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SPECIAL ISSUE: Optical Gain Materials towards Enhanced Light-Matter Interactions

Epitaxial growth of metal-semiconductor van der
Waals heterostructures NbS2/MoS2 with enhanced
performance of transistors and photodetectors
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Yiwei Zhang1, Yi Du4,6, Lihong Bao2,7*, Weida Hu3* and Yongji Gong1*

ABSTRACT Two-dimensional (2D) heterostructures based
on layered transition metal dichalcogenides (TMDs) have at-
tracted increasing attention for the applications of the next-
generation high-performance integrated electronics and op-
toelectronics. Although various TMD heterostructures have
been successfully fabricated, epitaxial growth of such atom-
ically thin metal-semiconductor heterostructures with a clean
and sharp interface is still challenging. In addition, photo-
detectors based on such heterostructures have seldom been
studied. Here, we report the synthesis of high-quality vertical
NbS2/MoS2 metallic-semiconductor heterostructures. By using
NbS2 as the contact electrodes, the field-effect mobility and
current on-off ratio of MoS2 can be improved at least 6-fold
and two orders of magnitude compared with the conventional
Ti/Au contact, respectively. By using NbS2 as contact, the
photodetector performance of MoS2 is much improved with
higher responsivity and less response time. Such facile
synthesis of atomically thin metal-semiconductor hetero-
structures by a simple chemical vapor deposition strategy and
its effectiveness as ultrathin 2D metal contact open the door
for the future application of electronics and optoelectronics.

Keywords: metal-semiconductor heterostructures, contact en-
gineering, field-effect transistor, photodetector

INTRODUCTION
Two-dimensional (2D) materials are promising building
elements for the future high-performance electronic and
optoelectronic devices due to their intriguing properties,
such as superconductivity, charge-density-wave state,
tunable bandgap, ferromagnetic, and quantum hall effect
[1–5]. The diversity of these fascinating properties based
on 2D materials offers a great opportunity for con-
structing atomically thin heterostructures to achieve
various functions and applications. Benefiting from the
weak interlayer van der Waals (vdW) interaction, atom-
ically thin 2D materials can be stacked vertically or lat-
erally, which undoubtedly provides more possibilities to
explore novel chemical and physical properties [6–10].
Recently, the vdW heterostructures play an active and
crucial role in modern electronics, such as tunneling
transistors, wearable electronic, and photodetectors [11–
14]. Previous studies have mainly focused on the fabri-
cation of semiconductor-semiconductor heterostructures,
such as MoS2/WS2, WSe2/MoSe2 vertical heterostructures
and WS2/WS2(1−x)Se2x, MoS2/WS2 lateral heterostructure
[15–17]. However, only a few metal-semiconductor het-
erostructures have been successfully achieved due to the
uncontrollable synthesis of 2D metallic transition metal
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dichalcogenides (TMDs) so far. The previously obtained
metal-semiconductor heterostructures are usually com-
posed of monolayer semiconducting TMDs with rela-
tively thick metallic TMDs, lacking the advantages of
ultrathin nature of 2D materials [18–20]. Although the
atomically thin NbS2/MoS2 metal-semiconductor hetero-
structure has been grown by Fu et al. [18], its electronic
and optoelectronic properties have not been system-
atically studied. Therefore, it is still challenging but
worthwhile to fabricate atomically thin metal-semi-
conductor TMD heterostructures with a clean and sharp
interface and explore their intriguing properties and po-
tential applications.

Initially, it was reported that the 1T phase MoS2, con-
verted from 2H MoS2 by the treatment of n-BuLi, can be
served as contact electrodes to improve the device per-
formance [13]. Considering the fact that damage and
contaminations from the complicated process are in-
evitable and 1T phase MoS2 is not stable, direct growth of
2D metallic materials as contact may be a more reliable
and efficient method to improve the device performance.
Up to now, chemical vapor deposition (CVD) is the most
efficient approach to prepare metallic 2D materials and
semiconductor-metal heterostructures. For example, VS2
nanoflake was prepared by CVD firstly, then the nano-
flake was taken as a seed to grow lateral VS2/MoS2 het-
erostructures or transferred to stack VS2/MoS2
heterostructures [19,20]. However, the thickness of VS2
cannot be controlled down to atomically thin and the
effect of metallic contact on optoelectronics has not been
explored. Therefore, the ability to controllably grow
atomically thin metal-semiconductor heterostructures
with clean and sharp interface still remains challenging.

Here, we report a two-step CVD method to synthesize
NbS2/MoS2 vertical heterostructures, where monolayer
NbS2 is epitaxially grown on the top surface of the
monolayer MoS2 and the thickness of NbS2 can be well
controlled down to monolayer. Raman and photo-
luminescence (PL) spectroscopy were used to confirm the
formation of MoS2 and NbS2 and their optical coupling
effect. Transmission electron microscopy (TEM) images
reveal the high-quality NbS2/MoS2 heterostructures with a
distinct interface. The fabricated MoS2/NbS2 hetero-
structure devices with NbS2 as contact electrodes show
remarkably improved device performance. The field-ef-
fect mobility and current on/off ratio of MoS2 have been
improved at least six times and two orders of magnitude
compared with the conventional Ti/Au contact. In addi-
tion, by NbS2 contact engineering, the response and re-
covery times of MoS2 photodetector can be efficiently

reduced at least thirty and one hundred times, respec-
tively, while the photo-responsivity can be improved
about twenty times. We believe that our work will provide
a convenient avenue and new direction to design and
synthesize 2D metal-semiconductor heterostructures with
enhanced and synergistic device properties.

METHODS

Synthesis of atomically thin NbS2/MoS2 heterostructures
NbS2/MoS2 metal-semiconductor heterostructures were
synthesized by ambient-pressure CVD in a 2-inch quartz
tube heated by a Lindberg/Blue M (HTF55342C) furnace.
Firstly, pristine monolayer MoS2 was fabricated as the
vdW substrate of NbS2 on SiO2 (300 nm)/Si. Molybde-
num trioxide (MoO3) powder and sulfur (S) powder were
used as the precursors, which were placed at the center
and upstream of the quartz tube, where the temperatures
were set as 640 and 190°C, respectively. Before the
growth, the furnace tube was purged with 500 sccm Ar
for 20 min, and 80 sccm Ar was used as carrier gas during
growth. The furnace was heated to 640°C in 14 min and
maintained at that temperature for 3 min to allow the
synthesis of MoS2 monolayer. The furnace was naturally
cooled to 600°C without changing the carrier gas. Then
the top cover of the furnace was opened to allow fast
cooling of the sample, with carrier gas switched to 500
sccm Ar. After the growth of MoS2, it was transferred to
another quartz tube to synthesize NbS2/MoS2 hetero-
structures immediately. Nb2O5 powder with NaCl and S
powder (Alfa Aesar, purity 99.5%) were used as pre-
cursors, where the temperatures were set to 800 and
200°C, respectively. MoS2/SiO2/Si was placed facing down
to Nb2O5/NaCl mixture powder. During the growth of
NbS2, 200 sccm Ar and 15 sccm H2 were used as the
carrier gases. The furnace was heated to 800°C in 17 min
and maintained at that temperature for 3–5 min to allow
the synthesis of NbS2/MoS2 layers.

Transfer of NbS2/MoS2 heterostructures for HAADF-STEM
measurement
Poly(methyl methacrylate) (PMMA) (950 PMMA A4,
Micro Chem) assisted method was used to transfer the
samples for TEM measurement. The as-grown hetero-
structures were spin-coated with PMMA at a speed of
3000 r min−1 for 60 s followed by baking at 60°C for
5 min. SiO2 layer was etched by 3% hydrofluoric acid
(HF) for 10 min. After that, the lifted off PMMA/sample
layer was transferred to deionized water and rinsed three
times rapidly. Then, the rinsed PMMA/sample layer was
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transferred onto copper grid and baked at 60°C for 5 min.
Lastly, PMMA was washed off with acetone and iso-
propanol.

Characterizations of NbS2/MoS2 heterostructures
An optical microscope (OM, Olympus CX41) was used to
characterize the morphologies of NbS2/MoS2 hetero-
structures. Jobin-Yvon LabRAM HR 800 Raman spec-
trometer with 532-nm laser excitation was applied to
record the Raman and PL spectra and the corresponding
mappings. X-ray photoelectron spectroscopy (XPS) tests
were carried out via Thermo Scientific Escalab 250Xi. The
thickness of heterostructures was characterized by an
atomic force microscope (Bruker Icon). Scanning TEM
(STEM) images were obtained using JEOL ARM-200CF
operated at 80 kV.

Field-effect transistor (FET) device fabrication and
measurement of NbS2/MoS2 heterostructures
Electron-beam lithography was used to define the contact
regions on the heterostructures and pristine monolayer
MoS2 followed by electron-beam evaporation to coat a Ti/
Au metal layer (5/60 nm) as contact electrodes. Device
characterizations were conducted by using a Keithley
4200-SCS Parameter Analyzer in a probe station under
vacuum at room temperature. The photoelectrical prop-
erties were measured in atmospheric environment, and
the laser of 520 nm was illuminated on the devices using
confocal microscopy.

RESULTS AND DISCUSSION
Pristine monolayer MoS2 was grown first by a CVD
method as reported by previous work [21]. Briefly, MoO3
powder and S powder were used as the precursors, which
were placed at the center and upstream of the quartz tube,
respectively. For the MoS2/NbS2 heterostructure growth,
the as-grown MoS2/SiO2/Si was placed face down to the
mixed powder of Nb2O5 and NaCl at the center of the
furnace [21]. The growth temperature of MoS2 and NbS2
was about 640 and 800°C, respectively. The growth pro-
cess and the crystal structures of NbS2/MoS2 hetero-
structure are shown in Fig. 1a and Fig. S1. The
morphologies of individual monolayer MoS2 and NbS2
examined by optical microscopy are shown in the inset of
Fig. 1a, and the size of the as-prepared MoS2 and NbS2 is
a few tens of micrometers. Fig. 1b–d show the atomic
models of MoS2, NbS2, and the related heterostructures,
where both the monolayer MoS2 and NbS2 are in H phase.
With the growth conditions of NbS2 and MoS2 carefully
optimized, their 2D heterostructures can be easily

achieved by this two-step growth process. The typical
optical images of various as-grown NbS2/MoS2 hetero-
structures are shown in Fig. 1e–g, where the surface of
MoS2 is covered by high-quality and homogeneous NbS2
and sharp optical contrast can be observed between the
MoS2 and NbS2. Based on the morphologies of hetero-
structures, two possible growth modes could be proposed
as follows. (1) Edge growth mode, where the enegetically
active edges of bottom-layer MoS2 serve as the nucleation
sites for NbS2, which grows from the MoS2 edges and
gradually covers the whole surface of MoS2, as shown in
Fig. 1e. (2) Central growth mode, where the nucleation
sites of MoS2 located at the center further assist the
growth of NbS2. The full coverage NbS2/MoS2 is shown in
Fig. 1g. The relatively high density and aligned edge or-
ientations of NbS2/MoS2 heterostructures indicate the
high-yield and epitaxial nature of the growth. Due to the
very similar local atomic bonding environment for the Nb
and Mo atoms and the small lattice mismatch between
NbS2 and MoS2, monolayer NbS2 can be epitaxial grown
on top of MoS2 [18,22]. The morphology and height to-
pography from AFM images are shown in Fig. S2. The
thicknesses of MoS2 and NbS2 are about 0.78 and
0.82 nm, respectively, indicating that both the MoS2 and
NbS2 can be tuned down to monolayer. In addition, the
optical images of typical large-scale NbS2/MoS2 hetero-
structures, with the size measured up to 100 μm, as
shown in Fig. S3, indicate the size control ability of the
heterostructures.

Raman and PL spectroscopy with a 532-nm laser ex-
citation (spot size about 1 μm in diameter) were con-
ducted to characterize the heterostructure and determine
the spatial distribution of MoS2 and NbS2. A typical op-
tical image of the MoS2/NbS2 heterostructure is shown in
Fig. 2a. The apparent contrast difference in the hetero-
structure indicates a clean and sharp interface between
MoS2 and NbS2. Raman spectra of the heterostructure are
shown in Fig. 2b, where the phonon vibration modes can
be clearly recognized from the spectra. The Raman
spectra from the MoS2 area show two characteristic peaks
located at about 385.1 and 404.8 cm−1, which can be as-
signed to the in-plane E2 and out-of-plane A1 vibration
modes, respectively (green curve in Fig. 2b) [23,24]. The
frequency difference between E2 and A1 modes is
19.7 cm−1, indicating the MoS2 is single-layered. For pure
NbS2, the characteristic peaks of I, E1, E2, and A1 can be
found at about 147.5, 303.8, 340.9 and 379.1 cm−1, re-
spectively (purple spectrum) [25,26]. The orange spec-
trum in Fig. 2b represents the Raman curve of the NbS2/
MoS2 heterostructure, where the vibration modes of MoS2
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and NbS2 can be identified. Note that the A1 peak of NbS2
is overlapped with the peak of E2 mode of MoS2, which
cannot be distinguished directly. Fig. 2c shows the PL
spectra of pure MoS2 and the NbS2/MoS2 heterostructure.
For the MoS2 area, a very strong PL characteristic peak
located at about 668 nm is observed, which is in good
agreement with the reported value of monolayer MoS2
[23,24]. However, the PL of the bottom MoS2 is quenched
by the fast charge transfer process from the NbS2/MoS2
heterostructure area due to their strong interlayer cou-
pling. To further determine the chemical composition of
the NbS2/MoS2 heterostructure, XPS was performed. As
shown in Fig. 2d, the Nb4+ 3d5/2 and 3d3/2 core levels can
be identified, whose peaks are located at ~203.1 and
~206.1 eV, respectively, in good agreement with the va-
lues from NbS2 [27–29]. The presence of Mo4+ 3d5/2 and
3d3/2 peaks are marked at 229.4 and 232.5 eV, respec-
tively. The S 2p3/2 and 2p1/2 core levels are split into four
peaks located at about 160.9, 161.9, 163.1 and 164.0 eV,
respectively, due to the chemical shift of S between MoS2

and NbS2. The peak located at 160.9 and 161.9 eV are
attributed to Nb–S 2p3/2 and 2p1/2, respectively, while the
binding energy of 163.1 and 164.0 eV should be assigned
to Mo–S 2p3/2 and 2p1/2 core levels [30,31]. All these peaks
match well with the values of the MoS2 and NbS2 systems.
The original XPS spectrum is shown in Fig. S4. It is worth
noting that the atomic ratio of Mo–S and Nb–S from the
XPS spectra is about 1꞉2, which further confirms the
stoichiometry of MoS2 and NbS2.

High-angle annular dark-field STEM (HAADF-STEM)
was performed to further investigate the crystal quality
and detailed atomic structures of the NbS2/MoS2 het-
erostructure. Fig. 3a is the low-magnification atomic-re-
solution HAADF-STEM image of the heterostructure,
where monolayer NbS2 (upper layer) and MoS2 (bottom
layer) can be distinguished directly. HAADF-STEM im-
age of monolayer MoS2 and the NbS2/MoS2 hetero-
structure are shown in Fig. 3b and c, respectively, where
the samples are of high crystallinity. The atomically sharp
interface between NbS2 and MoS2 is highlighted by the

Figure 1 Synthesis and morphologies of the atomically thin NbS2/MoS2 vertical heterostructures. (a) Schematic of the synthesis of the NbS2/MoS2

heterostructures. (b–d) Structure models of pristine MoS2, NbS2, and NbS2/MoS2 heterostructure, respectively. (e–g) Optical images of the NbS2/MoS2
heterostructures. Two types of growth modes can be identified from the optical pictures. All the scale bars are 20 μm.
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olive dashed line in Fig. 3c. The bilayer heterostructure
region of NbS2/MoS2 shows clear Moiré patterns from
Fig. 3d, which can be assigned to the overlapping lattice
of NbS2 and MoS2. The periodic cell of Moiré pattern
highlighted by the red dashed rhombus is about 6.5 nm,
consistent with previous reports [18]. The corresponding
fast Fourier transformation (FFT) images of bilayer NbS2/
MoS2 heterostructure area are presented in Fig. 3e and f,
where two sets of hexagonally arranged diffraction spots
can be distinguished as magnified and labeled in Fig. 3f.
The detailed FFT image of monolayer MoS2 is shown in
Fig. S5. The lattice constants of NbS2 and MoS2 are 0.34
and 0.32 nm, respectively, measured from the diffraction
spots. In addition, the identical orientations of the two
sets of diffraction spots show that there is no twist angle
between the NbS2 and MoS2. Fig. 3g and h show the top
and side views of the simulation atomic structure model
of the NbS2/MoS2 heterostructure with Moiré patterns,
consistent with the experimental results shown in Fig. 3d.
Considering the clean surface and sharp boundary, dis-
tinct Raman vibration modes, strong PL characteristic
peak and unbroken atomic structure of MoS2, it can be
concluded that the MoS2 will be well kept after growth of

NbS2.
Given the excellent electrical conductivity of metallic

NbS2, it can be served as the efficient contact material to
optimize the device performance in 2D electronics. MoS2
field-effect transistors (FETs) with NbS2 as the contact
electrodes were fabricated based on our CVD-grown
heterostructures, and the optical images of such devices
are shown in Fig. S6a–c. Fig. 4a–c show the schematic
diagram of MoS2 devices with different contacts and their
corresponding output characteristics are presented in
Fig. 4d–f and Fig. S6d–f. The on-state current is 1.5 μA
μm−1 at bias voltage Vds=1.0 V and back-gate voltage Vbg
=60 V for two-terminal NbS2 contacted MoS2 FET
(Fig. 4f), which is about ten times more than that with Ti/
Au contact (Fig. 4d) and is about five times of the on-
state current from one-terminal NbS2 contacted MoS2
FET (Fig. 4e). The significant improvement of on-state
current can be attributed to the metallic NbS2 contact,
and the electrical conductivity of NbS2 is shown in
Fig. S6g and h. The interface damage, structural distor-
tion, and Fermi level pinning effect due to Ti/Au de-
position can be effectively avoided by the presence of
epitaxially grown NbS2 layer as vdW contact. Thus, the

Figure 2 Raman, PL and XPS characterizations of the NbS2/MoS2 heterostructures. (a) Optical image of the typical NbS2/MoS2 heterostructure, where
high quality atomically thin NbS2 epitaxial grows on top of MoS2 except the corner. The scale bar is 20 μm. (b) Raman spectra of MoS2, NbS2 and
NbS2/MoS2 heterostructures. (c) PL spectra of NbS2 and NbS2/MoS2 heterostructures. (d–f) XPS curves of Nb 3d, Mo 3d and S 2p core levels from the
heterostructures.
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Schottky barrier and contact resistance should be much
smaller for MoS2 FET with NbS2 contact than that with
Ti/Au contact [19,32,33]. The transport behavior of NbS2
is shown in Fig. S6g and h, where a linear Ids-Vds curve
can be obtained, indicating the Ohmic contact between
NbS2 and electrodes. Note that the current is about
0.1 mA at Vds=0.1 V, showing the metallic nature and the
excellent electrical conductivity. Fig. 4g compares the
output characteristics of the MoS2 devices with NbS2 and
Ti/Au contacts under Vbg=60 V. The corresponding
transfer curves are shown in Fig. 4h, showing a typical n-
type behavior of the MoS2 channel. The current on-off
ratio is 1.8×107 for the two-terminal NbS2 contacted MoS2
FET, about two orders of magnitude larger than that for
the Ti/Au contact (~8.4×105). The carrier mobility can be
derived from the standard formula of μ=dIds/dVbg·
(L/WCiVds), where W and L are the width and length of

the channel, Ci is the capacitance with 11.5 nF cm−2, Vds =
2 V. The calculated mobility (μFE) of MoS2 FET with two-
terminal NbS2 contact reaches 15 cm2 V−1 s−1 (W=2.1 μm,
L=2.5 μm), which is about six times that with the Ti/Au
contact (μFE=2.5 cm2 V−1 s−1,W=7 μm, L=5 μm). These
three devices show similar threshold voltages (~−40 V)
and subthreshold swings (3.2 V dec−1), indicating that the
doping level and the density of gap states in the MoS2
channel are nearly the same [19]. Notably, each kind of
contact is tested for at least three devices and all of them
show consistent mobilities and on-off ratios. The results
demonstrate that the device performance can be greatly
improved by the NbS2 contact. The parameters of the
channel widths, lengths, mobility and on-off ratio are
summarized in Table S1 (Supplementary information). It
should be noted that the MoS2 is well kept and will not be
doped by Nb atoms after the growth of NbS2, which is

Figure 3 Atomic structure of the NbS2/MoS2 heterostructure. (a) Low magnification of HAADF-STEM image of the vertically stacked hetero-
structure, where the region of MoS2 and interface of NbS2/MoS2 can be distinguished clearly. 1L stands for one layer. (b) HAADF-STEM image of
monolayer MoS2. Scale bar, 2 nm. (c) HAADF-STEM image of the NbS2/MoS2 heterostructure, where atomically sharp interface was highlighted by
the olive dashed lines. Scale bar, 2 nm. (d) HAADF image taken from the region of heterostructure, indicating the periodic Moiré pattern. Scale bar,
5 nm. (e, f) FFT patterns collected from the heterostructure region and the magnified view of reciprocal lattices of NbS2 and MoS2, marked by purple
and green circles, respectively. (g, h) Atomic structures of the NbS2/MoS2 heterostructure from top view and side view.
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demonstrated by the preserved strong PL intensity, si-
milar carrier concentration and electrical characteristic
[20,22]. Therefore, all the electrical changes come from
the contact engineering. The detailed calculation of the
carrier density and discussion are shown in Fig. S6. In
addition, the performance of the NbS2-contacted MoS2
device is stable and nearly unchanged after exposure in
air for one week (Fig. S7).

Though it is difficult to extract the contact resistance of
Rc-NbS2

directly from transfer curves, Rc-NbS2
can be esti-

mated and compared with Rc-Ti from the output curves
[20]. Rc-NbS2

and Rc-Ti can be acquired by the following
fomula:

R R R
R R R

2 = ,
2 = ,

(1)c-NbS on-NbS ch-NbS

c-Ti on-Ti ch-Ti

2 2 2

where Rch-Ti and Rch-NbS2
are the channel resistance and the

Ron-Ti and Ron-NbS2
are the total resistance of Ti/Au and

two NbS2 contacted MoS2 FET, respectively. Note that

R L h W R

L h W

= = 1. 5

= = 0.9 , (2)

ch-NbS
MoS

MoS ch-Ti

MoS
MoS

2

2

2

2

2

where Δh is the thickness of monolayer of MoS2. There-
fore, it can be obtained by
R
R

R R
R R

I
I

 
  

2 +
2 + = 1

10 , (3)c-NbS

c-Ti

c-NbS ch-NbS

c-Ti ch-Ti

on-Ti

on-NbS

2 2 2

2

where Ion-Ti and Ion-NbS2
are the on-state current of Ti/Au

and two NbS2 contacted MoS2 FET, respectively. The
contact resistance Rc-NbS2

is less than 1/10 that of Ti/Au
contact. Besides, according to the formula [34]

Figure 4 MoS2 FETs with Ti/Au and NbS2 as contacts. (a–c) The schematic models of MoS2 FETs with Ti/Au contact, one NbS2 contact and two NbS2

contacts, respectively. (d–f) Output characteristics of the MoS2 FETs with different contacts. (g) The comparison of output characteristics of MoS2
with different contacts at Vbg=60 V. (h) Transfer curves of the MoS2 FETs with different contacts. (i) Band diagrams of the Ti/MoS2 and NbS2/MoS2
interfaces, respectively.
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R L µ C W V V=  / ( ), (4)on FE i GS TH

where the μFE, Ci, VGS and VTH are the mobility, capaci-
tance, gate and threshold voltage, respectively. The ratio
of Rc-NbS2

/Rc-Ti also can be acquired by
R R R R/ < / 1/7. (5)c-NbS c-Ti on-NbS on-Ti2 2

The contact resistance of Rc-NbS2
is less than 1/7 that of

Ti/Au contact, consistent with the results obtained from
the on-state current. Therefore, the improved on-state
current, on-off ratio, and mobility can be attributed to the
decreased contact resistance as well as the lowered
Schottky barriers (ФSB) height [19,31,32]. It is reported
that the ФSB can decrease from 163 meV (Ni/Au contact)
to 30 meV (VS2 contact), which can be attributed to the
absence of Fermi level pinning effects between the VS2
and MoS2 interface [19,35–38]. Considering the similar
work function of VS2 and NbS2 [20,38], and the decreased
contact resistance, the ФSB in the NbS2/MoS2 interface
should also be smaller than that for Ti/Au contact. Fig. 4i
shows the schematics of the band alignments of the Ti/
MoS2 and NbS2/MoS2 interface, respectively. For Ti/Au
contact, the surface of MoS2 will be damaged by the metal
contact directly, which was verified by Liu et al. [39]. In
addition, chemical bonding will be formed in the Ti/MoS2
interface and the deep energy level states may be pene-
trated close to the conduction band due to the Fermi level
pinning effects [19,20,39]. However, the Fermi level
pinning effects and surface damage of MoS2 will be
blocked by the protection of NbS2, where the height of
ФSB as well as the contact resistance will be reduced.

To further evaluate the effect of the NbS2 contacts, the
photodetector was fabricated based on the NbS2/MoS2
vdW heterojunctions. The schematic diagram of the MoS2
photodetector is shown in Fig. 5a and b, where the wa-
velength of the incident light is 520 nm. Fig. 5c shows the
photocurrent switching behavior of MoS2 transistor with
two NbS2 contacts under different illumination power
densities at Vds=1 V, where the device exhibits excellent
sensitivity, repeatability, and stability. It is worth men-
tioning that a high laser power density would have a
thermal effect on the MoS2 transistor. When the laser is
turned off, most photocurrents would decrease quickly,
and residual thermal-induced current can decrease tardily
by heat dissipation process. Fig. 5d–f show the photo-
current switching on-off curves and response time of
MoS2 detector with Ti/Au contact. It can be seen that
there is no steady photocurrent terrace, indicating that
there are many defects in the lattice of MoS2 [40–42].
According to the 10% and 90% photocurrent values of a
single on/off cycle, shown in Fig. 5e and f, the response

and recovery times of the devices are about 1.0 and 7.1 s,
respectively. The photon-generated carrier will be re-
combined at defective sites during the conduction of
photocurrent, decreasing the sensitivity of MoS2 greatly.
However, it is surprising to find that the sensitivity and
stability of photocurrent of MoS2 can be regulated and
improved significantly by NbS2 contacts. Fig. 5g records
the photocurrent switching behavior of the MoS2 device
with NbS2 contact. The response and recovery times are
about 30 and 70 ms, respectively, which is thirty and one
hundred times faster than that for the Ti/Au contact
device. Considering the similar defect distribution in the
channel of the device, the improved performance can be
attributed to the decreased contact resistance and lowered
Schottky barrier height. The decreased contact barrier
may provide a more unblocked way to collect photon-
generated carriers, which will decrease the rate of carrier
recombination and accelerate the generation of photo-
excited charge carriers. In addition, no extra interface and
crystal defects were introduced due to the protection of
NbS2 interlayer, the carrier scattering can be greatly re-
duced in the interface [39,43]. Therefore, the response
time in the NbS2-contacted MoS2 is faster than that for
the Ti/Au-contacted counterpart. The detailed mechan-
isms and microscopic picture as well as the corresponding
discussion can be seen in Fig. S8. The photo-responsivity
was obtained to further evaluate the promotion of the
NbS2 contacted photodetector. According to the equation
R= (Iphoto−Idark)/P, where the Iphoto and Idark are the photo-
current and dark current, respectively, and P is 30 nW,
representing the effective incident power on the device
channel [44]. The photo-responsivity can be improved
from 64.9 mA W−1 for the Ti/Au-contacted MoS2 device
to 1.27 A W−1 for the NbS2-contacted counterpart with
the laser power density of 42.5 mW mm−2. The photo-
responsivity curves with different power densities are
shown in Fig. S9. In addition, the photo-responsivity is
much higher than that for the MoS2/glassy-graphene
system (12.3 mA W−1), pure SnS2 (9 mA W−1) and MoSe2
(0.26 mA W−1) photodetector, and comparable to the
dye-sensitized MoS2 (1.17 A W−1), and pure GaSe
(2.8 A W−1) photodetector (see Table 1 for details) [37–
50]. The above results demonstrate the excellent im-
provements of device performance by the NbS2 contact,
providing a competitive candidate in the field of the
optoelectronic system.

CONCLUSIONS
In conclusion, we have successfully epitaxially grown
high-quality atomically thin metal-semiconductor NbS2/
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Figure 5 MoS2 photodetectors with Ti/Au and NbS2 as contacts. (a, b) Structural schematics of the Ti/Au and NbS2 (two terminals)-contacted MoS2
photodetectors with 532-nm laser illumination. (c) Time-resolved photocurrents of the NbS2-contacted MoS2 photodetectors with different power
densities. (d–f) The photocurrent switching on-off curves and response time of MoS2 detector with Ti/Au contact. (g–i) The photocurrent switching
on-off curves and response time of the MoS2 detector with NbS2 contact.

Table 1 Performance comparison of the MoS2 device with NbS2 contact and other 2D materials produced by mechanical exfoliation or CVD
methods (1L stands for one layer)

Device Fabrication
method

Mobility
(cm2 V−1 s−1)

Ion/off
ratio μFE improved Photodetector

rise/decay time
Spectral Res.
(mA W−1) Refs.

VS2-MoS2 CVD 35 106 Six-time – – [19]
VS2-MoS2 CVD 7.8 106 Four time – – [20]
NbS2-WS2 CVD 0.14 105 Equal – – [25]
Gra-MoS2 CVD 8.6 109 Five-time – – [32]

NbTe2-WSe2 CVD 12.1 106 Twice – – [33]
Ag-MoS2 CVD – – – 0.3 s/1.6 s 7.94×106 [40]
1L MoS2 CVD 0.23 105 – 55 ms/1.0 s 7.8×105 [41]

1L MoS2 Exfoliation 0.11 103 – 50 ms/50 ms 7.5 [42]
1L MoS2 Exfoliation 4.0 – – 0.6 s/9.0 s 8.8×105 [44]
1L MoSe2 CVD 15 105 – 25 ms/– 2.6×10−1 [45]
FL GaS Exfoliation – 104 – 30 ms/30 ms 9.5×102 [46]

FL GaSe CVD – 102 – – 6×102 [47]
FL GaSe CVD – 104 – 120 ms/150 ms 2.6×10 [48]

NbS2/MoS2 CVD 15 107 Six-time 30 ms/70 ms 1.27×103 This work
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MoS2 heterostructures with a clean and sharp interface by
a simple two-step CVD method. By engineering the
contact using atomically thin NbS2, the mobility of MoS2
was improved from 2.5 to 15 cm2 V−1 s−1, at least six times
that for the Ti/Au contact and the current on-off ratio
was improved about two orders of magnitude. In addi-
tion, we demonstrate that the response time of the pho-
todetector based on MoS2 can be efficiently reduced while
the photo-responsivity can be distinctly improved by
NbS2 contact engineering. We believe that our convenient
CVD synthesis of metal-semiconductor heterostructures
combining with contact engineering strategy will be a
competitive candidate for the applications of 2D metallic
TMDs in integrated electronics.
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外延生长范德华金属-半导体NbS2/MoS2异质结用
于增强晶体管和光电探测器性能
张鹏1†, 边策2†, 叶家富3†, 程宁燕4, 王兴国1, 江华宁1, 魏怡5,
张亦玮1, 杜轶4,6, 鲍丽宏2,7*, 胡伟达3*, 宫勇吉1*

摘要 基于过渡金属硫族化合物的二维材料异质结, 由于其在下一
代高性能集成光电子器件中的潜在应用而备受关注. 虽然目前异
质结制备很广泛, 但是外延生长具有干净锐利界面的原子级别厚
度金属-半导体异质结仍然备受挑战. 另外, 基于金属-半导体异质
结的光电性能还鲜有研究. 这里, 我们报道了高质量垂直金属-半导
体异质结的合成, 其中金属性质的单层NbS2外延生长于单层MoS2

表层. 使用NbS2作为电极接触的MoS2晶体管, 其迁移率和电流开
关比相对于Ti/Au接触的MoS2晶体管分别提升了6倍和2个数量级.
另外, 基于NbS2作为电极接触的MoS2光电探测器, 其响应时间和光
响应可以分别提升至少30倍和20倍. 本工作通过简单的化学气相
沉积(CVD)方法制备的原子级别厚度的金属-半导体异质结和二维
金属材料在接触方面的作用为其在光电子器件中的应用奠定了基
础.
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