-PAANa electrode
helps in buffering the stress caused by the volume
changes and keeping the composites of electrode closely
in contact.
The electrochemical performance of the FeS-PAANa

electrodes was tested and shown in Fig. 2 and Fig. S4a. In
Fig. 2a, the irreversible sharp peak at 0.81 V in the first
cathodic scan of the FeS-PAANa electrode is attributed to
the formation of SEI film [57]. In the subsequent two
scans, the peaks at 0.34, 0.75, 0.92 1.02 V, and at 0.21,
0.34 V are related to the reduction and conversion reac-
tions, respectively [58,59]. In contrast with those of FeS-
CMC electrode in Fig. 2d, the FeS-PAANa electrode
presents better reversibility. Fig. 2b shows that the dis-
charge curves present a long plateau at 0.81 V in initial
discharge owing to the formation of SEI film. In contrast

with the first cycle, the bulge at 0.75 V in the second cycle
is due to the transformation reaction of FeS [60]. The
charge/discharge profiles of the FeS-PAANa electrode are
overlapped, thereby illustrating excellent reversibility of
FeS-PAANa electrode. Meanwhile, the charge/discharge
curves of the FeS-CMC electrode are fluctuating in the
following cycles, thereby indicating poor cycling perfor-
mance. The FeS-PAANa electrode demonstrates high
reversible capacity of 577.84 mA h g−1 at the first cycle
and 511.52 mA h g−1 after 100 cycles, repectively (Fig. 2c).
However, the FeS-CMC electrode displays a low re-
versible capacity of 491.30 mA h g−1 at the first cycle and
decreases to 169.75 mA h g−1 after 100 cycles. The ex-
cellent cycle performance of the FeS-PAANa electrode is
attributed to the obtained network structure of the elec-
trode that can buffer the mechanical stress of particles
during discharging-charging and maintain the electrode

Figure 2 Sodium storage performance: CV curves of (a) FeS-PAANa and (d) FeS-CMC electrodes, respectively, at a scan rate of 0.10 mV s−1 between
0.1 and 3.0 V (vs. Na/Na+). Charge-discharge curves of FeS-PAANa and FeS-CMC electrodes, respectively, (b) in different cycles and (e) at different
current densities. (c) Cycling performance of FeS-PAANa and FeS-CMC electrodes in voltage range of 0.1–3 V for 100 cycles at a current density of
1 C. (f) Rate performance of FeS-PAANa and FeS-CMC electrodes. (g) Cycling performance of FeS-PAANa electrodes with different contents of
PAANa binder. (h) Charge-discharge curves of a full cell in the second cycle and its schematic image. (i) Cycle performance of the full cell at a current
density of 0.5 C.
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contact, thereby prolonging the cycle life. The ICE of the
FeS-PAANa electrode is 87.40%, which is higher than that
of the FeS-CMC electrode (84.90%). The FeS with
PAANa binder displays higher ICE (87.40%) and ex-
cellent cyclic stability with a capacity retention of 88.5%
after 100 cycles at 1.64 A g−1 than the other reported
electrode materials that used the CMC and PVDF binders
(Table S1). The high ICE illustrates less decomposition of
electrolyte in the FeS-PAANa electrode with good elec-
trochemical reversibility of FeS. The reduced exposed
surface decreases the decomposition of electrolyte due to
the covering of the PAANa binder on the surface of the
electrode, thereby leading to high ICE in FeS-PAANa
electrode. During the following cycles, the coulombic
efficiency of the FeS-PAANa electrode is stable.
The specific capacities of the FeS-PAANa electrode are

508.76, 517.85, 516.18, 486.15, 456.91, and
432.43 mA h g−1 at current densities of 0.2, 0.5, 1, 2, 4,
and 6 C, respectively (Fig. 2f). By contrast, the FeS-CMC
electrode shows a high specific capacity of
508.43 mA h g−1 at 0.2 C, but only 145.21 mA h g−1 at
6 C. As shown in Fig. 2e, the FeS-PAANa electrode ex-
hibits outstanding rate performance, while the reversible
capacity of the FeS-CMC electrode rapidly declines with
the increase in the current densities. The excellent kinetic
performance of the FeS-PAANa electrode is attributed to
the porous network structure, which facilitates the in-
filtration of electrolyte, improves the interfacial contact,
and shortens the diffusion distance of Na+. The con-
ductive agent carbon uniformly distributes in the network
structure and efficiently contacts with FeS particles,
thereby highly improving the electronic conductivity. The
above-mentioned reasons indicate that the FeS-PAANa
electrode has excellent reaction kinetics. The cycle per-
formance of the FeS-PAANa electrode improves with the
increase in the content of the PAANa binder in electrode
(Fig. 2g and Fig. S4b). Such performance achieves an
optimal effect when the binder content is 15 wt.%. The
assembled full cell (Fig. 2h) with Na3V2(PO4)3/C (NVP/C)
as cathode (Fig. S4c) shows favorable cycle performance.
This cell demonstrates a discharge capacity of
542.37 mA h g−1 (calculated on the basis of the FeS mass)
at the current density of 0.5 C with an ICE of 77.71%
(Fig. 2i), thereby showing promising application prospect.
The surface chemistry of the FeS-PAANa electrode was

investigated via XPS technique. In bare FeS material, the
strong peaks of C–C and C=O/CO3

2– mainly result from
the pollutants (Fig. 3a). The peaks at 161.27, 163.40, and
166.67 eV correspond to S2– in FeS, polysulfide S–S, and
oxidized group SOx, respectively [61]. The peak at

529.91 eV relates to O–Fe, which originates in the oxi-
dation of FeS in the air. After PAANa is introduced, the
FeS-PAANa electrode shows an obvious increase of the –
CH2– and O=C–O peak areas, and Na auger also appears
in the O spectrum, which are characteristics of the
PAANa binder. The incomplete coating of PAANa on the
surface of FeS particles decreases the contents of the Fe
and S peaks (Fe: 0.4 at.% and S: 0.6 at.% of all element
peak areas in survey spectrum). This finding is incon-
sistent with the SEM result. After cycling, the atomic
fractions of Na, F, and O from the FeS-PAANa electrode
increase (~5.6, 0, and 18.89 at.% at pristine and ~6.1, 0.4,
and 20.4 at.% at discharge state, respectively). Meanwhile,
the atomic fraction of Fe shows a completely opposite
trend changing from ~0.4 to ~0.2 at.%, thereby indicating
the formation of the SEI layer [62]. The appearance of C–
F and NaF in the F spectrum is also observed (Fig. S5).
The C=O/CO3

2– peak content of the FeS-PAANa elec-
trode increases from 11.9 at.% at pristine to 14.4 at.% at
discharge state, suggesting the formation of Na2CO3/
Na2CO2R in SEI. The increase of the C–C content might
be due to the polyether materials produced in SEI. In the
S spectrum of Fig. 3a, the relative amount of S–S/C–S
located at 163.6 eV distinctively increases from 17.8 at.%
of FeS-PAANa to 37 at.% at discharge state, thereby in-
dicating the existence of organic materials RSO3Na that
originate from the decomposition of electrolyte salts. The
common organic components of SEI layer (C–O related,
e.g., sodium alkoxides [RCH2ONa]) are not observed in
the C and O spectra [63]. The PAANa layer on the FeS
particles efficiently plays the role of organic layer of SEI
because of the similar chemical property of the organic
component with PAANa with the similar group, thereby
preventing the further intrusion of electrons and the ex-
cessive decomposition of the electrolyte (Fig. 3b).
Therefore, PAANa binder can reduce the decomposition
of the electrolyte during the formation of SEI and finally
enhance the ICE of the FeS-PAANa electrode.
The SEI composition distribution was further in-

vestigated by XPS using Ar ion sputtering (Fig. 3c). After
etching, the peaks of NaF and O=C–O strongly increase,
and those of C=O/CO3

2– slightly increase; the peaks re-
lated to C–F are weakened. This finding indicates that the
organic components are mainly distributed near the out
layer, and the interior of the SEI is mainly composed of
inorganic species [62]. The Na and O contents show a
completely increasing trend with etching depth, thereby
further confirming that inorganics mainly exist in the
interior layer, which is consistent with previous discus-
sion. The S–S/C–S peak related to RSO3Na (Fig. S6)
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sharply decreases after an etching time of 20 s. The SOx
peak increases when the etching time is 40 s. However,
the SOx content decreases at an etching time of 80 s.
These changes imply that the S-based substances mainly
distribute at the out layer of organic and inorganic layer
of SEI. The C content dramatically decreases from
~46 at.% at the surface to 30.9 at.% at 20 s etching with
the increase in etching depth and remains stable at ap-
proximately 30 at.% till 40 s etching. Then it slightly de-
clines at 80 s etching (~28 at.%). These changes suggest
that the thickness of organic layer of SEI is thinner
compared with that of the reported studies [14,64], owing
to PAANa involved in the construction of the out layer of
SEI. The formed SEI consists of an organic layer with
high molecular weight and mechanical strength at the
exterior, which could improve the mechanical property of

SEI layer and the stability of the interface.
The reaction kinetics of electrodes were studied via EIS

[65] and galvanostatic intermittent titration (GITT)
measurements [66]. The Nyquist plots of the FeS-PAANa
and FeS-CMC electrodes after discharging in the first
cycle in Fig. 4a and the simulation results in Fig. 4b show
that the SEI resistance (RSEI) and charge transfer re-
sistance (Rct) of the FeS-PAANa electrode are 1.69 and
3.48 Ω, which are smaller than those of the FeS-CMC
electrode (3.59 and 7.22 Ω), respectively. The result is
consistent with the formed thin SEI film of the FeS-
PAANa electrode. Fig. 4c and Fig. S7 show that the ac-
tivation energy (Ea) values of the FeS-PAANa and FeS-
CMC electrodes are 12.93 and 17.32 kJ mol−1, respec-
tively. This result is due to the fast transport of Na+ in the
SEI film of the FeS-PAANa electrode, thereby resulting in

Figure 3 (a) High-resolution XPS patterns and surface composition (pie graph) of the FeS material, FeS-PAANa electrode at pristine and discharge
state, respectively. (b) Scheme of interface evolution, SEI composition and structure. (c) Elemental percentage variation with increasing etching time
(left); in-depth analysis of SEI component of FeS-PAANa electrode at discharge state (right).
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excellent reaction kinetics. The diffusion coefficient of
sodium ion (DNa+) in FeS-PAANa was calculated from
GITT in Fig. 4d and Fig. S8 by using Fick’s second law
and Equation (S1) [67]. Fig. 4e, f demonstrate that the
DNa+ of the FeS-PAANa electrode is higher than that of
the FeS-CMC electrode, thereby showing the fast ion
diffusion property. Ea is also used to understand the ki-
netic characteristics of the transportation of Na+ in the
SEI film. Therefore, the desirable surface chemistry and
network structure of the FeS-PAANa electrode greatly
contribute to the low impedance, higher ion transport
property, and enhanced rate performance.
After 50 cycles, the co-constructed SEI and morphology

of the FeS-PAANa electrode were investigated. Fig. 5a
demonstrates that the peaks at 288.86, 285.54, and
284.78 eV belong to O=C–O, –CH2–, and C–C, and those
at 535.67 and 531.36 eV are related to Na auger and C=O/
CO3

2– [59], respectively, which come from the compo-
nents of SEI. The peaks at 166.51, 168.97, 170.21, 688.85,
and 684.25 eV corresponding to SOx, C–F, and NaF [61]
are stronger than those in the discharge state of the first
cycle (Fig. 3a). This finding indicates that the co-con-
structed SEI film remains stable after 50 cycles, but a
small amount of electrolyte decomposition is present. The
surface of the FeS-PAANa electrode remains intact, and
the FeS particles keep integrated after 100 cycles (Fig. 5b,
c and Fig. S9a). By contrast, the FeS-CMC, electrode
materials fall off from copper foil, and the particles are
broken (Fig. 5b, d and Fig. S9b). Therefore, the network

structure and co-constructed SEI film in the FeS-PAANa
electrode can protect the FeS particles from crushing and
losing due to the volume changes during cycling and
enhance the cycle stability.

CONCLUSIONS
In this work, water-based PAANa was selected as binder
to improve the electrochemical performance of micro-
sized FeS in SIBs. The PAANa binder could help FeS to
construct a network structure, including conductive car-
bon, via chelation between the polar sodium carboxylate
group (–COONa) in PAANa’s soft chains and the Fe ions
of FeS. The obtained network structure electrode of FeS-
PAANa could buffer the pressure caused by volume
change and keep the electrode intact. On the one hand,
the PAANa binder on the electrode surface could reduce
the exposed surface and decrease the decomposition of
electrolyte, thereby enhancing the ICE of the FeS-PAANa
electrode. On the other hand, PAANa binder could also
participate in forming a co-constructed SEI film with it
involved in the organic layer. The co-constructed SEI film
with preferable mechanical property and stability, im-
proved the cycle stability of SIBs owing to the higher
molecular weight and mechanical strength of the PAANa
polymer compared with those of small molecules. The
obtained FeS-PAANa electrode showed high reversible
capacity of 577.84 mA h g−1 in the first cycle, ICE as high
as 87.40%, and capacity retention of 88.52% after 100
cycles. Given the desirable surface chemistry, the FeS-

Figure 4 The reaction kinetics of the FeS-PAANa and FeS-CMC electrodes. (a) Nyquist plot after discharging in the first cycle. (b) Equivalent circuit
used to fit the experimental data and the values of Rs, RSEI and Rct after discharging in the first cycle. (c) Activation energy calculation: the relationship
between ln(T/Rct) and 1000/T. (d) GITT profiles, Na+ diffusion coefficients of (e) sodiation and (f) desodiation in the third cycle.
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PAANa electrode exhibited low RSEI of 1.69 Ω, higher ion
transport property, and excellent rate performance with
the capacity of 432.43 mA h g−1 at a current density of
6 C. This work unveils the novel function of PAANa
binder and provides a new way to enhance the cyclic
stability and rate performance of electrodes.
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PAANa粘结剂诱导形成柔韧固态电解质膜提升微
米级FeS电极的储钠性能
陈琳洁1, 宋轲铭2, 石娟2,3, 张继雨2, 米立伟3, 陈卫华1,2*,
刘春太1*, 申长雨1

摘要 高容量金属硫化物面临着首周库伦效率低、穿梭效应和体
积膨胀等导致的严重容量衰退问题, 碳包覆和固定常被用来解决
上述问题. 然而, 这些方法通常比较复杂、耗时, 不利于大规模应
用. 本文提出一种采用粘结剂优化解决微米级FeS电极材料上述问
题的简便策略, 以极性聚合物粘结剂聚丙烯酸钠(PAANa)为例, 研
究了其作用机制: PAANa粘结剂的引入可与FeS材料颗粒形成交联
的网状结构, 既可以缓冲电极材料在充放电时体积的改变所产生
的机械应力, 还诱导并参与在FeS颗粒表面形成较薄的SEI膜, 提高
了电极界面离子迁移速度和电极的首周库伦效率, 使得FeS负极的
循环稳定性和倍率性能得到明显优化. 本工作不仅使人们对电极
粘结剂在电极中的作用有了新的认识, 而且为优化电池材料性能
提供了新途径.
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