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Flexible fabric gas sensors based on PANI/WO3 p−n
heterojunction for high performance NH3 detection at
room temperature
Meng He1,2†, Lili Xie2†, Guifang Luo2, Zhanhong Li2, James Wright3 and Zhigang Zhu1,2*

ABSTRACT A PANI/WO3@cotton thread-based flexible
sensor that is capable of detecting NH3 at room temperature is
developed here. A layer of WO3 with PANI nanoparticles can
be deposited by in-situ polymerization. The morphology and
structure of the specimens were investigated by utilizing TEM,
SEM, XRD and FTIR. The sensing performance of the PANI/
WO3@cotton sensors with different WO3 molar ratios to NH3

at room temperature was examined. The results show that the
optimal sensor (10 mol% WO3) has a response of 6.0 to
100 ppm NH3, which is significantly higher than that of the
sensors based on pristine PANI and other composites. The
PANI/WO3@cotton sensor also displays excellent selectivity,
gas response, and flexibility even at room temperature. The
unique fiber structure, p-n heterojunction, and the increased
protonation of PANI in the composites contribute to the en-
hanced sensing property.

Keywords: gas sensor, PANI/WO3 cotton thread, p-n hetero-
junction, NH3 detection

INTRODUCTION
Ammonia (NH3) is a colorless gas with strong pungent
odors, usually released from nitrogenous plants and ani-
mals, organic decomposition, industrial waste-water, and
motor vehicles [1]. Inhalation of NH3 in a short time can
cause acute respiratory diseases such as laryngitis, trachea
bronchitis, bronchopneumonia, and even pulmonary
edema [2]. Long-term exposure to NH3 even at low
concentration can irritate human eyes and skin. In terms
of occupational exposure limits for hazardous agents in
the workplace, the maximum allowable concentration for
NH3 is 40 ppm [3], while the detection limit of human

olfaction is 25 ppm. Thus, it is desired to develop NH3
sensors with high gas response and low detection limit for
environmental analysis, chemical industry, and medical
applications [4–6].

In recent years, many different materials have been
developed and employed for the detection of toxic gases,
including metal oxide semiconductors [7–9], conductive
polymers [10,11], carbon nanomaterials [12, 13], halides
[14], molecular sieves [15], metal-organic frameworks
[16] and hybrid materials [17]. Among them, conductive
polymers have been extensively studied for their excellent
properties, such as ease of synthesis and modification,
and operation at room temperature [6]. Polyaniline
(PANI) is one of the ideal candidates due to its high
conductivity, reversible doping/de-doping, good en-
vironmental stability and admirable selectivity to am-
monia [18–21]. Nano-sized PANI with high surface-to-
volume ratio and unique electrical properties can enhance
the gas adsorption/desorption and thus promote the re-
sponse and recovery processes [18]. However, the gas
sensors based on pure conductive polymers exhibit poor
sensing performance, mainly because low temperature
and high humidity affect the stability of polymer mate-
rials [22,23]. To address this issue, researchers have at-
tempted to combine PANI with metal oxide
semiconductors to improve NH3 sensing performance at
low operating temperature [24,25]. The hybrid material
not only retains the high performance of the metal oxide
semiconductor, but also can lower the operating tem-
perature and increase the flexibility originating from the
conductive polymer. Bandgar et al. [26] prepared cam-
phor sulfonic acid-doped PANI/α-Fe2O3 composite films
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using an in-situ polymerization process, which displayed
high selectivity and rapid response to NH3 at room
temperature. Wang et al. [27] reported that the NH3 gas
sensor based on PANI@CeO2 exhibited both high re-
sponse and long-term stability. SnO2/PANI nanosheets-
based sensor displayed a high response to NH3 with a low
detection limit [28]. In view of the above studies, poly-
mer/metal oxide composites can improve their ammonia
detection performance. Moreover, conductive polymers
are relatively easier to assemble with flexible materials to
construct flexible gas sensors [29,30].

A typical n-type tungsten oxide (WO3) has been widely
used as gas-sensing materials due to the tunable re-
sistance, easy synthesis, low cost and environment-
friendly properties [31,32]. Szilagyi and co-authors [33]
indicated hexagonal WO3-based sensor could detect ppm
levels of NH3 at 300°C. Srivastava et al. [34] introduced a
two-layer sensor structure with different noble metals,
exhibiting the improved gas response and reduced re-
sponse time for NH3 detection. Herein, we combined the
advantages of WO3, PANI and cotton thread to construct
a flexible gas sensor, displaying a strong response to NH3.
The PANI/WO3@cotton threads were obtained by in-situ
chemical deposition, and the p-n junction at the interface
between WO3 and PANI was formed. The assembled
flexible PANI/WO3@cotton thread-based gas sensor ex-
hibits excellent sensing characteristics such as high gas
response, fast response with appropriate recovery, ex-
cellent repeatability and selectivity at room temperature.
The gas response of PANI/WO3 thread is better than that
of pristine PANI, mainly due to the formation of the p-n
heterojunction between PANI and WO3 and the im-
proved protonation of PANI by WO3.

EXPERIMENTAL SECTION

Synthesis of materials
All chemicals were of analytical reagent grade from Si-
nopharm Chemical Reagent Co. Ltd, and utilized as re-
ceived. The preparation of WO3 was according to our
previous work [35], and the specific procedure was as
follow. Na2WO4·2H2O (1.0 g) and 0.2 g of H2C2O4·2H2O
were dissolved in 20 mL deionized water and evenly
mixed through sonication for 5 min. Then, 3 mol L−1

hydrochloric acid was added dropwise to the above so-
lution and stirred for 3 h. The reaction mixture was
transferred to a stainless steel autoclave and heated at
180°C for 15 h. Finally, the reaction mixture was cen-
trifuged at 8000 rpm for 10 min and then washed with
deionized water and followed by ethanol three times. A

yellow-green powder was obtained after drying at 60°C in
an oven.

Fabrication of PANI/WO3@cotton thread sensor
The PANI/WO3@cotton thread sensor was fabricated by
means of chemical oxidation polymerization. Aniline (2
mmol) and different amounts of WO3 were dispersed in
20 mL of sulfosalicylic acid (SSA, C7H6O6S·2H2O,
0.1 mol L−1) solution and ultrasonicated for 30 min to
form homogeneous suspension. Subsequently, commer-
cially available cotton threads pretreated with ethanol and
deionized water were immersed in the above solution.
Meanwhile, 2 mmol of ammonium persulfate (APS) was
added to 20 mL of SSA solution (0.1 mol L−1) and pre-
treated in an ice water bath for 30 min, to obtain a
mixture of APS/SSA. Then, the APS/SSA mixture was
added to the above suspension and polymerized in the ice
bath for 2 h. A schematic illustration of the synthesis
process is presented in Fig. 1. The precipitate was cen-
trifuged at 8000 rpm for 5 min and then washed thrice.
The PANI/WO3 nanomaterials were dried at 60°C over-
night. The PANI/WO3@cotton thread was washed with
deionized water and ethanol thrice to ensure the removal
of reactants. For convenience, we defined the PANI/WO3
composites with various molar ratios as S1, S2, S3 and S4,
which can be found in Fig. 1.

Characterization
The phase and crystallinity were characterized by X-ray
diffraction (XRD) using a monochromatized Cu target
(D8-Advance, Bruker, Germany). The morphology of the
samples was examined by field emission scanning elec-
tron microscopy (FESEM, S-4800, Hitachi Co. Ltd, Ja-
pan), accelerated at 10 kV. The elemental distribution of
the crystals was investigated by an energy dispersive X-
ray spectrometer (EDX), affiliated to the SEM. A trans-
mission electron microscope (TEM, JEM-2100F, JEOL
Co. Ltd., Japan) was employed to observe the sample
microstructure, accelerated at 200 kV. Fourier transform
infrared (FTIR) spectroscopy was selected to investigate
the chemical structure of the composites with a wave-
number range of 500–4000 cm−1 (L1600400, PerkinElmer
Co., Ltd. England).

Gas-sensing performance
The PANI/WO3@cotton thread was tested using an ap-
proximate length of 2 cm on each occasion. Before the
test, the cotton thread should be dried overnight at a
constant temperature and humidity to reduce the
moisture content on the sensor surface. The gas response
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of the sensor was tested using a CGS-8 testing system
(Beijing Elite Technology Co., Ltd. China), and defined as
the ratio of the resistance of the sensor in the target gas
(Rg) and the resistance (Ra) determined in the air (S=Rg/
Ra), with the operating temperature at 28°C. The response
time was defined as the time taken for the change of
resistance to 90% of the equilibrium value once the
testing gas was introduced, while the recovery time was
the time for the resistance to return its 10% original value
once the air was injected [36].

RESULTS AND DISCUSSION

Structure and morphology analysis
The XRD patterns of the pristine PANI, WO3, and PANI/
WO3 composites are displayed in Fig. 2. The pristine
PANI (curve a) demonstrates broad and weak diffraction
peaks around 2θ=12° and 22°, and a sharper crest at 2θ
=26°, which implies the amorphous structure of the PANI
[3]. The pristine WO3 (curve c) illustrates well-defined
diffraction peaks at 23.12°, 23.59°, 24.38°, 26.59°, 28.94°,
33.27°, 34.16°, 35.67°, 41.44°, 49.95°, and 55.96°, corre-
sponding to the (002), (020), (200), (120), (112), (022),
(202), (122), (−222), (140) and (420) planes of monoclinic
WO3 (JCPDS No. 83-0951), respectively. No other phases
were found, indicating the high purity of the synthesized
WO3. The XRD pattern (curve b) of the PANI/WO3
composite shows the distinct peaks of WO3, but the peaks

are weaker than those of the pristine WO3, due to the
formation of PANI/WO3 composite [3]. Moreover, the
absorption line fluctuates at 2θ=15~30°, which is similar
to that of the pristine PANI.

The morphologies of WO3, PANI/WO3 composites,
PANI/WO3@cotton thread, and PANI were observed by
FESEM, as presented in Fig. 3. In Fig. 3a, the WO3 are
nano-blocks of 650 nm×650 nm×50 nm with a flat and
smooth surface. Fig. 3b presents the PANI/WO3 com-
posites, which exhibit rough surface nano-blocks sur-

Figure 1 Schematic illustration of the preparation procedure for PANI/WO3@cotton thread.

Figure 2 XRD patterns of the samples: (a) PANI, (b) PANI/WO3

composites, and (c) WO3.
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rounded by numerous PANI nanoparticles. The FESEM
images of cotton thread treated with PANI/WO3 are
shown in Fig. 3c, d, and the PANI/WO3@cotton thread
displays a rough surface, decorated by nanoparticles with
various sizes. To study the effect of the PANI/WO3 molar
ratios on the sensing performance, three other PANI/
WO3 cotton threads were synthesized. As shown in
Fig. 4a–c, with the increase of the amount of WO3, more
aniline molecules are needed to wrap the cotton thread
and WO3. After the polymerization reaction, the size of
individual PANI nanoparticles on the surface of the
cotton thread decreases. The morphologies of PANI are
nanoflakes with irregular size and shape, which promi-
nently agglomerate together (Fig. 3e). Fig. 3f shows the
pristine PANI treated cotton thread has a smooth surface,
implying that without WO3, only a small amount of PANI
nanoparticles adhere to the cotton thread, resulting in a
non-homogeneous PANI coating.

The elemental composition of the PANI@cotton thread
and PANI/WO3@cotton thread can be quantitatively
analyzed by using EDX, as shown in Fig. 5. Compared
with the pristine PANI@cotton thread, the PANI/
WO3@cotton thread possesses the main elements of C, N,

O, S and W. Since the PANI was modified with SSA
during the preparation process, the S element appears in
both specimens. The atomic percentages of C, N, O, and S
elements in the PANI@cotton thread are 41.94%, 36.64%,
21.36%, and 0.06%, respectively. For the PANI/WO3@
cotton thread, the ratios of C, N, O, S and W elements are
40.89%, 35.65%, 22.94%, 0.17%, and 0.35% respectively. It
is clear that the atomic proportions of the C and O ele-
ments in both types of cotton threads are quite similar,
but the atomic proportion of the S element for the PA-
NI@cotton thread is significantly higher than that in the
PANI/WO3@cotton thread. This indicates that the com-
bination of PANI and WO3 improves the protonation
degree of PANI, which will be further discussed later.

TEM was used to acquire more information about the
morphology and structure of WO3 and PANI/WO3. TEM
images confirm the nano-blocks feature of the WO3, as
shown in Fig. 6a, entirely consistent with the FESEM
results. Fig. 6b, c reveal that the translucent PANI dec-
orate on the surface of the WO3 nanosheets. This is
consistent with the results obtained by FESEM, where the
polymerized PANI is well combined with the WO3 na-
nosheets. Fig. 6d displays an high resolution TEM

Figure 3 FESEM images of the samples: (a) WO3, (b) PANI/WO3 composites (S3), (c and d) PANI/WO3@cotton thread (S3), (e) pristine PANI, and
(f) PANI decorated cotton thread.

Figure 4 FESEM images of samples with different molar ratios: (a) S1 (5%), (b) S2 (7.5%), and (c) S4 (12.5%).
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(HRTEM) image of the PANI/WO3 composite with the
fringe distances of 0.270 nm corresponding well with the
lattice distance of the (022) plane of monoclinic WO3
[37]. Besides, a distinct boundary is between the WO3
nanosheet and the PANI (Fig. 6d), suggesting that a p-n
heterojunction might be formed between the WO3 and
PANI.

The chemical structures of the pristine PANI, PANI/
WO3 composites, and WO3 were analyzed by using FTIR,
as presented in Fig. 7 within 500–4000 cm−1. The peaks at
1560, 1478, 1300, 1242, 1123 and 800 cm−1 are mainly
attributed to the distinctive absorption peaks of the
pristine PANI (curve a) [38]. Furthermore, the peak lo-

cated at 1560 cm−1 is related to the N=Q=N stretching
vibration in the quinoid structure, and the peak at
1478 cm−1 corresponds to the N=B=N vibration of the
benzenoid structure. The vibration peaks of C–N, and
C=C are at 1300 and 1242 cm−1, respectively [39]. The
peaks at 1123 and 800 cm−1 can be assigned to C–H
stretching vibration within and outside of the plane [40].
The characteristic peaks of WO3 (curve c) are located at
932, 823 and 761 cm−1 and the distinctive bands at 823
and 761 cm−1 are recognized as the W–O–W stretching
vibrations of WO3 [41]. The characteristic spectrum of
the PANI/WO3 composite is presented in curve b. The
PANI/WO3 composite shows five vibration peaks of
PANI at 1563, 1478, 1300, 1242, and 1122 cm−1 as well as
three main peaks of WO3 at 939, 817 and 763 cm−1, in-
dicating a successful combination of the PANI and WO3.

XPS measurements were carried out to study the che-
mical states and elemental composition of the PANI/WO3
and PANI/WO3@cotton thread. For the full spectra in
Fig. 8a, the characteristic peaks of W, S and O elements
coexist in the PANI/WO3 and PANI/WO3@cotton
thread. The detailed chemical states of W, S and O ele-
ments are shown in the corresponding fine spectra. In
Fig. 8b, W 4f spectrum of the PANI/WO3 clearly shows
two characteristic peaks at 35.7 and 37.8 eV with a spin-
orbit interval of 2.1 eV, which are assigned to W 4f7/2 and
W 4f5/2 with the +6 oxidation state, respectively [42].
These two characteristic peaks shift to 35.5 and 37.6 eV
for the PANI/WO3@cotton thread. Compared with
PANI/WO3, the W 4f binding energy shifts of the PANI/
WO3@cotton thread are ascribed to the charge transfer
between PANI/WO3 and cotton thread due to the formed
close contacts at the interface [43]. In Fig. 8c, the high-

Figure 5 EDX spectra of PANI@cotton thread and PANI/WO3@cotton
thread.

Figure 6 TEM images of (a) WO3, (b and c) PANI/WO3 composites,
and (d) HRTEM of PANI/WO3 composites.

Figure 7 FTIR spectra of (a) PANI, (b) PANI/WO3, and (c) WO3.
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resolution S 2p spectra can be well deconvoluted into two
peaks at 167.4 and 168.4 eV, corresponding to S 2p3/2 and
S 2p1/2 states, respectively. The formation of S element is
attributed to the added SSA and ammonium persulfate
during the synthesis process. For the O element in
Fig. 8d, the binding peaks at 531.1 and 532.2 eV are as-
cribed to W–O and the adsorbed oxygen (O2−, O−) on the
surface of WO3, respectively [44].

The sensing properties
One merit of this work is the selection of cotton thread as
the flexible substrate. As high working temperature dur-
ing conventional sensing test will damage the thread,
therefore, all the sensing test was conducted at room
temperature. The gas response of the pristine PANI
thread and PANI/WO3 cotton thread to 100 ppm NH3
was investigated at room temperature. As presented in
Fig. 9, the gas responses (S=Rg/Ra) of the PANI@cotton
thread is 2.5. The gas response of the PANI/WO3@cotton
sensors with different PANI/WO3 molar percentages
show an “increased-maximum-reduced” trend. In the
case of pristine WO3, the sensor responds weakly to
100 ppm NH3 at room temperature. When the WO3

molar percentage is 10%, the PANI/WO3@cotton sensor
achieves the highest response value of 6.0, demonstrating
that the sample with a mole percentage of 10% WO3
exhibits better performance to NH3 than that of 12.5%.
The reasons are as follow: first, as the WO3 molar per-
centage increases to 12.5%, some WO3 nanoparticles

Figure 8 XPS spectra of PANI/WO3 powder and PANI/WO3@ cotton thread: (a) full spectra, (b) W 4f, (c) S 2p and (d) O 1s.

Figure 9 The effect of the WO3 mole percentage (S1: 5%, S2: 7.5%, S3:
10%, S4: 12.5%) on the sensing response of sensors to 100 ppm NH3.
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cannot be fully coated by PANI and directly decorate on
the cotton surface (Fig. 4c), affecting the reaction between
protonated PANI and NH3. Second, the excessive elec-
trons from WO3 make the depletion region thicker at the
hetero-interface, thereby reducing the sensing perfor-
mance. Therefore, a large amount of WO3 addition re-
sults in a deterioration of the response of the PANI/
WO3@cotton sensor to NH3.

Selectivity refers to the ability of the sensor to accu-
rately identify the target gas, which is a highly important
characteristic of the gas sensor [45]. Fig. 10 illustrates the
selectivity of a PANI/WO3@cotton sensor for various
testing gases, such as NH3, CO, ethanol, H2S, acetone,
toluene, xylene, and NO2, at the concentration of
100 ppm. The results demonstrate that the PANI/WO3@
cotton sensor displays the highest gas response (6.0) to
NH3, while the response values to other interference gases
are in the range of 1.01–1.30, confirming the excellent
selectivity of the PANI/WO3@cotton thread-based sensor
for NH3 detection.

Response/recovery time is one of the important factors
for characterizing sensor performance, as rapid response

and recovery processes facilitate real-time detection.
Moreover, the reversible ability during the adsorption/
desorption processes is crucial for a flexible fabric sensor
in the real application. Fig. 11a displays the transient
response-recovery curve of the PANI/WO3 cotton thread
sensor to 100 ppm NH3 at room temperature. The results

Figure 10 The selectivity of the PANI/WO3@cotton thread sensor to
various gases of 100 ppm at room temperature.

Figure 11 (a) The response-recovery curve of PANI/WO3@cotton sensor to 100 ppm NH3 at room temperature. (b) The dynamic response curve to
different concentrations of NH3, and (c) the calibration plot of response value vs. NH3 concentration.
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demonstrate that the response time for PANI/WO3 cot-
ton sensor is 122 s and the recovery time is 165 s, which
verifies that this sensor can be employed as a fabric-based
gas sensor in real applications. Fig. 11b plots the dynamic
response of the PANI/WO3@cotton sensor to different
concentrations of NH3 at room temperature. It is found
that the PANI/WO3@cotton sensor has good perfor-
mance within the range of 3–150 ppm. When the PANI/
WO3@cotton sensor is exposed to 3 ppm NH3, the gas
response is still 1.25. The equation of linear regression (in
Fig. 11c) is Rg/Ra = 0.04215C (NH3) (ppm) + 0.0027
(R2=0.97594). The limit of detection (LOD) was calcu-
lated based on the standard derivation (3σ) method:
LOD=3σ/S, (1)
where S is the slope of the calibration curve and σ is the
standard deviation of the blank signals. The LOD of NH3
for the PANI/WO3@cotton sensor is 192 ppb.

To investigate the performance of the physical flex-
ibility of the sensor, the PANI/WO3 cotton thread in a
straight and bent form was exposed to 100 ppm NH3 and
measured at room temperature. The results are presented
in Fig. 12a and the PANI/WO3@cotton sensors show si-
milar sensitivities of 5.48 and 5.26 in the straight and bent

states, respectively. Since PANI-based materials are sus-
ceptible to environmental humidity, the effects of hu-
midity on the PANI/WO3@cotton sensor to NH3 were
also investigated. As displayed in Fig. 12b, the gas re-
sponse of the sensor intensifies as the environmental
humidity increases and tends to stabilize when the re-
lative humidity (RH) reaches 65%. The results demon-
strate such a sensor can be potentially applied in flexible
electronics.

Repeatability and stability are always important in-
dicators of gas sensors. To investigate these aspects of the
device, the PANI/WO3@cotton sensor was exposed to
100 ppm NH3 throughout 5 cycles test. The resulting
curves, as presented in Fig. 12c, display the PANI/WO3
cotton sensor cannot make a 100% recovery at room
temperature, and the resistance of the cotton thread
gradually increases in both air and the target gas ambient
during the tests. The recorded resistances in ambient air
are 0.20, 0.24, 0.27, 0.30 and 0.34 MΩ, respectively, while
the corresponding resistances in the target gas are 1.20,
1.36, 1.48, 1.68 and 1.86 MΩ, respectively. In view of the
gas response calculation formula, S=Rg/Ra, the sensitiv-
ities for each cycle are 6.0, 5.7, 5.5, 5.6 and 5.6, respec-

Figure 12 (a) The dynamic response curves for straight and bent PANI/WO3 cotton thread, (b) the effect of humidity, (c) repeatability, and (d)
stability of the PANI/WO3@cotton sensor to 100 ppm NH3 at room temperature.
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tively. Hence the results illustrate the PANI/WO3@cotton
sensor exhibits efficient response/recovery performance
with appropriate repeatability at room temperature. To
further study the long-term stability of the PANI/
WO3@cotton sensor to 100 ppm NH3, response/recovery
cyclic tests were repeated over thirty days. The result in
Fig. 12d demonstrates the gas response of the PANI/
WO3@cotton sensor slightly decreases from a value of 6.0
to 5.5. Therefore, the PANI/WO3 cotton thread exhibits
good long-term stability.

The sensing mechanism
The PANI/WO3@cotton sensor has superior sensing
performance for several reasons: (1) the deprotonation/
protonation process of the pristine PANI, (2) the unique
PANI/WO3 composite structure, (3) the higher surface-
to-volume ratio based on cotton thread, and (4) the in-
creased protonation of PANI in the composites.

Firstly, it has already been noted that deprotonation/
protonation plays an important role in the sensing per-
formance of the pristine PANI [46], which mainly occurs
in proton enriched environments, as illustrated in
Fig. 13a. The PANI thread was treated by acid and then
put into the NH3 environment, with the protons in PANI
extracted by NH3 leading to the change of state. A con-
ductive emeraldine salt state (ES form) of PANI is thus
altered into an intrinsic emeraldine state (EB form),
leading to the increment of resistance. Alternatively, once
the acidified PANI thread is placed in an air atmosphere,

the reaction process is then reversed, resulting in the
decrease of resistance. In addition, the intrinsic polyani-
line structure contains 1D organic main chain in the form
of alternating single bond and double bond, and has no
conductivity in the undoped state. p-Type semiconductor
is formed after doping with SSA. Contacting with the
reducing gas NH3, the number of carriers (holes) in the
material decreases due to the arc pair electrons in am-
monia molecules, which are electron donors. NH4+ is
formed on the surface of the material, which increases the
potential barrier, hinders the movement of carriers and
decreases the conductivity of the material, thus showing
the sensitivity of the material to the target gas sensitivity
[47,48].

Secondly, the gas response of the PANI/WO3@cotton
sensor to NH3 shows a significant improvement, com-
pared with that of the pristine PANI and WO3, which
may be attributed to the unique composite structure of
PANI/WO3. SEM images show that the surface of the
acidified PANI thread is smooth with a limited number of
nano-sheets. However, the surface of the PANI/WO3
cotton thread is much coarser after being decorated with
WO3, thus providing more sufficient active sites for ad-
sorption and diffusion, leading to a subsequent im-
provement in the sensing response. It is noted that WO3
is a typical n-type semiconductor while acidified PANI is
a p-type organic semiconductor. When the PANI nano-
particles are wrapped on the surface of WO3, it leads to
electron transfer from n-type WO3 to p-type PANI, and
the hole transfer from PANI to WO3. This process results
in a non-uniform carrier concentration on both sides of
the WO3 and PANI, and an internal electric field estab-
lished between the interfaces of PANI and WO3. A new
Fermi level is formed in the PANI/WO3 composite
structure, as a stable p-n heterojunction and a narrow
depletion layer are formed at the PANI and WO3 inter-
face [49]. The resistance of pure PANI (p-type) is 38 kΩ,
while the resistance of pure WO3 is 19 kΩ. However, after
introducing different molar ratios of WO3 to PANI, the
resistances of PANI/WO3 (5, 7.5, 10, 12.5 mol%) are 111,
198, 228, and 598 kΩ, respectively, which are much
higher than that of pure PANI, evidencing the formation
of the p-n junctions between PANI and WO3 [50]. When
the PANI/WO3 cotton thread is exposed to NH3, the gas
extracts protons and destroys the PANI original state.
During this process, the area of the depletion region at
the heterogeneous interface of the PANI and WO3 be-
comes thicker, resulting in a narrowing conduction path
and a subsequent increase in resistance, as shown in
Fig. 13b.

Figure 13 (a) Mechanism diagram of the interactions of NH3 with
pristine PANI and (b) changes of the depletion layer of the PANI/WO3
nanocomposites before and after NH3 adsorption.
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Thirdly, the adsorption and diffusion of NH3 are di-
rectly related to the microstructure of the PANI/WO3
cotton thread. The unique fiber structure exhibits a high
surface-to-volume ratio and provides a greater number of
adsorption sites for the NH3 molecules [28]. Meanwhile,
PANI is wrapped around the cotton forming a structure
similar to a coaxial cable. The assembly can accelerate the
one-way transmission of electrical signals, thus greatly
improving the response and recovery ability.

Finally, according to EDX (Fig. 5), the PANI-WO3
nanocomposite improves the protonation of PANI after
introducing WO3, due to the synergetic oxidation of WO3
and APS. The increased protonation of PANI provides
more =NH+ groups for NH3 molecule adsorption, and
thus enhances the NH3-sensing performance of the
PANI/WO3@cotton thread-based flexible sensor.

CONCLUSIONS
In this paper, we demonstrate the successful fabrication of
a PANI/WO3@cotton thread-based flexible sensor that is
capable of detecting NH3 at room temperature. The WO3
nanoblocks were synthesized using a hydrothermal
method, while the PANI/WO3@cotton thread was pre-
pared by in-situ polymerization. When the molar ratio of
WO3 is 10%, the sensor exhibits the highest gas response
upon exposure to 100 ppm NH3. The enhancement of gas
response of the PANI/WO3@cotton sensor can be ex-
plained as follows; firstly, the addition of WO3 changes
the microstructure of the PANI/WO3@cotton thread as
well as assists the protonation of the PANI material;
secondly, the p-n heterojunctions are formed at the in-
terface between the PANI and WO3 regions; and finally,
the high surface-to-volume ratio and parallel structure in
the fabric substrate result in the increase of response. The
PANI/WO3@cotton sensor displays a high gas response
of 6.0 to 100 ppm NH3 at room temperature, as well as
excellent selectivity, repeatability and stability properties.
Furthermore, the bending of the fiber has negligible de-
terioration of the sensing performance. Therefore, the
PANI/WO3@cotton sensor demonstrates great potential
as a flexible NH3 sensor within the area of flexible and
wearable electronics.
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基于p-型PANI/n-型WO3异质结的柔性气体传感
器及其室温下高性能NH3检测
贺蒙1,2†, 解丽丽2†, 罗贵芳2, 李崭虹2, James Wright3, 朱志刚1,2*

摘要 本文研制了一种能在室温下检测NH3的PANI/WO3@棉线传
感器 . 采用原位聚合的方法用PANI包裹WO3, 并利用TEM、
SEM、XRD和FTIR对样品的形貌和结构进行了研究. 研究了不同
PANI与WO 3摩尔比的PANI /WO 3 @棉线传感器在室温下对
100 ppm氨气的传感性能, 结果表明, 最佳传感器(10 mol% WO3)对
100 ppm的NH3灵敏度为6.0, 明显高于纯PANI及其他复合材料. 此
外, PANI/WO3@棉线传感器也显示出优异的选择性、灵敏性和柔
韧性. 复合材料中独特的纤维结构、p-n异质结的形成以及PANI质
子化程度的增加使得该传感器表现出优异的NH3传感性能.
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