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Analyte-responsive fluorescent probes with AIE
characteristic based on the change of covalent bond
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ABSTRACT It is important for the determination of biolo-
gically and/or environmentally relevant species by utilization
of fluorescent probes. Conventional fluorescent probes are
subjected to the influence of aggregation-caused quenching
that is limiting their application due to low selectivity as well
as photobleaching. Additionally, quencher pairs are usually
introduced in the design of these probes, which lead to the
complex synthetic procedure. A novel class of fluorogens with
aggregation-induced emission (AIE) characteristic provide a
solution to address the dilemma. By taking advantage of the
unique characteristic of AIE fluorogens, specific turn-on
probes have been developed via combination with recognition
components, exhibiting low background, good selectivity and
outstanding photostability. This review focuses on the devel-
opment of fluorescent probes with AIE characteristics via the
bond cleavage as well as formation strategy.

Keywords: fluorescent probe, aggregation-induced emission,
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INTRODUCTION
Over the past decade, fluorescent probes were capable of
in situ, non-invasive and real-time monitoring of biolo-
gical samples and biological processes in cells, tissues and
organisms [1–6]. The probes not only give penetrating
insights into comprehending physiological changes in
basic biology and disease, but also offer a powerful ap-
proach for the development of interventional surgical
imaging as well as imaging-guided therapies [7–9]. A
large number of fluorescent probes [10,11] have been
developed on the basis of various fluorescent materials
such as quantum dots [12], upconversion luminescence
nanoparticles, and organic dyes. Organic dyes are an al-
ternative option which could be employed to serve as a

fluorescent probe in terms of biocompatibility and
synthesis. The analyte detection is achieved through
various reaction mechanisms involving protonation-
deprotonation, complexation as well as cleavage and
formation of covalent bonds between the fluorescent
probe and analyte. Among the reaction mechanisms, the
selective detection of analytes on the basis of the cleavage
and formation of covalent bonds has attracted much at-
tention. In general, a large majority of fluorescent probes
possess excellent selectivity toward analytes compared
with these probes through complexation, which provides
an alternate approach to detect plentiful analytes with
high specificity. Furthermore, most conventional organic
dyes exhibit bright fluorescence in dilute solutions.
However, they are subjected to fluorescence quenching at
high concentrations on account of aggregation-caused
quenching (ACQ). In addition, fluorescent probes are
utilized at low concentration due to ACQ, leading to the
photobleaching of conventional organic dyes.

Recently, another group of fluorescent dyes with ag-
gregation-induced emission (AIE) phenomenon have
been reported which was opposite to ACQ phenomenon.
In the AIE process, negligible fluorescence is observed at
low concentrations, whereas fluorescent dyes display
strong fluorescence at high concentrations. A large
amount of fluorescent molecules [13,14] with propeller-
shaped structures have been found to display apparent
AIE effect. Once they form aggregate, either in-
tramolecular motions (RIM) or intramolecular rotation
(RIR) is restricted. The highly twisted molecular con-
formation is owing to the intermolecular π-π stacking
interaction. Thus, the synergistic effect described above
leads to the fluorescence light-up of tetraphenylene
(TPE). By utilization of RIR as well as RIM effect, a large
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number of fluorescence probes [15–19] with AIE char-
acteristics have been developed via various strategies in-
cluding physical and chemical reactions, i.e., AIE probes
based on TPE derivatives [20,21] and 9,10-dis-
tyrylanthracene (DSA) derivatives [22–27]. The AIEgens
covalently link with the recognition unit to enhance the
stability of the probe. Additionally, the probes connect
with each other through covalent bond in the presence of
target, enabling fluorescence light-up.

In this review, we summarize the AIEgens in the
bioapplication on the basis of covalent bond changes of
probes in recent years (Scheme 1). The changes of
covalent bond include the bond formation as well as the
bond cleavage. Once the covalent bond of the probe is
cleaved, hydrophobic AIEgens are released. The AIEgens
aggregate and subsequently switch-up fluoresces in aqu-
eous media due to either RIM or RIR. Furthermore, when
the target is present, the covalent bonds form and thus
block the rotation of AIEgens. Finally, this review pro-
vides insights into the application of probes based on
covalent bond change strategies to life chemistry.

FLUORESCENCT PROBES BASED ON THE
CLEAVAGE AND FORMATION OF
COVALENT BONDS

Bond cleavage
The probes based on the cleavage of covalent bonds by
analytes are generally proposed. There are seven types
based on the covalent bond cleavage such as amido bond,
ester bond, boron ester bond, phosphodiester bond, dis-
ulfide bond, C–O bond and S–O bond. Once the probe is
cleaved, the AIEgens form aggregates, leading to fluor-
escence light-up.

Amido bond
Direct monitoring of multiple enzyme activities in bio-
logical processes is very important for the diagnosis of
disease. Liu’s group [28] reported a fluorescent probe that
can simultaneously monitor the activity of two in-
tracellular caspases. The probe consists of three parts: two
(green and red fluorescent) AIE luminophores that can be
excited by only single wavelength and a peptide substrate
comprising caspase-8 and caspase-3 (Fig. 1). The hydro-
philic probe of the polypeptide has no fluorescence in the
aqueous solution. However, the red and green fluores-
cence are successively light-up after the polypeptide
substrate is hydrolyzed and cleaved by caspase-8 (between
TPETH-DVEDIETD and TPS) and caspase-3 (between
TPETH and DVED), which is activated by hydrogen

peroxide to cause apoptosis in Hela cells. Successively
illuminating fluorescence probe can be used to monitor
cascade activation during apoptosis, and thus the probe
can be used to assess the therapeutic effects of anticancer
drugs. This probe is capable in real time and simulta-
neous detection of multiple enzyme activities in cells
during a biological process.

In 2016, our group [29] chemically coupled the broad-
spectrum anticancer drug doxorubicin (DOX) and the
AIE molecule PyTPE to the functional penetrating pep-
tide FCPPs (CRRRRRRRRRPLGLAGPra-NH2) via the
“maleimide-thiol” click reaction and the “azido-alkynyl”
click reaction. The probe DOX-FCPPs-PyTPE (DFP,
Fig. 2) was synthesized with the response to matrix me-
talloproteinase-2 (MMP-2) for integration of diagnosis
and treatment. DFP can be specifically cleaved (between
LG and LAG) in the presence of MMP-2 to form a
therapeutic moiety DOX-MHS-CRRRRRRRRRPL con-
taining a penetrating peptide fragment and an imaging
moiety LAGPra-PyTPE containing a hydrophobic frag-
ment. The therapeutic molecules originally binding with
the membrane-penetrating peptide are separated from the
imaging molecule. The transmembrane peptide binds
only to DOX alone. DOX can be transported faster into
the cell by the penetrating peptide and kill the cancer
cells. The PyTPE molecule originally binding to the hy-
drophilic transmembrane peptide is dispersed. After se-

Scheme 1 The strategy of AIE probes based on the cleavage and for-
mation of covalent bond.
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paration from the transmembrane peptide, the hydro-
phobicity of PyTPE is enhanced so as to aggregate and
emit yellow fluorescence. Therefore, DFP can not only
control the drug release, but also efficiently kill the cell
lines with high expression of MMP-2, simultaneously
tracking the release of the drug in real time according to
the changes of the two kinds of fluorescence, so as to

achieve the purpose of integration of diagnosis and
treatment.

The activatable photosensitizers are widely used in
fluorescence real-time imaging and photodynamic ther-
apy. Nevertheless, the conventional photosensitizers tend
to aggregate in water resulting in a decrease in fluores-
cence quenching and photodynamic effects. Based on the

Figure 1 Chemical structure (a) of a single fluorescence probe for real-time imaging (b) of the caspase activation.

Figure 2 The detection mechanism of the probe DFP for drug delivery and release tracking in specific cancer cells. Reproduced with permission from
Ref. [29]. Copyright 2016, American Chemical Society.
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recently developed AIE fluorophore, Liu’s group [30]
designed a simple and unique probe for turn-on targeted
fluorescence imaging and activatable photodynamic
therapy. As presented in Fig. 3, this probe consists of four
parts: 1) in which the yellow fluorescent AIE lumino-
phore acts as a fluorescent imaging unit as well as a
photosensitizer, 2) the GFLG peptide is a substrate for
cathepsin B, 3) a hydrophilic linker with three Asp (D)
can improve the water solubility of the probe, 4) cRGD
serves as a targeting moiety. The probe has almost no
fluorescence in aqueous solution due to good dis-
persibility and the limited ability to produce singlet
oxygen. After the probe is taken up by the cancer cells,
the cleavage of the probe between TPECM-GFLG and D3-
cRGD occurrs by the hydrolysis of cathepsin B and the
GFLG substrate is released. The released probe aggregates
due to enhanced hydrophobicity resulting in an increase
in fluorescence signal accompanied by activation of probe
photodynamic therapy. Therefore, this probe provides an
efficient way to design activatable photosensitizers with-
out quenching groups or energy acceptors.

A variety of AIE-functionalized probes based on en-
zyme-actived cleavage reactions have been developed via
a general assay, and these fluorescent turn-on bioprobes
can be used for monitoring matrix metallopeptidase 13
[31], dipeptidyl peptidase-4 [32], γ-glutamyl transpepti-
dase [33], chymase [34], angiotensin converting enzyme

[35], caspase-3 [36–39], real-time imaging cancer cell
apoptosis [40–44], differentiation in living stem cells [45]
and targeted drug delivery and therapeutic [46].

Ester bond
Lipase in blood serum is a crucial indicator of acute
pancreatitis. It is urgent to develop a stable and efficient
probe for sensing lipase levels. Tang et al. [47] con-
structed a novel light-up AIE bioprobe S1 for sensing the
lipase. It is well known that lipase is capable of achieving
optimal catalytic performance at the oil-water interface
and is an enzyme for heterogeneous catalysis. The hy-
drophobicity of the AIE probe S1 is improved because
two glutamate groups are functionalized onto the TPE.
And the hydrophilicity would increase via the existence of
amino and carboxyl parts, in favor of contacting with
lipase in the water media at the oil-water interface. These
hydrophilic groups generate an interfacial control effect.
As illustrated in Fig. 4, the ester group will cleave while
treated with lipase and the probe S1 will turn to 4,40-
dihydroxy tetraphenylethylene (TPE-2OH) which ag-
gregates in the solvent, leading to strong blue emission.
Since the glutamate group is a specific substrate for the
lipase hydrolysis reaction, the S1 probe possesses superior
selectivity. And because of the interface control effect, S1
can detect some real biological samples with low lipase
content, such as blood serum. It is the first report on the

Figure 3 (a) Schematic of the probe TPECM-2GFLGD3-cRGD. (b) The mechanism of probe activation by cathepsin B and irradiated to generate
reactive oxygen species (ROS). Reproduced with permission from Ref. [30]. Copyright 2015, Wiley.
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detection of lipase in real human serum samples by
fluorescent probes with the shortcomings of high detec-
tion and low sensitivity of lipase probes, and establishes
an analysis method for early warning of acute pancrea-
titis. This study of detecting lipase in actual samples not
only broadens the range of AIE-based enzyme assays, but
also provides a new way to increase the efficiency of in-
terfacial catalysis.

In their subsequent work [48], a patent fluorescent
light-up bioprobe was constructed with a limit of detec-
tion of 0.1 mg mL−1 for lipase activity based on TPE de-
rivative P1 with an ester group which can be activated.
And Liu’s group [49] utilized a cleavable aminoacrylate
linker which responded to singlet oxygen to conjugate a
fluorescent green emissive rhodol dye and a red AIE-
based photosensitizer to realize real-time monitoring of
ROS generation during photodynamic therapy.

Boron ester bond
In 2016, Xing’s group [50] designed and synthesized a
novel AIE molecule, tetraphenylethene derivative (TPE-
DABA) which can specially respond to H2O2 when con-
nected with D-fructose (TPE-DABF). For the AIE char-
acteristic, the probe has low background, and when
treated with hydrogen peroxide, the boronic ester cleaves
from the TPE-DABF and the TPE shows a bathochromic
shift. TPE-DABF can be used as an intramolecular charge
transfer (ICT) probe because there are electron-with-
drawing group (aldehyde) and electron-donating group
(phenoic hydroxyl) in the oxidation product TPE-DAP.
Remarkably, as depicted in Fig. 5, TPE-DABF can also
detect H2O2 generated from the glucose oxidase catalyzed
oxidation reactions. And it shows potential applications
in detecting H2O2 generated from different oxidation
reactions and facilitates the development of other ROS
detectors based on AIEgens.

In addition, Ding et al. [51] proposed an AIE-active
turn-on nanoprobe on the basis of TPE derivative, TPE-
IPB, whose phenylboronate acted as a reaction site for
ONOO−. The nanoprobe is able to detect ONOO− within
milliseconds and the boronates can effectively compete
with self-decomposition and other reactions. Thus the
turn-on nanoprobe can selectively image inflammation
region and efficiently visualize the treatment efficacy of
anti-inflammatory agents in vivo.

Phosphodiester bond
Enzyme-assisted detection of microRNAs has highly

Figure 4 The detection strategy and chemical structure of probe S1.
Reproduced with permission from Ref. [47]. Copyright 2017, the Royal
Society of Chemistry.

Figure 5 Schematic of AIEgens for determination of H2O2. Reproduced with permission from Ref. [50]. Copyright 2016, the Royal Society of
Chemistry.
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sensitivity as well as specificity in vitro. But the detection
of microRNAs in vivo is still a significant challenge due to
the low content of microRNAs in vivo as well as the
complexity of the environment. Based on our previous
work [52], we developed a nucleic acid probe (TPEPy-
LDNA) without a quenching group by click reaction via
using a photostable AIE fluorophore [53]. A hydrophobic
yellow fluorescent group with AIE characteristics serves
as a light-emitting unit, and a hydrophilic nucleic acid 5'-
CAGTCTGATAAGCTA-3' acts as a recognition unit
which hybridizes with microRNA to form a double
strand. The probe TPEPy-LDNA in the formed double
strand can be hydrolyzed by exonuclease III to release the
hydrophobic TPEPy, and thus emits fluorescence.
TPEPy-LDNA can be used to detect microRNAs in urine
as well as in cells. Because of the high sensitivity of
TPEPy-LDNA, it can be used to distinguish the urine of
cancer patients from that of normal. In addition, the
fluorescence intensity of the probe in MCF-7 cells after
60 min is higher than that in HeLa cells and HLF cells,
indicating that the fluorescent probe exhibits high pho-
tostability. As a control, the other two probes containing
FAM and Cy3 with quenching groups are affected by
photobleaching. As a consequence, the control group
probes are not suitable for long-term monitoring of in-
tracellular microRNAs (Fig. 6). Therefore, these AIE
fluorophore-based probes are expected to be useful for
detecting cancer markers.

The detection of low concentrations of mRNA is im-
portant in gene-related prognostic analysis. Our group
[54] developed a nucleic acid probe (TPE-R-DNA) that
combined Exo III target cyclic signal amplification
strategy and DNA covalently linked TPE derivatives for
tumor tissue imaging and prognosis analysis. The TPE-R-
DNA consists of two parts: a hydrophobic TPE derivative
as a long-wavelength fluorescent imaging moiety and a

Figure 6 Schematic of in vivo miRNA detection by TPEPy-LDNA.
Reproduced with permission from Ref. [53]. Copyright 2016, American
Chemical Society.

Figure 7 (a) Chemical structure of TPE-R-DNA and (b) the detection mechanism for MnSOD mRNA based on the TPE-R-DNA probe. Reproduced
with permission from Ref. [54]. Copyright 2018, American Chemical Society.
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hydrophilic DNA (Alk-DNA) as a target recognition
moiety (Fig. 7). In the absence of a target, there is almost
no fluorescence in water due to the good dispersibility of
TPE-R-DNA in aqueous solution. When the target is
present, the TPE-R-DNA hybridizes with the target
mRNA to form a double strand, and the probe TPE-R-
DNA in the formed double strand can be hydrolyzed by
Exo III, subsequently the target as well as the hydro-
phobic TPE-R-AT are released. The released target binds
to another probe for the next cycle. While the hydro-
phobic TPE-R-AT aggregates in the aqueous solution, a
gradual increase in fluorescence can be observed. For the
first time, the product after hydrolysis is confirmed by
mass spectrometry and high-performance liquid phase
which contains two bases of A and T. In addition, the
detection limit for detecting target mRNA is as low as
0.6 pmol L−1. TPE-R-DNA can also detect the amount of
mRNA in tissues. The results show that the content of
MnSOD mRNA in renal cell carcinoma is lower than that
in adjacent tissues. The amount of mRNA expression in
tissues can be used for prognostic analysis for of cancer
patients. In summary, patients with lower MnSOD
mRNA levels have a shorter survival period. Therefore,
TPE-R-DNA probes have potential for prognostic ana-
lysis of disease.

Our group had proposed varieties of facile and sensitive
AIEgens modified nucleic acids probes. For example, the
probe TPE-Py-DNA [55] can be a superior sensor for
telomerase activity with the help of exonuclease III and
the probe AFNAs [56] can detect Hg2+ ions in cells and
actual samples with duplex-specific nuclease enzyme in-
duced isothermal amplification.

C–O bond
α-Amylase is critical for the carbohydrate digestive sys-
tem in the human body, which has been continually ex-
plored as a crucial indicator of some diseases such as
psychological stress. Nevertheless, presently the existing
methods including the detection kit, suffer from time
consumption, low sensibility indirect assay with the aid of
tool enzyme or inhibitor of competitive substrates.
Therefore, they are inappropriate for slight and non-
disruptive detection of α-amylase in body fluids. A facile,
intuitive, and sensitive α-amylase detection in body fluids
remains difficult and challenging. Tang et al. [57] de-
signed a facile fluorescence method based on AIEgens
small molecules for the determination of α-amylase ac-
tivity with favorable sensibility. This method provides a
simple technique for clinical diagnosis of related diseases
due to its high specificity. As shown in Fig. 8, the S2

probe is composed of a TPE substituted by two methoxy
groups as core which connects with a maltotriose unit.
The probe is soluble in water due to the oligomeric glu-
cose. And the S2 probe possesses AIE characteristic which
emits a negligible fluorescence in water. Upon the addi-
tion of α-amylase, C–O bonds in the probe cleave, and the
maltotriose part is given off, remaining TPE aggregating
in water media. Consequently, fluorescence turns on.
Therefore, a facile fluorescent light-up platform for de-
tecting α-amylase can be constructed with S2; moreover,
the probe possesses high selectivity due to the specific
enzymatic reaction and its AIE characteristic overcomes
the shortcomings of traditional assays for α-amylase. To
our knowledge, this organic small molecule fluorescence
sensing system for α-amylase is firstly reported. More-
over, they prove its applications in the determination of
α-amylase activities with rapidity and high sensitivity in
patients’ body fluids.

Similarly, there is a nanoprobe [58] based on TPE de-
rivative (TPE-3) which changes into TPE-2 due to the
cleavage of C–O bond in the absence of hydrogen sulfide.
So the nanoprobe can be used for imaging hydrogen
sulfide in zebrafish.

S–O bond
In photodynamic therapy, the existing photosensitizers
can easily kill normal cells due to their inherent photo-
toxicity and lack of targeting to cancer cells, which is
undesirable. Therefore, there is an urgent need for an
activatable photosensitizer that has superior therapeutic
efficiency for cancer cells but minimizes side effects on
normal cells. On the basis of a newly synthesized AIEgen
photosensitizer, Liu et al. [59] developed a glutathione
(GSH)-activated and dual-targeted probe for image-gui-
ded photodynamic therapy with superior selectivity. The
probe exhibits almost none fluorescence or ROS genera-
tion ability because of the thiol cleavable quencher group

Figure 8 The detection mechanism of probe S2 in α-amylase activity
sensing. Reproduced with permission from Ref. [57]. Copyright 2018,
American Chemical Society.
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2,4-dinitrobenzenesulfonyl. As depicted in Fig. 9, the
photosensitizer activity is restored and the fluorescence is
light-up after receptor such as αvβ3 integrin mediated
endocytosis (1st target). Following activation, the
quencher group 2,4-dinitrobenzenesulfonyl is cleaved by
intracellular GSH (2nd target). Compared with mini-
mized side effects on normal cells such as NIH 3T3 and
293T cells, there is a superior selective imaging and ab-
lation of MDA-MB-231 cancer cells which overexpress
αvβ3 integrin due to the high-efficiency ROS ability of the
aggregated AIEgen photosensitizer and the double tar-
geting system. Moreover, this dual-target probe offers a
higher target-to-background ratio than the available sys-
tems before. This AIEgen photosensitizer based GSH-
activated probe can be used for cancer therapy. On the
basis of this assay concept, it is expected to develop more
facile and specific cancer cell targeting elements to apply
in practical theranostic in vivo.

Disulfide bond
Liu et al. [60] developed an integrin αvβ3 targeted GSH-
responsive turn-on fluorescent AIE bioprobe for in-
tracellular thiol imaging. Due to the unique characteristic
of the AIE molecule, the probe is almost non-fluorescent
in aqueous solution, but emits intense fluorescence upon
cleavage of the disulfide bond by the thiol. As shown in
Fig. 10, the cleavage of the disulfide bond by the thiol

results in enhanced fluorescence signal output. The probe
allows for real-time fluorescence feedback monitoring of
free thiols in solution and in cells with high signal-to-
noise ratios. The cRGD-functionalized peptides enable
selectively targeting αvβ3 integrins of many angiogenic
cancer cells such as U87-MG cells, creating new oppor-
tunities for specific intracellular thiol imaging. This
method can be used for various applications by just
changing the disulfide bond to other cleavable linker
groups. Thus, the design of such covalently bound AIE
probes has facilitated the development of various selective
targeting probes for applications such as imaging, diag-
nostics and drug screening.

Bond formation
The probes with AIE feature are designed on the basis of
the formation of covalent bonds during chemical reac-
tion. This strategy makes use of the nucleophilic addition
reactions between functionalized AIEgens and analytes or
click reaction between azide and alkyne or oligomeriza-
tion of the probes in the presence of analytes. Upon
covalent bonds formation, the fluorescence switches on
owing to RIR as well as RIM effect in the presence of
analytes.

C–C bond
Since inflammatory diseases increase the risk of cancer,

Figure 9 (a) The mechanism of probe TPETF-NQ-cRGD activated by GSH. (b) Schematic of the GSH-activated probe for imaging and ablation of
specific cancer cells. Reproduced with permission from Ref. [59]. Copyright 2016, the Royal Society of Chemistry.

SCIENCE CHINA Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .REVIEW

September 2019 | Vol. 62 No.9 1243© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019



inflammatory cells have attracted extensive attention.
Therefore, the detection and treatment of inflammatory
cells is a top priority. We designed a probe combining
tyrosine covalently linked tetraphenyl ethylene derivatives
(TT) [61], in which the middle tetraphenylethylene acted
as the luminescent unit and the tyrosine linked on both
sides served as the ROS response unit (Fig. 11). TT is
capable of self-assembly by H2O2 and myeloperoxidase to
form long chains which are useful for selective imaging
and inhibition of inflammatory cells. Since a hydrophilic
amino acid is introduced onto the tetraphenylethylene,
the hydrophobic TPE becomes a hydrophilic TT so that
there is almost no fluorescence in the aqueous solution.
When H2O2 and myeloperoxidase are present, the tyr-
osine attaching to both sides of the TT can form ag-
gregates by C–C coupling, thereby activating the
fluorescence of TPE. The change in molecular orbital
amplitude energy after the reaction is further confirmed
by density functional theory (DFT) calculation. Thus,
based on the enhanced results of TT fluorescence, TT can
also be used to selectively image intracellular H2O2 and
myeloperoxidase overexpression. Finally, aggregates of
TT cause damage to intracellular mitochondria and

apoptosis. This is the first report about the imaging and
inhibition of inflammatory cells in response to H2O2 and
myeloperoxidase on the basis of AIEgens.

Besides, Liu’s group [62] modified TPE with four tyr-
osines, TPE-Tyr which dissolved well in water phase with
weak emission. The tyrosine portions in TPE-Tyr cross-
link covalently with strong emission via enzymatic cata-
lysis so as to sense H2O2 and glucose. Ding et al. [63]
developed a smart organic function-transformable na-
noparticle (NP) DTE-TPECM. The NP is composed of a
DTE core and two surrounding TPECM units which can
reversibly transform between closed-ring and open-ring
isomers via light irradiation accompanying with C–C
bond changes, realizing closed-ring for photoacoustic
imaging, and open-ring for fluorescence imaging and
photodynamic therapy.

Boron ester bond
The artificial stimulation-responsive nanopore mimics
the gating phenomenon in the organism that allows ions
to pass through the cell membrane channel, causing
widespread concern. Nevertheless, many factors in the
reaction system affect the ion current. Our group [64]

Figure 10 (a) Schematic design of the probe TPE-SS-D5-cRGD. (b) The detection mechanism for imaging of intracellular thiols. (c) The chemical
structure of the bioprobe. Reproduced with permission from Ref. [60]. Copyright 2014, the Royal Society of Chemistry.
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demonstrated the gating phenomenon of nanopore by
using the fluorescence and ionic current dual signal
output of the nanopore (Fig. 12). In addition, the opening
and closing of the nanopore is confirmed by analyzing the
fluorescence and ionic current of the nanopore, and the
results obtained are consistent with the results of the
molecular dynamics simulation. When glucose is present,
the reduction in ionic current and the enhancement of
fluorescence can be immediately observed by the poly-
merization between the AIE molecule (TPEDB) and the
formation of the boric acid diester between the glucose.
This method has high sensitivity and selectivity for glu-
cose. In order to verify the feasibility of this method for
the clinical application, the glucose contents of 40 urine
samples including 10 normal people and 10 diabetic pa-
tients before and after treatment were detected. The
above results are consistent with the results of the stan-
dard curve used in hospitals, which further demonstrates
the feasibility of this method. In addition, the dual-signal
output nanopore has good resistance to interference from
hydrogen peroxide and ascorbic acid in the real en-
vironment. Based on the aggregation between AIE mo-

lecules, it provides an effective way to develop intelligent
gating. Changes from single to dual signals can enable
nanopores to be used in complex environments for di-
agnostics, drug detection, and the study of biomolecule
transport processes.

In addition, Tang et al. [65] proposed a turn-on sensor
for D-glucose based on the boron ester bond formation
among the AIEgens and D-glucose leading to the emis-
sion.

Thioester bond
Although many methods are applied for detecting acet-
ylcholinesterase (AChE) activity and organophosphorus
pesticides (OPs), the practical application of most meth-
ods is limited by their inherent shortcomings, such as
complex analysis processes, long analysis times, and high
costs. Therefore, to develop a facile, rapid and sensitive
method for detecting AChE activity and OPs is urgent.
Li’s group [66] constructed a paper-based fluorescent
sensor (PFS) with a new AIE fluorogen for facile, effi-
cient, robust and convenient determination of AChE
activity and OPs. Maleimide group functionalized tetra-

Figure 11 (a) Schematic of H2O2 detection based on TT. (b) The selective detection and imaging mechanism of TT in co-cultured cells. Reproduced
with permission from Ref. [61]. Copyright 2018, Wiley.
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phenylethene ramification, TPE-M, has almost no fluor-
escence because of the exciton annihilation process be-
tween the carbonyl (C=O) and the olefinic (C=C) groups
in its maleimide unit. The maleimide of TPE-M cleaves in
the presence of thiol choline and changes into TPE-M-S
with strong emission while treated with the hydrolysis
product of acetylthiocholine (ATCh) catalyzed by AChE.
Therefore, by dropping 1 μL of the TPE-M solution and
1 μL ATCh solution on the test paper, the PFS would
realize. To determine AChE activity, the mixture solution
reacts with AChE and forms TPE-M-S on PFS with a
strong emission which could be visible to the naked eye
under UV irradiation. However, AChE activity is in-
hibited upon the addition of OPs, leading to the reduc-
tion of the fluorescence of PFS. And this strategy allows
for the convenient, sensitive and visual determinations of
OPs in real samples. Without the complex process,
fluorescence quenching effects and other issues, this
sensor can easily and conveniently visualize AChE ac-
tivity and OPs in a rapid detection process of only about
180 sec. Therefore, the PFS shows great potential for
detecting AChE activity and OPs in practical applications.

Nitrogen heterocycle
Since bio-orthogonal tumor labeling is covalently linked,
it could deliver imaging agents or drugs to tumor sites
more efficiently than activatable targeting strategies.
However, because of the lack of turn-on probes for bio-

orthogonal labeling, tumor targeting imaging via bio-
orthogonal labeling currently depends on elimination
reactions to distinguish targets from the original signal of
probe. Liu and her colleagues [67] reported for the first
time that the fluorophores based on the AIE effect were
used for in vivo turn-on bio-orthogonal labeling. As
shown in Fig. 13, the BCN-TPET-TEG probe consists of
the AIE photosensitizer (TPET), hydrophilic triethylene
glycol (TEG) and bicyclo[6.1.0]decyne (BCN) for copper-
free click reactions. Among them, hydrophilic TEG im-
parts good dispersibility of BCN-TPET-TEG in aqueous
solution. Therefore, the probe has a weak fluorescence in
aqueous solution, which makes the background relatively

Figure 12 Illustration of gating phenomenon based on the fluorescence and ionic current dual signal output of the nanopore. Reproduced with
permission from Ref. [64]. Copyright 2016, Springer Nature.

Figure 13 (a) The chemical structure of BCN-TPET-TEG. (b) Sche-
matic of light-up bio-orthogonal tumor labeling based on BCN-TPET-
TEG. Reproduced with permission from Ref. [67]. Copyright 2018,
Wiley.
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low as well as almost no specific interaction toward
normal tissues. Firstly, an azide-modified acetyl sialic acid
(AzAcSA) is modified on the cell membrane by a meta-
bolic engineering. The BCN-TPET-TEG incubated with
4T1 cells then undergo bio-orthogonal reaction. The
fluorescence of 4T1 cells treated with AzAcSA gradually
increase over time. Furthermore, the fluorescence on the
4T1 cells coincides with the fluorescence of the cell
membrane fluorescence tracker indicating that BCN-
TPET-TEG is labeled on the cell membrane by a click
reaction. By using 2',7'-dichlorofluorescein diacetate as a
probe for detecting singlet oxygen, AzAcSA and BCN-
TPET-TEG treated 4T1 cells show significant green
fluorescence after illumination, indicating bio-orthogon-
ally labeled BCN-TPET-TEG is capable of producing
singlet oxygen. The ability of the probe for the generation
of singlet oxygen can be used for imaging guided pho-
todynamic therapy.

Liu’s group also developed some bio-orthogonal light-
up probes, such as TPETSAl [68] and TPBAl [69], which
can both light their fluorescence up on the basis of a click
reaction with azide moieties on membranes of the cancer
cells, fulfilling imaging and ablation of the specific cancer
cells. And Liu et al. [70] further reported a novel assay to
realize in vivo bacterial metabolic labeling and precise
antibacterial therapy.

Heterocycle
AIE effects are widely used for the detection of biomo-

lecules. However, the “smart” strategy to develop AIE
fluorophore aggregates as well as additional enhancement
of the fluorescence is still a challenge. Liang et al. [71]
achieved the dual aggregation of AIE by combining the
tetraphenylethylene with AIE effect and the aggregation
of furin in response to 2-cyanobenzothiazole(CBT)-Cys.
Therefore, the fluorescence imaging and detection of
furin can be achieved by using the AIE dual aggregation
effect. To achieve this goal, they designed and synthesized
Ac-Arg-Val-Arg-Arg-Cys(StBu)-Lys(TPE)-CBT (probe
1). The peptide sequence Ac-Arg-Val-Arg-Arg (RVRR)
not only improves the water solubility of the probe but
also is a substrate for the furin. The CBT group and the
Cys containing a disulfide bond are capable of forming
CBT-Cys aggregates while the TPE is attached to the side
chain of lysine. As shown in Fig. 14, when the probe gets
into the cell with overexpression of furin, such as MDA-
MB-468 cells, the intracellular GSH reduces the disulfide
bond in cysteine. Meanwhile, the RVRR peptide substrate
is treated with furin. The probe is hydrolyzed to produce
an active 1-Cleaved. Theoretically the 1-Cleaved is more
hydrophobic than 1 resulting in the first aggregation of
TPE. The 1,2-aminothiol in Cys reacts with the CN group
on the 1-Cleaved CBT group to form a more hydrophobic
dimer. The dimer further assembles or aggregates in the
region of the furin activation. The conversion from 1-
Cleaved to the 1-dimer as well as the 1-NPs further fa-
cilitates the AIE luminophore, thereby further enhancing
the fluorescence of the AIE. Through a dual fluorescence

Figure 14 The detection mechanism for sensing furin activity based on AIE dual aggregation effect. Reproduced with permission from Ref. [71].
Copyright 2017, the Royal Society of Chemistry.
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enhancement strategy, the probe becomes more sensitive
for the detection of the activity of furin in tumor cells. To
confirm the above hypothesis, a probe of Ac-Arg-Lys
(TPE)-Arg-Cys(StBu)-Arg-Val-CBT(1-Scr) was synthe-
sized which did not respond to furin as a control. In
summary, the 1-Cleaved has only a single AIE effect but it
is an active intermediate and therefore difficult to cap-
ture.

CONCLUSIONS AND PERSPECTIVES
In this review, we discussed the fluorescent probes with
AIE feature on the basis of bond cleavage and formation
strategy. In particular, the design strategy of fluorescent
probe with AIE characteristics was explained. The fluor-
escent probes were divided into two classes on the basis of
bond cleavage as well as formation. The bond cleavage
included amido bond, ester bond, boron ester bond,
phosphodiester bond, disulfide bond, C–O bond and S–O
bond; the bond formation contained C–C bond, boron
ester bond, thioester bond, nitrogen heterocycle bond as
well as heterocycle bond. Although significant progress
has been made in the development of fluorescent probes
with AIE feature on the basis of bond cleavage as well as
formation strategy, challenges still remain in the devel-
opment of these probes. As most of AIEgens emit the
fluorescence in the ultraviolet-visible light range, thus the
fluorescent probes with AIE feature in near infrared re-
gion based on the change of covalent bond are expected
to develop. In addition, the determination of multiple
analytes by one probe is desirable.
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基于共价键变化的靶标响应性AIE荧光探针
许敏1, 汪旭东2, 王全1, 胡钦钰1, 黄开勋2, 娄筱叮1*, 夏帆1,2*

摘要 荧光探针是检测生物或者环境中相关物质的重要手段. 传统
的荧光探针由于聚集诱导猝灭引起的选择性差异和容易光漂白等
问题限制了其应用. 此外, 在传统荧光探针的设计中通常引入猝灭
基团, 从而增加了探针合成及分离的难度. 一类新型的具有聚集诱
导发光(AIE)特征的荧光染料解决了上述问题. 利用AIE发光团的
独特性质, 构建发光团与识别基团偶联的特异性“关开型”探针, 这
些探针具有背景低、选择性好和光稳定性强的优点. 本综述主要
概括并讨论了通过共价键断裂以及新键形成策略开发的具有AIE
特征的荧光探针, 并对其进行了展望.
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