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SPECIAL ISSUE: Optical Gain Materials towards Enhanced Light-Matter Interactions

Deep insights into interface engineering by buffer
layer for efficient perovskite solar cells: a first-
principles study
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Yuan Cheng5* and Jingbo Li1,3*

ABSTRACT Recent years have seen swift increase in the
power conversion efficiency of perovskite solar cells (PSCs).
Interface engineering is a promising route for further im-
proving the performance of PSCs. Here we perform first-
principles calculations to explore the effect of four candidate
buffer materials (MACl, MAI, PbCl2 and PbI2) on the elec-
tronic structures of the interface between MAPbI3 absorber
and TiO2. We find that MAX (X = Cl, I) as buffer layers will
introduce a high electron barrier and enhance the electron-
hole recombination. Additionally, MAX does not passivate the
surface states well. The conduction band minimum of PbI2 is
much lower than that of MAPbI3 absorber, which significantly
limits the band bending of the absorber and open-circuit
voltage of solar cells. On the other side, suitable bandedge
energy level positions, small lattice mismatch with TiO2 sur-
faces, and excellent surface passivation make PbCl2 a pro-
mising buffer material for absorber/electron-transport-layer
interface engineering in PSCs. Our results in this work thus
provide deep understanding on the effects of interface en-
gineering with a buffer layer, which shall be useful for im-
proving the performance of PSCs and related optoelectronics.

Keywords: perovskite solar cells, buffer layer, interface en-
gineering, band alignment, interfacial defect passivation

INTRODUCTION
As the leading composition and interface engineering
technology, perovskite solar cells (PSCs) have advanced

to reach power conversion efficiencies (PCE) over 23% in
10 years [1–14]. To further increase the efficiency of
PSCs, contact passivation could be an effective way to
improve the open-circuit voltage (VOC). It is known that
VOC of solar cells is strongly related to the band bending
of the absorber in the near-interface region, which is
strongly limited by the deep interfacial states [15–20]. So
treatment of the interface between the absorber and
carrier transport layer is of great importance to improve
the performance of PSCs.

Very luckily, it has been demonstrated that lead halide
perovskite (LHP) absorbers, such as MAPbI3 and FAPbI3,
have very good defect tolerance due to their substantially
ionic bonding characteristic [21]. Dangling bonds at the
surface of LHP nanocrystals have similar defect property
with benign surface defects [22,23]. So another major
obstacle to further improvement of PCE comes from the
interfacial states at the interface of LHP absorber and
carrier transport layer.

In PSCs, the most common electron transport layer
(ETL) materials are TiO2 [8,24–26] and SnO2 in rutile
structures [14,27,28]. It has been found that some deep
interfacial states could be introduced at LHP/TiO2 con-
tact. As a result, the Fermi level can be completely or
partially pinned by these deep states, limiting the band
bending and VOC of PSCs [29,30]. Many efforts have been
done to reduce the density of deep interfacial states by
surface passivation [4,9,14,31–43]. Tan el al. [9] reported
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reduced interfacial recombination and improved interface
binding in PSCs by TiO2/perovskite interface passivation
with chlorine. Jiang et al. [14] found that non-radiative
recombination can be suppressed by surface defect pas-
sivation with an organic halide salt phenethylammonium
iodide. Chen et al. [31] demonstrated that PbI2 phase
formed at the perovskite grain boundaries and relevant
interfaces can function as self-induced passivation of
LHPs and improve the performance of solar cells. Busby
et al. [43] provided experimental studies on the interface
and composition effect in PSCs [41,42]. Their further
work demonstrated that the stability of PSCs can be well
improved by interface engineering with two-dimensional
(2D) nano-materials.

Although some experimental studies have demon-
strated that interface treatments with various materials
can be helpful to improve the performance of PSCs, the
nature of these treatments is not well understood. Taking
LHP/ETL interface as an example, a good treatment
material between absorber and transport layer should
satisfy several requirements. i) The treatment material has
good defect properties and does not introduce deep defect
states. ii) It should have suitable band alignment with the
LHP absorber and ETL layers to transport electrons ef-
ficiently and hinder the hole transport. iii) It should be
able to passivate the pre-existing deep interfacial states.
iv) The growth of the buffer material should be easy and
controllable in experiments. As shown in Fig. 1a, when
there is a high density of deep interfacial states, the Fermi
level will be pinned by these interfacial states. Conse-
quently, the band bending and VOC are rather small
without a p-to-n type inversion of the absorber. With a
buffer layer being added between the absorber and ETL,
the deep interfacial states are expected to be passivated, as
shown in Fig. 1b. As a result, the band bending at the
interface and VOC can be significantly enhanced with an
effective p-to-n type inversion. Therefore, the formation
of deep interfacial states must be suppressed to make the
type inversion possible at the interface, in order to
overcome the VOC deficit of PSCs.

Herein, we performed a theoretical study on the effect
of the treatment at the absorber/ETL interface on the
performance of corresponding solar cells. MAPbI3 and
TiO2 are employed here as typical LHP absorber and ETL.
Four possible secondary phase including MAI, MACl,
PbI2 and PbCl2 are employed in this work to study their
effects as buffer layer materials between LHP absorber
(MAPbI3) and ETL (rutile TiO2) on the electronic prop-
erties of interfaces. Our results of band alignments in-
dicate that MACl and MAI can create high electron

barriers and reduce the electron collection efficiency of
ETL. The conduction band minimum (CBM) of PbI2 is
much lower than that of MAPbI3, which significantly
limits the near-interface band bending of absorber and
VOC of PSCs. PbCl2 is demonstrated to be a good buffer
material for LHP/ETL interface engineering with suitable
band alignments and good interfacial defect passivation
effect.

COMPUTATIONAL METHODS
All calculations were performed in the VASP code using
the projector augmented plane-wave method [44–46]. In
structural relaxation and total energy calculation, the
general gradient approximation (GGA) of Perdew, Burke
and Ernzerhof (PBE) [47,48] was adopted. The plane-
wave cutoff energy was set as 500 eV in all the calcula-
tions. To eliminate the interaction between adjacent slabs,
a vacuum larger than 15 Å was used. All the structures
were fully relaxed with a force tolerance of 0.02 eV Å−1.
DFT-D3 method of Grimme [49] was used to correct the
van der Waals (vdW) interaction in MAPbI3 and at in-
terfaces.

MAPbI3 in α-phase was employed in this work. Two
different MAPbI3 (001) surfaces, MAI-terminated and
PbI2-terminated, were taken into consideration. The
formation energies of these two MAPbI3 surfaces with
their thickness of three layers were calculated to evaluate
their relative stability. For MAI-terminated and PbI2-
terminated MAPbI3 surfaces, the formation energies were

Figure 1 The band diagram of LHP absorber/ETL interface. (a) The
TiO2/MAPbI3 solar cell with a high density of deep states at the interface.
The Fermi level near the interface is pinned by these deep states and
small band bending in the absorber layer. (b) The TiO2/MAPbI3 solar
cell with an ideal buffer layer between TiO2 and MAPbI3. Deep surface
states are passivated and a large band bending is obtained in the ab-
sorber layer.
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respectively calculated as [50]
E E E E(MA Pb I ) = [ 4 3 ] / 3,f 4 3 10 slab MAI PbI2

E E E E(MA Pb I ) = [ 3 4 ] / 3.f 3 4 11 slab MAI PbI2

The band alignments were calculated by using core-
level alignment, as described in Refs [51,52]. Taking TiO2
and MAI as examples, the energy difference between the
core level and the VBM in bulk TiO2 and MAI ( Ec V,

TiO2

and Ec V,
MAI) were calculated firstly. Then we did the core-

level alignment in TiO2/MAI superlattice and obtained
the core-level difference, Ec c, . Then the valence band
offset, EV , was calculated as

E E E E= + .V c V c V c c,
TiO

,
MAI

,
2

The conduction band offset was calculated as

E E E E= + .C g g V
TiO MAI2

RESULTS AND DISCUSSION
Previous studies have demonstrated that LHPs prefer to
make contacts with TiO2 (112) surface [9,53,54]. So TiO2
slabs in this work were built by cutting TiO2 through
(112) surface. Fig. 2 shows the crystal structures of (a)
TiO2 (112) surface, (b) MAI-terminated and (c) PbI2-
terminated MAPbI3 (001) surface. We calculated the
formation energies of both types of MAPbI3 slabs to
discuss their thermodynamic stability. Their negative
formation energies indicate that both MAI-terminated
and PbI2-terminated can be thermodynamically stable. It
is also found that MAI-terminated MAPbI3 slab has a
lower formation energy (−0.70 eV) than PbI2-terminated
one (−0.54 eV), which is consistent with pervious work
[49]. This is attributed to the stronger bonding between I
and Pb atoms than MA–I bonding. As a result, it costs
more energy to break the Pb–I bonds to form PbI2-ter-
minated MAPbI3 surface.

Though MAI-terminated MAPbI3 surface is more en-
ergetically favorable than PbI2-terminated one, the con-
tact surface of MAPbI3 to TiO2 can be controlled by
varying the chemical potentials of related elements in
experiments. Actually, it has been demonstrated that TiO2
(112) makes better contact to PbI2-terminated MAPbI3
(001) surface [9,50].

Before discussing the band alignments between buffer
layer and MAPbI3 absorber, we explored the layer-de-
pendent bandedge positions of MAPbI3 slabs in Fig. 3.
Since GGA-PBE functional gives correct description on
the variation of bandedges, spin-orbital coupling (SOC)
and hybrid functional corrections were not considered

here. The vacuum level was taken as reference in calcu-
lations of the bandedges of MAPbI3 slabs. It is found from
Fig. 3 that bandedges of both MAI-terminated and PbI2-
terminated MAPbI3 slabs show significant dependence on
the thickness of slabs. Specifically, in the case of MAI-
terminated MAPbI3 slab, its CBM decreases and its va-
lence band maximum (VBM) increases with the number
of layers, resulting in reduced band gap when its thick-
ness increases. While both the CBM and VBM of PbI2-
terminated MAPbI3 slab increase with the number of
layers, which is accompanied by its decreasing band gap.
This band gap variation shows similar trend to the 2D
LHPs in Ruddlesden-Poper phases and low-dimensional
LHPs [55,56].

We then discuss the influence of interfacial buffer layer
on the carrier transport properties. Considering the fea-
sibility in experiments and device designing, four semi-
conducting materials, MAI, MACl, PbCl2 and PbI2, were
employed as the buffer layer. The band alignments be-
tween TiO2 and MAPbI3 were corrected by referring to
the experimental value of conduction band offset
(0.40 eV). Here the bandedge positions of these buffer
materials were calculated on GGA-PBE level, and the
bandedges of TiO2 are adopted as references.

Band alignments in Fig. 4 show that all these four
buffer materials will introduce hole barriers between TiO2

Figure 2 The crystal structures of (a) TiO2 (112) surface, (b) MAI-
terminated and (c) PbI2-terminated MAPbI3 (001) surfaces from side
view. The number of layers of MAPbI3 slabs is labeled.

Figure 3 Layer-dependent bandedge positions of (a) MAI-terminated
and (b) PbI2-terminated MAPbI3 slabs. The vacuum level is taken as
reference.
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and MAPbI3, suggesting that holes in MAPbI3 absorber
will be reflected by the buffer layer. At the absorber/ETL
interface, the conduction band offset is of much more
importance. The CBM energy position of a suitable buffer
material should between the CBM energy positions of the
absorber and ETL to facilitate electron transportation.
Our results in Fig. 4 indicate that MAI and MACl will
introduce electron barriers between MAPbI3 and TiO2,
which is detrimental for electron transportation from
MAPbI3 absorber to TiO2. This means electron-hole re-
combination in MAPbI3 will be enhanced and PCE of
corresponding PSCs will be reduced. Our results suggest
that MAI and MACl are not suitable buffer materials.

In the case of PbI2, its much lower CBM than that of
MAPbI3 makes it unsuitable buffer material in lead io-
dides PSCs, even though this could be helpful for electron
collection. The Fermi level of PbI2/MAPbI3 interface can
not be higher than the CBM of PbI2. As a result, the band
bending of MAPbI3 in the near-interface region and VOC
are severely limited. On the other hand, holes from
MAPbI3 absorber can be trapped by the CBM states of
PbI2, improving the electron-hole recombination at the
interface.

In the view of band alignments, PbCl2 is a good buffer
layer with its CBM between the CBMs of TiO2 and
MAPbI3 and much lower VBM than MAPbI3. These re-
sults suggest that a buffer layer PbCl2 can facilitate the
electron transport and reflect holes from the MAPbI3
absorber. So the LHP absorber should be grown under a
PbX2-rich (X = Cl, Br, I) condition to form a PbCl2 buffer
layer at the LHP/ETL interface. What’s more, it is de-
monstrated that the formation energy of MAPbI3 slab
depends on the chemical potentials of PbI2 and MAI [21].
Under PbI2-rich condition, which means Pb and I have

high chemical potentials, PbI2-terminated MAPbI3 sur-
face has a lower formation energy than the case of MAI-
rich condition. So PbX2-rich condition also promotes the
formation of PbX2-terminated LHP surfaces.

It seems that the values given in Fig. 4 are different
from the experimentally measured ones, which mainly
comes from the underestimation in bandgaps in GGA-
PBE functional calculation. While the general features of
band alignments in Fig. 4 are well predicted, further
support to the rationality of results in Fig. 4 can be ob-
tained from orbital coupling analysis. For example, CBMs
of MACl and MAI are mainly composed by s orbital of
MA molecule. So they should have similar CBM positions
with small conduction band offset. On the other side, the
large difference in the VBMs of MACl and MAI is caused
by the large energy difference between Cl p and I p or-
bitals. Similar trends also are observed in PbCl2/PbI2.
Because the VBMs of PbCl2 and PbI2 mainly consist of
the antibonding states of Pb s and X p (X = Cl, I) orbitals,
the valence band offset in PbCl2/PbI2 is much smaller
than that of MACl/MAI. The antibonding coupling in
PbX2 is also responsible for the higher conduction band
positions than MAX. According to the analysis above,
Fig. 4 gives correct description on the band alignments of
materials employed in this work, even though the abso-
lute values of bandgap are underestimated.

Further insights into the band alignments can be ob-
tained from the interfacial charge density difference of
TiO2/buffer-layer (Fig. 5). The yellow and blue areas in-
dicate electron accumulation and depletion, respectively.
All the isosurface levels are set as 0.003 e Å−3. It is found
in Fig. 5a and b that electrons tend to transfer from the
MAX (X = Cl, I) buffer layer to TiO2 at MAX/TiO2 in-
terfaces, suggesting a lower CBM of TiO2. In the case of
PbCl2/TiO2 interface (Fig. 5c), the net exchange carrier
between PbCl2 and TiO2 is too small to identify from the
interfacial charge density difference, which means a small
difference in their CBM positions. For PbI2/TiO2 inter-
face, the charge exchange between PbI2 and TiO2 is much
weaker compared with the other three interfaces. This is
attributed to the layered structure and vdW interlayer
coupling of PbI2.

As illustrated in Fig. 1, a good buffer layer at the LHP-
absorber/ETL interface not only has suitable band align-
ments with the absorber and ETL materials, but also
passivates the pre-existing deep interfacial states. Before
discussing the passivation effect of the buffer layer, we
explored the electronic structures of TiO2 (112) surface in
Fig. 6 and MAPbI3 (001) surfaces in Fig. 7. Projected
density of states (PDOS) of TiO2 and MAPbI3 surfaces are

Figure 4 Schematic bandedge energy level positions of TiO2, MAPbI3
and four buffer materials (MAI, MACl, PbCl2 and PbI2). The conduction
band offset between TiO2 and MAPbI3 is taken as experimental value.
Band alignments here are calculated by using the core-level alignment
approach.
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calculated in Figs 6 and 7, respectively, with resolved
contribution of each type of ion to PDOS. It can be seen
from Fig. 6a and b that the VBM and CBM of TiO2
mainly consist of O p orbitals and Ti d orbitals, respec-
tively [53]. When bulk TiO2 is cut through (112) surface,
defect states are generated near its VBM due to the bro-
ken Ti–O bonds at the surface.

Many previous studies have demonstrated that the
CBMs of LHPs are mainly contributed by non-bonding
Pb p states and their VBMs mainly consist of the anti-
bonding states between p orbitals of halide atoms and Pb
s orbtial [21, 53]. In MAPbI3, MA+ contributes little to the
bandedges of MAPbI3. As a result, there are nearly no
deep surface states in the MAI-terminated MAPbI3 sur-
face. While in the case of PbI2-terminated MAPbI3 sur-
face, which is usually the case in experiments, MA+ does
not introduce gap states because its orbitals are dis-
tributed in high conduction bands and low valence bands,
as shown in Fig. 7c. Compared with PDOS of MAI-ter-
minated MAPbI3 surface, the broken Pb–I bonds at PbI2-
terminated MAPbI3 surface create a high density of gap
states near the CBM and VBM of MAPbI3, as shown in
Fig. 7a and b. Since MAPbI3 is intrinsically a p-type
semiconductor, shallow defects near the VBM can be
helpful to increase the density of holes. The shallow de-
fects near the CBM, however, are detrimental to the
concentration and life-time of holes, which further re-
duces the PCEs of solar cells.

Interfacial defect passivation through adding a buffer
layer is an useful route for further increasing the PCE and
the VOC of the PSCs. In Fig. 8, we discuss the interfacial
passivation effect of the above four buffer materials by
calculating the PDOS on Ti and O atoms of TiO2/MACl
(Fig. 8a), TiO2/MAI (Fig. 8b), TiO2/PbCl2 (Fig. 8c) and
TiO2/PbI2 (Fig. 8d). It is found that defect states at the
TiO2 (112) surface can not be fully passivated by MAX (X
= Cl, I). There is still a high density of surface states above

the VBM of TiO2. Especially at the MAI/TiO2 interface,
some extra deep interfacial states are introduced due to
large lattice mismatch between MAI and TiO2. PbI2 has a
weak influence on the electronic structure of TiO2 surface
due to the weak vdW interfacial coupling.

Fortunately, PbCl2, which has suitable band alignments
with TiO2 and MAPbI3, exhibits the best surface passi-
vation effect. Two main reasons are responsible for this.
Firstly, the lattice mismatch between PbCl2 and TiO2 is
very small so that the concentration of dangling bonds is
low. Secondly, the interfacial coupling between PbCl2 and
TiO2 is strong so that the dangling bonds at the TiO2
surface are well passivated. Theoretically, the strength of
coupling between two states is proportional to the overlap
of their wavefunctions. And the wavefunction overlap
depends on the atomic distance between the involved two

Figure 5 Charge density difference at interfaces between TiO2 and (a) MACl, (b) MAI, (c) PbCl2, and (d) PbI2. The yellow and blue areas indicate
electron accumulation and depletion, respectively. All the isosurface levels are set as 0.003 e Å−3.

Figure 6 PDOS of TiO2 (112) surface. (a) and (b) are the PDOS con-
tributed by O and Ti atoms, respectively.
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Figure 7 PDOS of MAI-terminated (left side) and PbI2-terminated (right side) MAPbI3 (001) surfaces. (a), (b) and (c) are PDOS contributed by I, Pb
and MA ions, respectively.

Figure 8 PDOS on Ti (left side) and O (right side) atoms in interfaces of (a) TiO2/MACl, (b) TiO2/MAI, (c) TiO2/PbCl2 and (d) TiO2/PbI2.

SCIENCE CHINA Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ARTICLES

August 2020 | Vol. 63 No.8 1593© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020



atoms. Due to the shorter bond length of Ti–Cl than Ti–I,
PbCl2 can couple with TiO2 stronger than PbI2. Strong
interfacial coupling usually means large energy gain upon
two materials binding together. So in some (Cl, I) alloyed
LHPs, PbCl2-terminated surface may be energetically
more favorable than PbI2-terminated one. Fig. 5c pro-
vides clear insights into the interfacial coupling of TiO2/
PbCl2. Obvious charge exchange is observed. Surface
states caused by dangling bonds of Ti and O atoms
coupled well with Cl and Pb atoms of PbCl2, respectively.
It is concluded that PbCl2 is a good buffer layer material
for interface engineering between the LHP absorber and
ETL.

CONCLUSION
In conclusion, first-principles calculations were per-
formed to explore the effect of four candidate buffer
materials (MACl, MAI, PbCl2 and PbI2) on the electronic
structures of interface between the MAPbI3 absorber and
TiO2. Our results of band alignments indicate that MAX
(X = Cl, I) as buffer layers will introduce a high electron
barrier which reduces the electron collection efficiency of
ETL. Electron-hole recombination will be enhanced and
the PCEs of solar cells will be reduced. Additionally,
MAX are not able to well passivate the surface states. The
CBM of PbI2 is much lower than that of MAPbI3 absor-
ber, which significantly limits the band bending of the
absorber and VOC of PSCs. Furthermore, its layered
crystal structure and weak vdW interfacial coupling re-
duce its surface passivation effect on the TiO2 surface.
Most importantly, suitable bandedge energy level posi-
tions, small lattice mismatch with TiO2 (112) surface, and
excellent surface passivation effect make PbCl2 a pro-
mising buffer material for LHPs/ETL interface engineer-
ing in PSCs.
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高效钙钛矿太阳能电池中缓冲层界面工程的深入
理解: 第一性原理研究
黄乐1, 董华锋2, 霍能杰3, 郑照强1, 邓惠雄4, 张刚5, 程渊5*,
李京波1,3*

摘要 近年来钙钛矿太阳能电池的能量转换效率迅速提高. 界面工
程是进一步改善钙钛矿太阳能电池性能的有前途的途径. 本文中,
我们进行第一性原理计算, 以探索四种候选缓冲材料(MACl, MAI,
PbCl2与PbI2)对MAPbI3吸收层与TiO2之间界面电子结构的影响. 我
们发现MAX (X = Cl, I)作为缓冲层将引入高电子势垒并增强电子-
空穴复合. 此外, MAX不能很好地钝化表面状态. PbI2的导带最小
值远低于MAPbI3吸收层的导带最小值, 这极大地限制了吸收层的
能带弯曲和太阳能电池的开路电压. 另一方面, 合适的带边能级位
置 , 与TiO2表面的小的晶格失配以及出色的表面钝化性能使得
PbCl2成为钙钛矿太阳能电池吸收层/电子传输层界面工程的有希
望的缓冲材料. 因此, 我们在这项工作中获得的结果可以使人们对
具有缓冲层的界面工程的效果有更深入的理解, 这有利于改善钙
钛矿太阳能电池和相关光电器件的性能.
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