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Morphological and structural engineering in
amorphous Cu2MoS4 nanocages for remarkable
electrocatalytic hydrogen evolution
Jian Yu, Anran Li, Lidong Li, Xiaoxia Li, Xiaotian Wang and Lin Guo*

ABSTRACT Morphological and structural control of amor-
phous nanomaterials is challenging due to the long-range
disordered atomic arrangements. Herein, we firstly propose a
controllable self-hydrolyzing etching-precipitating (SHEP)
method to fabricate the regular-shaped amorphous Cu2MoS4

nanocages (a-Cu2MoS4 NCs) with hollow porous structures
under ambient conditions. Benefitting from the hollow por-
ous structures and the amorphous characteristics with copious
sulfur vacancies, the a-Cu2MoS4 NCs possess more enhanced
activity toward hydrogen evolution reaction (HER) than their
crystalline counterparts. The octahedral a-Cu2MoS4 NCs with
a shell thickness of 20 nm, which balance the appropriate
surface porosity and good structural stability, exhibit the best
HER activity with a low overpotential of 96 mV at 10 mA cm−2

and a small tafel slope of 61 mV decade−1 in alkaline en-
vironment. Moreover, this method is very versatile and can be
extended to synthesize other ternary nanocages. Our current
work may shed light on the precise controllable synthesis of
various ternary nanocages and open a new frontier for de-
veloping highly active amorphous catalysts.

Keywords: amorphous nanomaterials, nanocages, hollow struc-
tures, electrocatalysis, hydrogen evolution reaction

INTRODUCTION
Recently, amorphous nanomaterials have attracted more
and more attention as a promising electrocatalyst for
hydrogen evolution reaction (HER) [1–4]. Compared
with their crystalline counterparts, amorphous nanoma-
terials feature distinctive long-range disordered but short-
range ordered atomic arrangements, isotropic physical
and chemical properties, while accommodating abundant
intrinsic defects [5–8]. Simultaneously, the defect sites of
nanomaterials play an important role in promoting the

electrocatalytic reaction [9–11]. These characters endow
amorphous nannomaterials with more flexible structure
and higher active site density [12–15], resulting in higher
electrocatalytic activity than their crystalline counterparts.
A pioneering study by Hu and co-workers [16] revealed
that amorphous MoSx catalysts have superior HER ac-
tivities compared with crystalline MoS2. The high cata-
lytic activity results from the inherent surface defect sites
of amorphous MoSx, i.e., coordinately and structurally
unsaturated sulfur atoms [17], which were subsequently
confirmed by in situ Raman spectroscopy and X-ray ab-
sorption spectroscopy (XAS) [18,19]. Besides, Kornienko
et al. [13] demonstrated that amorphous CoSx exposed a
higher density of catalytic active sites leading to better
HER performance than bulk CoS2. Similar results were
also obtained from amorphous tungsten phosphide and
molybdenum phosphide nanoparticles [20,21], as well as
other excellent catalysts with amorphous structures [22–
24].

Moreover, the catalytic activity of amorphous nano-
materials could be further improved through the rational
design of their structures. Unique hollow-structured na-
nomaterials have garnered tremendous research interests
due to their structural advantages such as large specific
surface area, low density, high pore volume, and reduced
mass-/charge-transport lengths [25–27]. To date, nu-
merous synthetic strategies for hollow-structured mate-
rials have been developed based on diverse methods such
as Kirkendall effect [28,29], Ostwald ripening [30], ionic
exchange [31,32], coordinating etching [33], galvanic re-
placement [34,35], and self-assembly [36]. Nevertheless,
the regular-shaped ternary hollow nanomaterials with
amorphous feature are rarely reported owing to the dis-
ordered atomic arrangement of their internal structures
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and poor mechanical stability. Furthermore, compared
with binary hollow-structured materials (e.g., metal oxi-
des or sulfides), the ternary hollow nanostructures may
have more merits arising from the synergy effect by the
introduction of extra atoms [37,38], leading to optimized
electronic structure, better conductivity and enhanced
HER performance [39], such as the reported NiCo2O4
[40], Co-Mn-O [41], NiMo3S4 [42], and NiCo2S4 [43].

Inspired by above the considerations, we herein de-
velop a self-hydrolyzing etching-precipitating (SHEP)
method to synthesize the regular-shaped ternary amor-
phous Cu2MoS4 nanocages (a-Cu2MoS4 NCs) with con-
trollable shapes, sizes, and shell thicknesses for the first
time (Scheme 1). The a-Cu2MoS4 NCs exhibit better HER
performance than their crystalline counterparts, which
can be ascribed to two main advantages: 1) amorphous
features with disordered atomic arrangements and in-
herent abundant defects endow the a-Cu2MoS4 NCs with
a large number of sulfur vacancies, which is conducive to
the fluent diffusion of protons; 2) unique hollow porous
structure gives the a-Cu2MoS4 NC a larger specific surface
area, more accessible active sites, and favorable electrons/
ions transport in the electrolyte. Interestingly, the elec-
trocatalytic performance of the a-Cu2MoS4 NCs is closely

related to their shell thickness—the octahedral
a-Cu2MoS4 NCs with a shell thickness of 20 nm exhibit
the best HER activity with the overpotential as low as
96 mV at 10 mA cm−2 and the Tafel slope of
61 mV decade−1. In addition, compared with the tradi-
tional method for synthesizing hollow nanomaterials, our
method simplifies the experimental procedure and is self-
sufficient, without additional coordinating agent or
etching agent, and can be performed at room tempera-
ture. Importantly, our method can be extended to the
synthesis of other ternary NCs, which are expected to be
applied in other fields.

EXPERIMENTAL SECTION

Synthesis of solid Cu2O templates
The spherical Cu2O, cubic Cu2O and octahedral Cu2O
with different sizes were prepared according to our pre-
vious work [44,45]. And the morphologies of Cu2O
samples are shown in Figs S1–S5.

Synthesis of a-Cu2MoS4 NCs
In a typical synthesis, 5.0 mg Cu2O octahedrons (600 nm)
were first dispersed in 5 mL ethanol and sonicated for

Scheme 1 The formation process of ternary amorphous NCs by SHEP method: (a) schematic illustration of the synthesis procedure for a re-
presentative octahedral a-Cu2MoS4 NCs. The representative TEM images of the Cu2O solid octahedron (b), Cu2O@Cu2MoS4 yolk-shelled structure (c)
and hollow Cu2MoS4 NC (d).
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2 min. Then, 20 mL H2O, 20 mL ethanol and 0.05 mmol
polyvinyl pyrrolidone (PVP) were added and kept mag-
netic stirring. Finally, 2.8 mL (NH4)2MoS4
(7.68 mmol L−1) aqueous solution (the solution was
freshly prepared just before use) was added dropwise into
the above solution. The reaction was carried out for 1.5 h
at room temperature. The octahedral a-Cu2MoS4 NCs
were collected by centrifugation at 8,000 rpm and dec-
anted, washed with distilled water and ethanol several
times, and subsequently dried in a vacuum oven at 50°C
for 12 h. The as-prepared a-Cu2MoS4 NCs have a size of
600 nm and a thickness of 20 nm (labeled as a-Cu2MoS4
NCs-20). Cu2MoS4 NCs with other morphologies, such as
spheres, cubes, or octahedrons with different thicknesses
were obtained with the same method with different Cu2O
templates/amounts of reactants/reaction times (see
Table S1). The reactions are described by the following
Equations (1–4):
(NH4)2MoS4 → 2 NH4

+ + MoS4
2−, . . . . . . . . . . . . . .(1)

NH4
+ + H2O ⇌ H+ + NH3·H2O, . . . . . . . . . . . . . . . .(2)

Cu2O + 2H+ → 2Cu+ + H2O, . . . . . . . . . . . . . . . . .(3)
2Cu+ + MoS4

2− → Cu2MoS4 ↓. . . . . . . . . . . . . . . . . .(4)

Electrochemical measurements
Electrochemical measurements were performed on a CHI
660E electrochemical workstation (Shanghai Chenhua,
China) using a standard three-electrode cell with a
working electrode, a graphite rod as counter electrode,
and a saturated Ag/AgCl electrode as reference electrode.
All the potentials reported in this study are referenced to
the reversible hydrogen electrode (RHE) by adding a
value of (0.197+0.0591pH) V. KOH (0.1 mol L−1) solution
(pH 13) was selected as the electrolyte solution during the
whole process. The working electrode was prepared by a
similar method reported in the literature [46]: 5 mg cat-
alyst sample was dispersed in a mixed solution containing
700 μL of deionized water, 270 μL of ethanol and 40 μL of
5 wt% Nafion solution. And the mixture was ultra-
sonicated for 20 min to generate a homogeneous ink.
Then 300 μL of the as-prepared ink was dropped onto Ni
foam (1 cm×1 cm) and left to air dry. The mass loadings
of the catalysts were 1.48 mg cm−2. Linear sweep vol-
tammetry (LSV) was recorded with a scan rate of
10 mV s−1 in 0.1 mol L−1 KOH solution (purged with pure
N2 for 30 min). The electrochemical active surface areas
(ECSA) were determined by cyclic voltammetry mea-
surements at various scan rates ranging from 40 to
120 mV s−1 in the potential window of 0.12–0.32 V versus
RHE. The electrochemical impedance spectra (EIS) were
obtained by alternate current (AC) impedance spectro-

scopy in 0.1 mol L−1 KOH solution with 5 mV amplitude,
and frequency range from 1 Hz to 100 kHz at an over-
potential of 200 mV (vs. RHE). All the above measure-
ments were performed at room temperature, and without
ohmic-drop correction.

Density functional theory (DFT) calculations
The DFT computations were performed using the Vienna
ab initio simulation package (VASP v.5.4.1) [47,48].
During all calculations, the generalized gradient approx-
imation and the projector augments wave pseudopoten-
tials with the exchange and correlation in the Perdew-
Burke-Ernzerhof were employed [49,50]. The plane-wave
cutoff energy is set at 400 eV. The convergence threshold
was set as 10−5 eV in energy and 0.02 eV Å−1 in force,
respecively. The Monkhorst-Pack Gamma-centered k-
points mesh is adopted for all calculations, where the
spacing of uniformly sampled k points for each simula-
tion was set to be no larger than 2π×0.03 Å−1. The crys-
talline (c-MoS2) and the crystalline Cu2MoS4 (c-Cu2MoS4)
models were built based on the lattice parameters of 2H
MoS2 with the hexagonal crystal system and I-Cu2MoS4
with a tetragonal (I 4–2m) symmetry [51], respectively
(Figs S20–S21). The a-Cu2MoS4 NCs-20 is different from
c-Cu2MoS4 due to long-range atomic disorder and sulfur
vacancies (Fig. S22). Therefore, it was built by randomly
deleting one sulfur atom per unit cell of c-Cu2MoS4. For
computing the hydrogen adsorption energy, layer slab
models of (3 x 3) c-MoS2 (001), (2 x 2) c-Cu2MoS4 (001),
and (2 x 2) a-Cu2MoS4 (001) were constructed respec-
tively with a vacuum layer of 15 Å. For geometry opti-
mizations of all slab models, the top two layers were
allowed to relax. The free energy of the adsorbed state is
calculated as:
ΔG(H*) = ΔE(H*) + ΔEZPE – T·ΔS, . . . . . . . . . . . . .(5)
where ΔE(H*) is the hydrogen binding energy, and
ΔEZPE is the difference corresponding to the zero point
energy between the adsorbed state and the gas phase. As
the vibrational entropy of H* in the adsorbed state is
small, the entropy of adsorption of 1/2 H2 is ΔS(H)≈
−0.5 S(OH2), where S(OH2) is the entropy of H2 in the gas
phase at the standard conditions. Therefore the overall
corrections are taken as
ΔG(H*) ≈ ΔE(H*) + 0.24 eV. . . . . . . . . . . . . . . . . . .(6)

RESULTS AND DISCUSSION

Characterization and formation process of the a-Cu2MoS4
NCs
Scheme 1a illustrates the structural formation processes
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of ternary amorphous NCs by SHEP method, and the
synthetic details are given in the EXPERIMENTAL
SECTION. For the convenience of presentation, we take
the octahedral a-Cu2MoS4 NCs sample as an example.
Firstly, the uniform Cu2O solid octahedrons with the edge
length of 600 nm (Fig. S1, Scheme 1b) were prepared and
redispersed in a solution of PVP as the templates. Then
(NH4)2MoS4 was as a reactant, which can be used as both
an etchant and a precipitant. At the initial stage of the
SHEP process, (NH4)2MoS4 can be dissolved in water to
release NH4

+ and MoS4
2− (Equation 1). The NH4

+ ion is a
conjugate acid of ammonia, which can be hydrolyzed to
produce H+ and NH3·H2O (Equation 2). These hydro-
lyzed H+ ions trigger the etching of Cu2O hard templates
to release Cu+ ions (Equation 3). At the same time, an
insoluble passivation layer of Cu2MoS4 species easily
forms in-situ on the surface of Cu2O templates due to
thermodynamically favorable precipitation reaction be-
tween MoS4

2− and Cu+ (Equation 4). The continuous
consumption of Cu2O core results in a small gap between
the newly formed Cu2MoS4 shell and the remaining Cu2O
core, and the obtained Cu2O@Cu2MoS4 yolk-shelled
structures are confirmed by the scanning electron mi-
croscopy (SEM) image (Fig. S2) and transmission elec-
tron microscopy (TEM) image (Scheme 1c). Eventually,
as the SHEP reaction prolongs, the complete depletion of
interior core results in the formation of the robust octa-
hedral a-Cu2MoS4 NCs (Scheme 1d). Compared with the
conventional templating method that requires an extra
coordination agent or an etching agent to remove the
template [26], SHEP does not need the additional co-
ordination agent or etching agent due to the dual func-
tionality of the reactant (NH4)2MoS4 during the overall
process. Besides, SHEP also distinguishes itself from the
reported self-templating strategies based on different
principles such as the Kirkendall effect, Ostwald ripening,
galvanic replacement, and so on [29,30,35]. These stra-
tegies usually require heating aids or solvothermal pro-
cesses, even not suitable for insoluble inert templates
because they cannot provide free ions in solution [52].
Instead, our method simplifies the experimental proce-
dures and provides a milder reaction condition that can
be performed at room temperature.

As shown in Fig. 1a, the Cu2MoS4 nanoarchitectures
well maintain the octahedral morphology of the original
template of Cu2O and are very uniform with an average
edge length of 600 nm. However, their surfaces are
changed from a smooth surface of Cu2O templates
(Fig. S1a) to a rough porous surface (Fig. S3a, b) due to
the outward flow of internal ions. The corresponding

TEM characterization demonstrates the large internal
cavity with a uniform shell thickness of 20 nm (Fig. 1b) in
each Cu2MoS4 NC by a clear contrast between the hollow
interior and the external solid shell. Besides, relevant
high-resolution TEM (HRTEM) image (Fig. 1b1) with no
lattice fringes and selected area electron diffraction
(SAED) pattern (Fig. 1b2) with a scattered and hazy halo
indicate the amorphous nature of the octahedral Cu2MoS4
NCs. The amorphous structure is also evidenced by the
X-ray power diffraction (XRD) pattern with no distinct
diffraction peaks (Fig. S4a). The energy-dispersive X-ray
spectroscopy (EDS) result indicates Cu, Mo, and S in the
octahedral a-Cu2MoS4 NCs with Cu/Mo/S atomic ratio of
about 2:1:4 (Fig. S3c), and the EDS elemental mapping of
a single octahedral a-Cu2MoS4 NC reveals the presence
and uniform distribution of Cu, Mo, and S (Fig. 1c). The
chemical compositions and states of the as-prepared oc-
tahedral a-Cu2MoS4 NCs are further confirmed by the X-
ray photoelectron spectroscopy (XPS). The Cu 2p3/2 and
Cu 2p1/2 binding energies of a-Cu2MoS4 NCs locate at
933.0 and 953.0 eV, respectively (Fig. S4b), which indicate
that the Cu species in a-Cu2MoS4 NCs are monovalent
[53,54]. The peaks at 229.9 and 233.0 eV correspond to
Mo 3d5/2 and Mo 3d3/2 (Fig. S4c) respectively, indicating
molybdenum as the Mo(VI) oxidation state [53,54]. The
peaks of S 2p3/2 and S 2p1/2 at 161.5 and 162.6 eV, re-
spectively (Fig. S4d), can be assigned to S(II) species [51].
All of the above results indicate the successful synthesis of
the octahedral a-Cu2MoS4 NCs.

Controllability and universality of SHEP method
In order to demonstrate the precise controllability of our

Figure 1 (a) Overview TEM, (b) magnified TEM, (b1) HRTEM images,
and (b2) SAED pattern of the octahedral a-Cu2MoS4 NCs, inset in (a)
shows the 3D modeling structure. (c) EDS elemental mapping images
for Cu, Mo, and S elements of the octahedral a-Cu2MoS4 NC.
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synthetic strategy (Fig. 2), the a-Cu2MoS4 NCs with dif-
ferent thicknesses, sizes and morphologies were synthe-
sized by SHEP method. It is well known that the amount
of reactants is an important factor in chemical synthesis.
We found that the thickness of NCs can be easily and
accurately controlled by the amount of reactants. For
example, the octahedral a-Cu2MoS4 NCs with a thickness
of 20 nm can be synthesized (Fig. 1) by using 2.8 mL
(NH4)2MoS4 (7.68 mmol L−1). While, increasing
(NH4)2MoS4 volume to 3.2 mL, the octahedral a-Cu2MoS4
NCs with a thickness of 30 nm can be obtained (Fig. 2b1,
b2). However, the octahedral hollow structures will not be
maintained if the volume of reactants continues to in-
crease (>3.2 mL) (Fig. S6b). It might be explained by that
a thick outer shell formed by excessive precipitates leads
to the filling of the inner cavity. In contrast, the thinner
octahedral a-Cu2MoS4 NCs with a thickness of 10 nm can
also be prepared (Fig. 2a1, a2) by reducing the volume of
(NH4)2MoS4 to 2.4 mL. Compared with the octahedral
a-Cu2MoS4 NCs with 20 and 30 nm thicknesses, the
a-Cu2MoS4 NCs with 10 nm thickness are more likely to
crack, and the extent of rupture is greater (Fig. 2a1). We
can hardly obtain the whole octahedral a-Cu2MoS4 NC if
we continue to reduce the volume of (NH4)2MoS4
(<2.4 mL) (Fig. S6a). Because the surface support force of
the shell is not big enough due to the small shell thick-
ness, resulting in the octahedral hollow frames in-

vaginated or even completely collapsed. The porous
structures of a-Cu2MoS4 NCs surface become less obvious
with the increase of thickness (Figs S7a, S3b, S7b), and
when the thickness of the shell becomes too thick, no
porous structure can be observed on the surface
(Fig. S6b). Therefore, the NCs with a suitable shell
thickness not only maintain the structural robustness but
also the porosity of their surface, which may help to en-
hance their catalytic properties and is in favor of the
practical application of hollow structural materials [55].
For example, the hollow nanomaterials with porous shells
can be used both as nanoreactors for catalytic reaction
and nanocontainers for the drug storage and release [56–
58]. In addition, the size of NCs can also be effectively
controlled by using templates with different sizes. Using
Cu2O octahedrons with the edge lengths of 400 and
800 nm, (Fig. S5a, b), the octahedral a-Cu2MoS4 NCs with
dimensions of about 400 and 800 nm can be successfully
prepared, respectively (Figs 2c1, c2 and 2d1, d2). Moreover,
the morphologies of NCs are not limited to octahedron,
the spherical and cubic Cu2MoS4 NCs can also be easily
fabricated based on the SHEP method by using Cu2O
templates with corresponding morphologies. As shown in
Figs 2e1, e2 and 2f1, f2, the resulting spherical Cu2MoS4
NCs have a diameter of about 600 nm and the cubic
Cu2MoS4 NCs have a side length of about 600 nm, all of
which are very uniform with hollow structures.

Figure 2 SEM ((a–f)1) and TEM ((a–f)2) images of a-Cu2MoS4 NCs with different shell thicknesses, different sizes, and different morphologies. The
shell thicknesses are 10 (a1, a2) and 30 nm (b1, b2), respectively. The sizes are 400 (c1, c2) and 800 nm (d1, d2), respectively. The NCs are spherical (e1,
e2) and cubic (f1, f2) in shape.
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Furthermore, the role of surfactant PVP during the
synthesis was also investigated by a control experiment.
In the absence of PVP, the a-Cu2MoS4 NCs with octa-
hedral morphology can still be obtained except the for-
mation of a few irregular particles (Fig. S8), indicating
PVP has no effect on the formation mechanism of NCs,
but it is helpful to the uniformity of hollow structure. As
previously reported [33], PVP can reduce the mobility of
ions in solution, making the precipitate more prone to
slow heterogeneous growth on the surface of the template
rather than self-nucleation to grow into separate nano-
particles.

The SHEP method can be extended to synthesize many
other ternary hollow nanostructures such as Cu2MoO4,
Cu2WS4, and Cu2WO4 NCs (see Supplementary in-
formation S1.2 and Figs S9, S10) using their corre-
sponding reactants such as MoCl5, (NH4)2WS4, and WCl6.
These corresponding reactants play two roles in the for-
mation process of NCs: both as etchants and precipitants.
These reactants all can undergo self-hydrolysis to produce
acids. Then Cu2O hard templates can be first etched by
these H+ ions to release Cu+ ions. On the other hand,
another part of the ions originating from the reactants

acts as precipitants to form the passivation layers on the
Cu2O surface and maintains the regular morphology of
the templates. Self-hydrolyzing etching and precipitating
reactions could occur almost simultaneously. If the re-
action time is short, the yolk-shell structures will form. If
the reaction time is long enough to complete the SHEP
reaction, the hollow structures can be obtained. The
successful synthesis of various ternary NCs demonstrates
the universality of our synthetic strategy.

HER performance and enhanced HER mechanism of
a-Cu2MoS4 NCs
To demonstrate the advantages of the as-prepared
amorphous and hollow structural NCs, the electro-
catalytic performance for HER of the octahedral
a-Cu2MoS4 NCs with different thicknesses were evaluated
in 0.1 mol L−1 KOH solution with the same mass loading
of 1.48 mg cm−2 on a Ni foam (1 cm×1 cm) electrode
[46]. In Fig. 3a, the typical LSV curves for octahedral
a-Cu2MoS4 NCs with different thicknesses of 10, 20,
30 nm (abbreviated as a-Cu2MoS4 NCs-10, a-Cu2MoS4
NCs-20 and a-Cu2MoS4 NCs-30, respectively) along with
c-Cu2MoS4 NCs (see Fig. S11 for details), c-MoS2, com-

Figure 3 HER performance of the octahedral a-Cu2MoS4 NCs. (a) Polarization curves and (b) Tafel plots of a-Cu2MoS4 NCs-10, a-Cu2MoS4 NCs-20,
a-Cu2MoS4 NCs-30, c-Cu2MoS4 NCs, c-MoS2, Pt/C, and the bare Ni foam in 0.1 mol L−1 KOH. (c) Nyquist plots of a-Cu2MoS4 NCs-10, a-Cu2MoS4
NCs-20, a-Cu2MoS4 NCs-30, c-Cu2MoS4 NCs, c-MoS2 at an overpotential of 200 mV; the inset shows the fitted equivalent circuit. (d) Chron-
oamperometry curve of a-Cu2MoS4 NCs-20 at a constant overpotential of 96 mV.
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mercial 20% Pt/C and bare Ni foam are compared. As
known, the overpotential at a current density of
10 mA cm−2 (defined as η10) is a common criterion for
HER performance (a metric associated with solar fuel
synthesis) [59]. The a-Cu2MoS4 NCs-20 show the lowest
overpotential of η10=96 mV, which is even lower than that
of many previously reported electrocatalysts based on
metal sulfides and molybdenum-based catalysts
(Table S3). Besides, the a-Cu2MoS4 NCs-10 and
a-Cu2MoS4 NCs-30 require relatively higher over-
potential: 112 and 136 mV, respectively, which are still
lower than those of c-Cu2MoS4 NCs (η10=198 mV),
c-MoS2 (η10=237 mV) (detailed data in Table S2), crys-
talline CuS and Cu2S (Fig. S12). It is suggested that the
a-Cu2MoS4 NCs-20 have an overwhelming advantage in
HER, which can be attributed to the hollow porous
structures with the largest specific surface area (Fig. S13)
and the amorphous characteristics with copious sulfur
vacancies [60]. A sharp signal in electron paramagnetic
resonance (EPR) spectra at g=2.027 provides a fingerprint
evidence for the sulfur vacancies [61], and no obvious
signal is detected for c-Cu2MoS4 NCs (Fig. S14). The
a-Cu2MoS4 NCs-20 with a large amount of sulfur va-
cancies are favorable for fluent proton diffusion [60,62],
leading to a better HER performance than c-Cu2MoS4
NCs. Moreover, NCs with a suitable thickness may have
more prominent HER performance, because if the shell
thickness is too thick, its surface will have less porous
structure (Fig. S7b), which reduces the contact area be-
tween the electrodes and is not conducive to the trans-
mission of electrons/ions in the electrolyte, resulting in
poorer HER activity. In contrast, the NCs with smaller
thickness, have a larger porous surface but their octahe-
dral hollow structures are not robust enough, with more
collapsing and incomplete structures (Fig. S6a), also re-
sulting in a weaker HER activity. Therefore, the NCs with
a suitable thickness balance the surface porosity and the
structural stability, leading to outstanding HER activity.
Besides, the a-Cu2MoS4 NCs-20 has the largest Brunauer-
Emmett-Teller (BET) surface area of 67.4 m2 g−1, com-
pared with all the other similar samples, such as
a-Cu2MoS4 NCs-10, a-Cu2MoS4 NCs-30, c-Cu2MoS4 NCs,
and c-MoS2 (Fig. S13), also demonstrating that the
amorphous NCs with a suitable thickness are significant
to enhance HER performance.

To give insight into the origin of the improved activity,
the ECSA of as-prepared samples were obtained by
measuring the double-layer capacitance (Cdl), which was
linearly proportional to ECSA (Figs S15–S19). The
a-Cu2MoS4 NCs-20 sample has the highest Cdl, compared

with a-Cu2MoS4 NCs-10, a-Cu2MoS4 NCs-30, c-Cu2MoS4
NCs, and c-MoS2, suggesting that a-Cu2MoS4 NCs-20 has
the most accessible active sites, which indicates the su-
perior HER performance [52], and is in accordance with
the above-mentioned results.

Furthermore, in order to evaluate the reaction kinetics
of the catalysts, the HER Tafel plots were investigated
(Fig. 3b). The linear regions of Tafel curves are plotted
using the Tafel equation: η=a + blog(j), where a, b, and j
are intercept, Tafel slope, and current density, respec-
tively. As expected, the a-Cu2MoS4 NCs-20 exhibit the
smallest Tafel slope of 61 mV decade−1 compared with
those of a-Cu2MoS4 NCs-10 (70 mV decade−1),
a-Cu2MoS4 NCs-30 (81 mV decade−1), c-Cu2MoS4 NCs
(101 mV decade−1), and c-MoS2 (121 mV decade−1), re-
vealing the excellent HER kinetics for a-Cu2MoS4 NCs-
20, which is quite comparable with other reported elec-
trocatalysts (Table S3). Moreover, the b of 61 mV dec-
ade−1 implies that electrochemical desorption is the rate-
determining step, following the Volmer-Heyrovsky me-
chanism (Fig. 4a) [63]. In addition, the EIS was also
performed to further investigate the electrode reaction
kinetics at an overpotential of η=200 mV. As shown in
the Nyquist plots (Fig. 3c), the a-Cu2MoS4 NCs-20 ex-
hibits the smallest charge transfer resistance (Rct) of 7.1 Ω
compared with those of a-Cu2MoS4 NCs-10 (8.3 Ω),
a-Cu2MoS4 NCs-30 (10.5 Ω), c-Cu2MoS4 NCs (17.2 Ω),
and c-MoS2 (20.7 Ω), indicating a markedly fast Faradaic
process and favorable HER kinetics [46]. It is mainly due
to the fact that a-Cu2MoS4 NCs-20 has a suitable thick-
ness shell that maintains both structural stability and rich
surface porosity. As a result, the electrolyte can quickly
penetrate into the hollow structure of NCs, and a larger
electrochemical reaction surface area can be obtained,
resulting in a small Rct. In contrast, a thicker shell reduces
the surface porosity, making it difficult for the electrolyte
to penetrate into the interior of the NC, while a thinner
shell is more likely to break, resulting in easier stacking.
Both of them will lead to a relatively small electro-
chemical reaction surface area, resulting in a larger Rct.
This result again confirms that amorphous NCs with a
suitable thickness not only provides more reactive sites
but also improves the charge and mass transfer efficiency,
which is in good agreement with the results of LSV curves
and Tafel plots. In addition to the catalytic activity, long-
term stability is another crucial criterion for the practical
applicability of catalysts. Fig. 3d shows that a-Cu2MoS4
NCs-20 can maintain j=10 mA cm−2 for 36 h with only
8% reduction, corroborating the excellent durability of as-
prepared catalyst.
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The DFT calculations have been performed to elucidate
the mechanism of high electrocatalytic activity. The de-
tailed parameters of models for the calculations are
shown in the EXPERIMENTAL SECTION and Figs S20–
S22. According to the Sabatier principle [64], a good
catalyst should have a moderate free energy (ΔG) for H
adsorption (H*), namely, ΔG(H*) close to zero, which is
beneficial to both the adsorption process and the deso-
rption process of hydrogen. As shown in Fig. 4b, the
ΔG(H*) of c-MoS2 is 1.91 eV, suggesting that the elec-
trocatalytic HER process is not easy to be realized on the
surfaces of c-MoS2 due to the unfavourable interaction
with H. The c-Cu2MoS4 NCs gives a ΔG(H*) of 1.24 eV,
which is smaller than that of c-MoS2, indicating that the
introduction of Cu atoms might modulate the electronic
potential distribution and electron density, enhancing the
electrocatalytic activity for ternary catalysts [65]. The
a-Cu2MoS4 NCs-20 lack long-range atomic order and
possess the abundance of sulfur vacancies, resulting in a
lower ΔG(H*) value (0.609 eV) than other systems, fur-
ther accelerating HER performance (Fig. 4c), which is in
good agreement with the experimental results discussed
above.

CONCLUSIONS
In summary, a new and effective strategy is developed to
fabricate the regular-shaped amorphous Cu2MoS4 NCs.
The key feature of this strategy is that it involves a SHEP
process, which simplifies the experimental procedures,
provides mild reaction conditions, and avoids the usage

of coordinating agents or etching agents. The controll-
ability and versatility of this strategy enable the synthesis
of various ternary NCs with tunable compositions,
thicknesses, sizes, and morphologies. Benefiting from the
amorphous characteristics with rich sulfur vacancies and
hollow structures, the a-Cu2MoS4 NCs with an appro-
priate thickness exhibit greatly enhanced HER activity.
We believe that our current work will offer an insight into
the precise controllable synthesis of various ternary na-
nocages and is expected to be applied in different areas
ranging from energy storage and conversion, catalysis, gas
sensor, to drug delivery.
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非晶Cu2MoS4纳米笼的形貌和结构工程用于高效
电解水产氢
余建, 李安然, 李丽东, 李晓霞, 王晓天, 郭林*

摘要 非晶纳米材料因长程无序的原子排列, 其形貌和结构的调控
极具挑战性. 本文首次报道了一种可控自水解蚀刻-沉淀(SHEP)法,
在常温常压下即可合成出空心多孔且形貌规则的非晶Cu2MoS4纳
米笼(a-Cu2MoS4). 得益于其空心多孔结构和非晶的丰富硫缺陷,
a-Cu2MoS4表现出比晶体相对物更强的析氢反应(HER)活性. 其中,
壳厚度为20 nm的八面体a-Cu2MoS4表现出最好的HER活性 : 在
10 mA cm−2电流密度下 , 过电位仅为96 mV, 塔菲尔斜率低至
61 mV decade−1; 这主要是因为a-Cu2MoS4合适的厚度既保证了其
表面的多孔性, 又确保了其结构的稳定性. 本文提出的合成方法具
有普适性, 可扩展到更多的三元纳米笼材料的合成, 为各种三元纳
米笼的精确可控制备提供了新视角, 并为开发高活性非晶催化剂
开辟了新的途径.
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