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ABSTRACT Although metal-organic frameworks (MOFs)
show numerous advantages over other crystalline materials,
their industrial relevances have been impeded owing to their
many drawbacks such as environmental impacts and economic
costs of their synthesis. A green preparation pathway could
greatly reduce the environmental costs, energy, and the need
for toxic organic solvents, and consequently reduce the pro-
duction cost. Thus, the most desirable synthesis route is the
replacement of harsh organic solvents with aqueous solutions
to abate environmental and economic impacts. This review
summarizes recent research advancements of water-based
routes for MOF synthesis and gives a brief outline of the most
prominent examples. The challenges and prospects of the
commercialization of promising MOFs in the future are also
presented. This study aims to offer necessary information
regarding the green, sustainable, and industrially acceptable
fabrication of MOFs for their commercial applications in the
future.

Keywords: metal-organic frameworks, water-based routes, in-
dustrial production

INTRODUCTION
Metal-organic frameworks (MOFs) or porous coordina-
tion polymers (PCPs), constructed from organic ligands
and inorganic building units (metal ions or clusters), are
an intriguing class of coordination polymers [1–3]. There
has been a substantial increase in interest of MOFs owing
to their attractive physicochemical characteristics such as
high surface area, permanent porosity, abundant active
sites, and flexible chemical structure [4–9]. To date, the
main focus of MOF investigations is the optimization of
their structures or properties, such as increasing the

crystallinity and pore size, to develop their potential ap-
plications in gas storage [10–13], adsorption and se-
paration [14–17], large molecule encapsulation [18–20],
supercapacitors [21–23], energy conversion [24,25], che-
mical sensors [26–28], biomedicine [29,30], and catalysis
[31–33]. However, the synthesis conditions of MOFs for
eco-friendly and industrial scale-up were only sparsely
investigated in both research and industrial laboratories
[34,35]. Usually, MOF syntheses involve solvothermal
reactions of a solution containing metal salts and ligands
in organic solvents (e.g., N,N-dimethylformamide (DMF),
ethanol) or mixtures of organic solvents and water [36–
38]. In these processes, commonly employed organic
solvents such as DMF increase the cost and pose safety
and environmental risks [39,40]. Furthermore, some or-
ganic solvents easily decompose and generate large
amounts of waste by-products, which influence the
functions and properties of the desired product [41–43].
Although some organic solvents can be recycled and re-
used in some cases [44], the heavy use of hazardous and
toxic solvents hinders the industrial and commercial
feasibility of MOF application, from the environmental
and economic perspectives [45–47]. Thus, the develop-
ment of green synthetic route, wherever technically and
economically practicable, to minimize the use of costly
and toxic organic solvents in MOF synthesis, is a great
challenge.
To date, tremendous efforts have been made to develop

alternative methods to mitigate and/or eliminate the use
and generation of hazardous organic solvents in the
synthesis of MOFs [48–51], including solvent-free
method [52], aerosol route [53], microwave irradiation
and ultrasound-assisted techniques [54,55]. These ap-
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proaches not only avoid the use of hazardous solvents in
the synthesis of MOFs, but also have advantages, such as
excellent stability, tunable porosity, high production rate,
and continuous production in the resulting MOFs
[56,57]. However, these methods have low generality, and
involve complicated synthetic procedures and equipment
[58,59]. Therefore, it is urgent to develop a simple and
general method for the green synthesis of MOFs without
the use of organic solvents.
Water is considered to be the cleanest solvent for the

synthesis of MOFs. Thus, one measure that can reduce
the cost and boost the environmental friendliness is to use
water as the reaction medium [60,61]. In comparison
with organic solvents, water as a solvent to dissolve MOF
precursors (metal salts and ligands) is non-toxic, stabe,
cheap and easy to get and disposable [62]. Furthermore,
the organic solvents trapped in the pore channels of
MOFs are often difficult to fully eliminate while water can
be easily removed [63], indicating that water-based
synthesis conditions can lead to improved material
properties. Most of MOFs that can be synthesized in
water are stable in water, e.g., UiO-66, MIL-160 and
CAU-10 MOFs [13,43]. Nevertheless, quite a few water-
sensitive MOFs, such as Cu3(BTC)2, can also be synthe-
sized in water [64], which might be attributed to the in-
fluence of organic co-solvent or the high temperature/
pressure during the synthesis which may stabilize MOFs
in water (note the MOFs’ stability in water is usually
assessed at room temperature and ambient pressure)
[65,66]. Based on previous reports [67], the addition of
water contributes in one or more functions in the MOF
synthesis: (1) as the reaction solvent to dissolve MOF
precursors; (2) as an additive to realize a certain of
function; (3) as both solvent and additive. Hence, the
synthesis of MOFs in aqueous solutions not only reduces
the manufacturing cost and addresses environment-re-
lated impacts, but also improves their structures and
properties [68,69]. From a commercial perspective, al-
though only a few MOFs have been utilized in practical
applications, the use of clean and renewable water as
solvents to save costs, while avoiding contamination of
water, can be considered as a pivotal benefit for an in-
dustrial scale production [45,60,70]. Moreover, from an
academic perspective, water-based synthesis conditions
are also significant since they represent a new research
field which may provide a direction to synthesize new
materials with outstanding structures and properties
[71,72].
Generally, the water-based synthesis of MOFs refers to

the use of water as a reaction solvent [73]. Although or-

ganic additives usually are also used, their dosages are
(much) smaller than water. For example, Li et al. [74]
reported the water-based synthesis of mesoporous Zr-
based MOFs templated by amphoteric surfactants, where
the molar composition of the cocamidopropyl betaine
(CAPB) and water (H2O) was 0.438CAPB꞉282H2O, which
accords with the concept of water-based synthesis. To
date, many excellent reviews have been summarized for
the green synthesis of MOFs based on low-energy (e.g.,
room temperature and ambient pressure) and high pro-
duction rate [45,62,70,75–78]. However, to the best of our
knowledge, there lacks specialized review for the water-
based synthesis route of MOFs that offers the necessary
information regarding their synthesis mechanisms as well
as merits and demerits of different routes. Based on the
advantages of water-based synthesis of MOFs as stated
above, we will describe in detail the various routes and
methods developed during the last ten years for the wa-
ter-based synthesis of MOFs, and will focus on their
synthesis mechanisms, as well as merits and demerits of
various methods.

DIFFERENT TYPES OF MOFs
SYNTHESIZED IN AQUEOUS SYSTEMS
A remarkable feature of MOFs is the wide diversity of
their topological structures. Currently, over 80,000 MOFs
have been synthesized (based on the Cambridge Struc-
tural Database) [79], but an uniform classification has not
yet been achieved. At present, only a limited number of
MOFs have been synthesized in water, though the num-
ber should grow quickly. We will focus on the most re-
presentative MOFs which have been synthesized in water
and have shown wide impact, such as zeolitic imidazolate
frameworks (ZIFs), isoreticular MOFs (IRMOFs), MIL,
UiO, coordination pillared-layer (CPL), and porous co-
ordination network (PCN). We do not aim to compre-
hensively review thousands of MOFs herein, for which
the readers could refer to other recent excellent reviews
[70,80–83].

ZIF series
ZIFs comprises transition metals (Zn or Co) and imida-
zolate-based ligands and are a subfamily of porous MOFs
with a sodalite-type cage similar to zeolites [84,85]. They
organically combine the merits of MOFs and zeolites,
including high surface area, tunable surface properties,
and excellent thermal and chemical stability [86,87].
These properties make them a worthwhile potential
candidate for a large variety of industrial applications.
Recently, several investigations have been performed on

REVIEWS . . . . . . . . . . . . . . . . . . . . . . . . . . SCIENCE CHINA Materials

668 May 2020 | Vol. 63 No.5© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020



the synthesis of ZIFs under water-based conditions. The
first example of ZIF materials synthesized in an aqueous
solution was reported by Pan et al. [88], who prepared
ZIF-8 crystals in an aqueous system at room temperature
in a short time (~5 min) with a high product yield of 80%
(based on the amount of Zn) using excess ligand (2-
methylimidazole, 2-MI). The resulting ZIF-8 products
possessed small crystal sizes with a diameter of ~85 nm
and excellent thermal, chemical, and hydrothermal sta-
bilities (Fig. 1). Moreover, Pan et al. [89] presented the
preparation of ZIF-8 in an aqueous solution and con-
trolled the size and morphology of crystals, using cetyl-
trimethylammonium bromide (CTAB) as a capping
agent. For example, the crystal sizes of ZIF-8 can be tuned
from micrometer to nanometer and the morphology
changed from rhombic dodecahedron (RD) to truncated
rhombic dodecahedron (TRD) to truncated cubic, by
controlling the amount of CTAB. This can be attributed
to the long hydrophobic hydrocarbon chain of CTAB
adsorbed on the hydrophobic surface of the ZIF-8 crys-
tals, thereby functioning as capping agents to slow down
the crystal growth rate. However, no research has ex-
amined the mechanism of ZIF-8 synthesis in aqueous
solutions. Although CTAB was added into the synthesis
system, this organic additive was used as a modulator to
reduce ZIF crystal growth rate rather than being used as a
reaction solvent. Therefore, the addition of certain or-
ganic additives into the MOF preparation system still
remains consistent with the theme of water-based
synthesis.
Kida et al. [90] reported another example of ZIF-8

synthesized in an aqueous system using different molar
ratios of 2-MI/Zn at room temperature. At high molar
ratios of 2-MI/Zn, the obtained ZIF-8 product exhibited a
RD shape and possessed ultrahigh surface areas and mi-
cropore volumes. When the molar ratio of 2-MI/Zn was
low, some by-products such as zinc hydroxide and basic

zinc nitrate appeared in the ZIF-8 crystals. These results
showed the influence of the concentration of 2-MI on the
crystallization, morphology, particle size, and purity of
ZIF-8 crystals. Specifically, the formation process of ZIF-8
crystals in an aqueous solution was investigated, where
the high pH conditions enabled the deprotonation of 2-
MI and accelerated the formation of ZIF-8 crystal.
Therefore, water-based synthesis of ZIFs without extra
additives is required for an excess amount of organic li-
gands. However, the excessive ligand used during the
synthesis is unfavorable from the economic and en-
vironmental perspectives [91].
Some auxiliary substances such as triethylamine (TEA),

sorbitan monooleate (Span) 80, and polyoxyethylene
sorbitan monooleate (Tween) 80 can be used as a mod-
ulator to accelerate ZIF crystallization in aqueous sys-
tems. For example, Gross et al. [92] reported the water-
based synthesis of ZIF-8 and ZIF-67 within 10 min at
room temperature and ambient pressure by using TEA as
a protonation agent. The results indicate that the in-
troduction of TEA can deprotonate the ligand of 2-MI
and initiate the nucleation of ZIF materials. More im-
portantly, the inherent 2-MI can act as a structure di-
recting agent (SDA) and function as an organic solvent
[93], thereby resulting in the ZIF synthesis in aqueous
solutions. In addition, the added TEA and ligand may
also be reused in a scaled-up synthesis in industrial
production. Subsequently, Nordin et al. [94] reported the
influences of TEA on the crystallinity of ZIF-8 crystals in
an aqueous system. As shown in Fig. 2, ZIF-8 crystals
cannot form when the TEA/total molar ratio is below
0.004. However, the produced ZIF-8 crystals are in a pure
phase as the TEA/total molar ratio is further increased
from 0.004 to 0.007. When the TEA/total molar ratio
exceeds 0.007, impure crystals are formed. In addition,
Fan et al. [95] prepared pure ZIF-8 crystals in an aqueous
solution by introducing Span 80 and Tween 80 as mod-

Figure 1 (a) XRD patterns and (b, c) TEM images of ZIF-8 synthesized in an aqueous solution; (d) photograph of the as-synthesized ZIF-8 dispersed
in methanol. Reprinted with permission from Ref. [88]. Copyright 2011, Royal Society of Chemistry.
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ulators to ensure that the Zn-2-MI coordination structure
is free of H2O and OH− attack, thereby obtaining pure
ZIF-8 crystals in the aqueous solution at low 2-MI/Zn
ratio.
Other than conventional ZIF materials that contain one

metal ion, emerging ZIFs known as mix-metal ZIFs with
at least two different metals can also be obtained in an
aqueous solution. Recently, Kaur et al. [96] reported the
preparation of bimetallic Co–Zn based ZIFs (CoZn–ZIF-
8) in an aqueous system at room temperature. They
synthesized robust bimetallic CoZn–ZIF-8 by mixing
cobalt nitrate hexahydrate, zinc nitrate hexahydrate, and
2-MI in water and then stirring the solution for 10 min
(Fig. 3). The results of powder X-ray diffraction (PXRD)
and electron microscopy (scanning electron microscopy
(SEM) and transmission electron microscopy (TEM))
indicate that Co was incorporated into the Zn–ZIF-8
crystal without breaking or transforming the framework.
Furthermore, the content of Co and Zn in the CoZn–ZIF-
8 can be effectively tuned by controlling the amounts of
Co and Zn precursors. However, some issues still require
further studies, such as the mechanism of inserting Co
into Zn–ZIF-8 crystal and the random distribution or
aggregation of a certain metal over the metal node [1,97].

IRMOF series
IRMOFs comprise linear organic ligands (e.g., di-
carboxylic acid and tricarboxylic acid) and metal ions or

clusters and are a subclass of MOFs [98]. They usually
share a common net topology such as cubic topology
[99]. Over the past decades, several typical IRMOFs, such
as MOF-5, MOF-74, MOF-177, and MOF-199 (HKUST-1
or Cu-BTC), have been widely studied [99,100]. However,
most IRMOFs are synthesized in organic solvent systems
[101]; only a few IRMOFs are synthesized in aqueous
systems.
HKUST-1 is instable upon exposure to water or even

moist environment, because the metal-oxygen coordina-
tion of HKUST-1 is vulnerable to water molecule attacks
[65]. However, HKUST-1 can be synthesized in an aqu-
eous solution. Huo et al. [102] proposed a novel facile and
rapid room-temperature synthesis approach to prepare
HKUST-1 through vigorous mixing of metal salt powder
(cupric acetate anhydrous, Cu(OAC)2) with excess ligand
(benzene-1,3,5-tricarboxylic acid, H3BTC) using only

Figure 2 Illustration of the influence of TEA concentration on the ZIF-8 formation in aqueous systems. Reprinted with permission from Ref. [94].
Copyright 2014, Royal Society of Chemistry.

Figure 3 Schematic of the room-temperature synthesis of CoZn–ZIF-8
in aqueous solution. Reprinted with permission from Ref. [96]. Copy-
right 2016, Royal Society of Chemistry.
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water as the reaction solvent (Fig. 4). The crystallite size
and porosity property of the MOF-199 product can be
tuned by modulating the copper source and the reaction
time, respectively. Moreover, the synthesis can be readily
scaled-up so that the obtained MOF-199 possesses a high
space-time yield (STY, >2000 kg m−3 per day) owing to
the clean reaction medium (water) and the reduced
crystallization time (<1 h). However, during the pur-
ification procedure of crude MOFs (“activation”), un-
reacted H3BTC is removed using ethanol; therefore, the
organic solvents have not been completely obviated from
the overall process. Siew et al. [103] used very small
amount of methanol to replace ethanol during the solvent
activation process of MOF-199 (Cu-BTC) synthesis.
Moreover, Majano et al. [104] used aqueous ethanolic
solution as a solvent to prepare HKUST-1. Although the
optimized synthesis route can reduce the amount of or-
ganic solvents, the method developed herein is not a
complete water-based synthesis procedure. In addition, a
more recent report described the preparation of MOF-
199 (Cu-BTC) crystals with only water as the solvent and
excess methylamine as additive [105]. The synthesis time
could be shortened to 5 min to achieve a product yield of
89%. Although the activation process of MOF-199 was
performed in distilled water, the introduction of methy-
lamine in the synthesis process did not fully eliminate the
use of costly and harmful organic solvents from the
overall process. These results indicate that the water
stability and the water-based synthesis conditions of
MOFs are not correlated.
In addition to MOF-199 materials, other IRMOFs, such

as MOF-74 can also be synthesized in water. Cadot et al.
[51] reported the water-based synthesis of MOF-74–Ni by
mixing a nickel (Ni) precursor solution with a suspension
of 2,5-dihydroxyterephthalic acid (H4dhtp) at high tem-
perature. Moreover, Garzón-Tovar et al. [73] optimized

this synthesis route under similar reaction conditions to
obtain a series of MOF-74 based on Mg, Ni, Co, and Zn
in water without the need for heating (room tempera-
ture). The as-synthesized MOF-74-M materials have ex-
cellent Brunauer-Emmett-Teller (BET) surface areas
(>1200 m2 g−1) and unprecedented STYs (18,720 kg m−3

per day). Recently, Didriksen et al. [106] developed a
continuous-flow synthesis method for the preparation of
MOF-74–Ni in a simple tubular reactor system using only
water as the solvent (Fig. 5). At the optimal running
conditions, a conversion above 90% can be reached in
~20 min. Besides, the obtained MOF-74–Ni product has
high crystallinity and BET surface area. In addition, Julien
et al. [107] developed a mechanochemical approach for
preparing MOF-74–Zn by ball-milling a mixture of zinc
oxide (ZnO), dihydroxyterephthalic acid (H4dhta), and a
small amount of water. This synthesis can be scaled to
gram-scale (2.7 g), and the porosity properties of result-
ing products can reach a degree of product synthesized by
a conventional method. These methods give a blueprint
for the green and continuous synthesis of MOFs and
hopefully achieve the industrial production.

MIL series
MIL is one kind of a few stable MOFs which could be
thermally stable up to >300°C in air and remain stable
even after exposure to boiling water for weeks [108].
MIL-53 series are typical MIL MOFs that can be readily
tuned while maintaining their intrinsic frameworks by
employing different metal sources (e.g., Al, Fe, Ga, and
Sc) and/or BDC2− (benzene-1,4-dicarboxylate) derivatives
(e.g., amino, chlorine, fluorine, hydroxyl, nitro and car-
bamate) [109–112]. To date, MIL-53(Al) series synthe-
sized in water have been intensively studied due to their
excellent thermal stability and structural “breathing ef-
fect” [113,114]. The first example of MIL-53(Al) prepared

Figure 4 Schematic diagram of MOF-199 (HKUST-1) synthesis from a wholly aqueous reaction mixture. Reprinted with permission from Ref. [102].
Copyright 2013, Royal Society of Chemistry.
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in an aqueous solution was reported by Cheng et al. [115]
who developed a simple solvothermal method to syn-
thesize NH2–MIL-53(Al) nanocrystals by varying the ra-
tio of water in DMF-water mixed solvents. As shown in
Fig. 6, the synthesis procedure could be improved by
controlling the solvent conditions from DMF to water.
When DMF is used as the only solvent, the ligand (NH2–
BDC) can be rapidly deprotonated, thereby facilitating
the formation of spherical crystals through the aggrega-
tion of numerous small particles. When a tiny amount of
water is added to DMF as a mixed solvent, it can accel-
erate the rates of deprotonation and nucleation, thereby
resulting in the formation of smaller crystals. As the water
content is further increased, the excess water reduces the
solubility of NH2–BDC and hinders the deprotonation of
ligand, thereby slowing down the nucleation rate of
crystals. Meanwhile, the introduced water can modulate
the growth direction of the crystal. Therefore, the as-
synthesized NH2–MIL-53(Al) crystals exhibited a large

and long rhomboid structure when pure water is used as a
solvent. Furthermore, the obtained product synthesized
in pure water possesses a very high crystallinity, BET
surface area, pore volume and yield (~100%). Although
this work involves the preparation of NH2–MIL-53(Al) in
DMF, a pure water-based synthesis was reported.
Another example for the water-based synthesis of NH2–

MIL-53(Al) was reported by Guan et al. [116], who de-
veloped a facile route for the room-temperature synthesis
of nano-sized NH2–MIL-53(Al) particles using a long-
standing magnetic stirring. TEM images revealed the
short rod-like morphology of the NH2–MIL-53(Al),
which is different from the irregular shape of NH2–MIL-
53(Al) synthesized in DMF. Moreover, the length and
breadth of NH2–MIL-53(Al) obtained from water were
less than 100 and 50 nm, while the particles synthesized
in DMF solvent ranged from dozens to hundreds of
nanometers. Since the synthesis was conducted in an
aqueous solution which altered the surface properties of
MOFs, the as-synthesized NH2–MIL-53(Al) nanocrystals
exhibited enhanced efficiency for removal of methyl blue
from water compared with those prepared in DMF sol-
vents using a conventional hydrothermal method [117].
Similarly, Jung et al. [118] reported aluminum-succinic
acid (Al-SA) MOF synthesized in an aqueous solution.
The as-synthesized Al-SA MOF exhibited an exceptional
affinity toward Acid Black 1 (AB1) and fast removal of
the substrate with the theoretical maximum uptake of
739.3 mg g−1, which was much higher than that of com-
mercial powder-activated carbon (PAC). In addition, re-

Figure 5 Schematic of the flow reactor system for MOF-74–Ni pro-
duction. Reprinted with permission from Ref. [106]. Copyright 2018,
Springer.

Figure 6 Schematic illustration of the preparation of NH2–MIL-53(Al) nanocrystals obtained from different solvents. Reprinted with permission
from Ref. [115]. Copyright 2013, Royal Society of Chemistry.
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cently published studies showed that MIL-91, MIL-96 and
MIL-160 can also be synthesized under water-based
conditions [119–122]. From the examples given above, a
certain amount of NaOH must be added to the synthesis
system, which poses challenges in terms of the waste
handling and disposal [123].
In addition to these, well-known MIL MOFs such as

MIL-53 and MIL-100 can be synthesized in an aqueous
solution [124,125]. Reinsch et al. [126] reported the wa-
ter-based synthesis of a new Al–MOF (Al–MIL-68–Mes)
that contained a Kagome-like framework structure with
two different channels, using a short aliphatic methylfu-
maric acid (H2Mes) as a linker molecule. As shown in
Fig. 7a, PXRD result confirmed that the as-synthesized
Al–MIL-68–Mes crystal possessed a Kagome-like MIL-68
framework structure having interconnection of chains of
trans-corner sharing AlO6 polyhedra (in which OH
groups act as μ-connecting ligands) via H2Mes molecule
in four directions. Accordingly, the formation of two
channels with a large hexagonal channel (diameters:
~6 Å) and small trigonal channel (diameters: ~2 Å) could
be observed, as shown in Fig. 7b. Moreover, the Al–MIL-
68–Mes showed a high BET specific surface area (SBET =
1040 m2 g−1) as well as excellent thermal and chemical
stabilities (stable upon water and methanol vapor sorp-
tion).
Recently, some magnetic MOF composites have re-

ceived tremendous attention because they combine the
merits of each material [127]. For example, Huang et al.
[128] reported the synthesis of magnetic Al-based MOFs
composites (MFC–N) using organic salt (NH2-Na2BDC)
as anionic ligand source and Fe3O4@SiO2 magnetic na-
noparticles (MNPs) as a magnetic substance in water at
room temperature. The TEM image revealed that the as-
synthesized Fe3O4@SiO2 MNPs possessed a typical core-
shell structure with Fe3O4 as core and SiO2 as shell, as

shown in Fig. 8a. Furthermore, the TEM image in Fig. 8b
confirmed that a number of Fe3O4@SiO2 MNPs with
particle sizes of ∼15 nm were embedded into the MOF,
and the two components can be clearly identified. The
elemental mapping images indicated that the distribu-
tions of C, O, Al, and N elements were homogeneous in
MFC–N crystal (Fig. 8c). Additionally, the strong signal
of Fe and Si elements also demonstrated that the MNPs
were embedded into the frameworks of MOF crystals, as
observed in Fig. 8c. The obtained MFC–N nanocrystals
exhibited a high surface area, remarkable magnetic re-
sponse, and excellent water and thermal stability, thereby
possessing high adsorption capacities toward methylene
blue (358 mg g−1) and As(V) (71 mg g−1) from environ-
mental water. Compared with conventional methods
[129], this synthetic route successfully avoided the gen-
eration of a large amount of toxic and harmful corrosive
acid such as HNO3 or HCl. In addition, other examples of
MIL MOFs synthesized in aqueous solutions are given in
Table 1.

UiO series
Although MOFs commonly exhibit much weaker stability
in comparison with conventional porous materials such
as activated carbon and metal oxide [130–133], UiO fa-
mily is an important branch of MOFs that has a high
thermal and chemical stability in comparison with other
MOFs [134]. Zirconium MOFs (Zr–MOFs) are one ar-
chetypical UiO-family that is based on 12-connected
metal nodes and usually adopts face-centered cubic (fcu)
network topology [135]. The original route for Zr–MOF
synthesis involves the use of DMF as the solvent, which
generates a large amount of waste and by-product [136].
Fortunately, some recent studies have reported green
synthesis routes using less hazardous solvents and reac-
tion upscaling [137].

Figure 7 (a) XRD patterns of Al–MIL-68–Mes and the calculated data; (b) synthetic process of Al–MIL-68–Mes in an aqueous solution. Reprinted
with permission from Ref. [126]. Copyright 2018, Wiley-VCH.
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Zahn et al. [138] developed a simple method for the
preparation of Zr-fumarate MOFs from an aqueous sys-
tem at different temperatures (120°C or room tempera-
ture) using monocarboxylic acids, such as formic acid,
acetic acid, and propionic acid as modulators. The par-
ticle size of MOF crystals can be readily tuned by con-
trolling the alkyl chain lengths of the modulating
molecules. For example, SEM images confirmed that the
crystal size became smaller as the alkyl chains of the
modulators were longer (Fig. 9). The as-synthesized Zr-
fumarate MOFs exhibited a stable robust structure at
300°C and remained stable in organic solvents as well as
acidic and alkaline conditions. Usually, MOF synthesized
in water has a poor crystalline structure and/or a de-
creased porosity in comparison with that synthesized in
organic solvents [139]. However, neither the crystallinity
nor the porosity of the produced Zr-fumarate MOFs was
decreased. The BET surface area was 970 m2 g−1, which is
comparable to that of Zr-fumarate MOFs obtained in
DMF (1010 m2 g−1) [140]. In addition, unlike Soxhlet
extraction which involves the coercive removal of organic
solvents from the pore system of MOFs [141], no addi-
tional purification steps were performed to activate the
Zr-fumarate MOFs. It should be noted that although the
introduced monocarboxylic acid can serve as a modulator

Table 1 MOFs synthesized only using water as the solvent

No. MOFs Synthesis conditions Refs.

1 MIL-34 Water (180°C/10 d) [177]

2 MIL-69 Water (210°C/16 h) [178]

3 MIL-88A Water (65°C/2 h) [179]

4 MIL-91 Water (60°C/0.5 h) [180]

5 MIL-96 Water (210°C/24 h) [181]

6 MIL-100 Water (210°C/5 min) [182]

7 MIL-110 Water (210°C/15 min) [182]

8 MIL-118 Water (210°C/24 h) [183]

9 MIL-121 Water (210°C/24 h) [184]

10 MIL-127 Water (85°C/24 h) [185]

11 MIL-129 Water (210°C/24 h) [186]

12 MIL-140A Water (110°C/24 h) [187]

13 CAU-11 Water (150°C/12 h) [188]

14 CAU-12 Water (170°C/5 h) MWa heating [188]

15 CAU-15 Water (100°C/3 h) MWa heating [189]

16 CAU-28 Water (80°C/1 h) MWa heating [190]

17 Al-PCP Water (180°C/24 h) [191]

18 Al-PMOF Water (180°C/16 h) [192]

a) Microwave.

Figure 8 TEM images of (a) MNPs and (b) MFC-N-100 samples; (c) elemental mapping images of MFC-N-100. Reprinted with permission from Ref.
[128]. Copyright 2018, ACS Publications.
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to increase the kinetics of the formation of inorganic
nodes, additional modulator acid induces the risk of
corrosion and increases the cost [142].
Generally, the reduction of synthesis temperatures to

room temperature is more favorable in decreasing en-
vironmental impact and scale-up production due to the
lower energy input required [10]. Pakamorė et al. [143]
developed an entirely facile and green approach for the
ambient-temperature aqueous synthesis of UiO-66–NH2
using a disodium salt of 2-aminoterephthalic acid as a
ligand and an aqueous solution of acetic acid as a mod-
ulator (Fig. 10). The resulting UiO-66–NH2 nanocrystals
have a high BET specific surface area with a range of 845
to 888 m2 g−1, which is close to the product obtained by a
conventional solvothermal method (833.4 m2 g−1).
Moreover, the obtained nanocrystals demonstrate point
defects due to the presence of dangling ligands, while a
significant amount of missing ligands were not observed.
Very recently, Chen et al. [144] also reported the room-
temperature synthesis of two Zr–MOFs composed of Zr6
cluster nodes (UiO-66–(COOH)2 and UiO-66–F4) using a
mixture of water and acetic acid as solvents. Notably, the
mild synthesis conditions signify that the UiO-66–
(COOH)2 can be reliably scaled-up from 30 mg to 20 g.
These synthetic methods exclude the use of toxic solvents
and minimize the energy requirements for the production
of Zr–MOFs, which are easy for scale-up [6].
Compared with the conventional hydrothermal meth-

od, microwave synthesis is a simple and rapid method
[145]. Reinsch et al. [54] proposed a versatile green
method for the scalable batch synthesis of diverse Zr–
MOFs by employing ZrOCl2·8H2O, acetic acid, water, and
the respective ligand under microwave irradiation. They
obtained five Zr–MOFs at multigram scale with different
topologies such as UiO-66–(OH)2, zirconium mesaco-
nate, zirconium fumarate, MOF-808, and DUT-67. Un-
like previous studies which did not report the porosity
properties of the product [146], this microwave synthesis
route suits the continuous production and also yields

compounds with high porosity and crystallinity. A follow-
up study carried out by the same group reported the
synthesis of two new Zr–MOFs (MIP-200 and CAU-39)
in aqueous systems, using 2,5-pyrazinedicarboxylic acid
(H2PzDC) and 4,4ʹ-azopyridine-dicarboxylic acid
(H2APDC) as ligands [147,148]. The as-synthesized
CAU-22 possesses a unique one-dimensional (1D) in-
organic building unit (IBU) of edge-sharing hexanuclear
(Zr6O4(OH4)) cluster while the obtained CAU-39 con-
tains a 2D IBU of dodecanuclear (M12O8(OH)14) cluster.
During the water-based synthesis of Zr–MOFs above,

some modulators such as nitric or acetic acid have often
been used to facilitate the growth of crystals by adjusting
the reaction kinetics [149]. However, several recent stu-
dies focus on the use of acid modulators in Zr–MOFs
synthesis, while few studies focus on the role of acidity of
between modulator feature and product performance
[142]. Hu et al. [150] did pioneering work on the study of
the behaviors of modulator and ligand. They compre-
hensively and quantitatively investigated the effects of
modulator parameters (acidity and amount) and syn-
thetic conditions on the properties of the resulting UiO-
66-type products synthesized in water. The results
showed that the crystallinity, pore size, morphology, de-

Figure 9 SEM images of Zr-fumarate MOF crystals synthesized under different reaction conditions. Reprinted with permission from Ref. [138].
Copyright 2015, Elsevier.

Figure 10 Diagram of room-temperature aqueous synthesis of Zr–
MOFs. Reprinted with permission from Ref. [143]. Copyright 2018,
Royal Society of Chemistry.
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fects, stability, yield, and adsorption performance of the
resulting UiO-66-type MOFs depend on the modulators.
Furthermore, some semiempirical models can be ob-
tained by analyzing the obtained data, where a relation-
ship between the optimal molar ratio (y) and acidity value
(pKa) of modulator x is given as y = 12.72 + 0.193 ×
exp(1.276x). Moreover, the synthesis of Zr–MOFs using
ligands with different acidities tends to follow the equa-
tions of y = −40.78 + 39.1x and y = −21.7 + 25.58x for
acetic acid and formic acid, respectively. In general, these
semi-rational formulas are very useful in quantitative
analysis and synthetic guidelines for the future trials of
water-based production of MOFs.
In addition to conventional microporous Zr–MOFs,

mesoporous Zr–MOFs can also be synthesized in aqueous
solutions. A common SDA was used as a template to
guide the formation of mesopores and macropores in
MOFs [151,152]. Li et al. [74] developed the template
synthesis of mesoporous UiO-66–NH2. They reported a
facile water-based template strategy for the direct synth-
esis of hierarchical micro- and mesoporous Zr-based
MOFs. As shown in Fig. 11, the introduced amphoteric
surfactant self-assembled and formed rod-shaped mi-
celles. Meanwhile, the carboxylate groups of template
micelles provided a coordinating agent that chemically
anchored to the metal precursor. The ligand then self-
assembled with a metal precursor in the presence of
template micelles for framework formation. Besides,
mesopores were formed after the removal of template
molecules. The dimensions of mesopores were readily
tuned by controlling the alkyl chain length of the tem-
plate. However, the stability of the produced mesopores
did not reduce in the resulting mesoporous Zr–MOFs.
The use of amphoteric templates in the synthesis of me-
soporous UiO MOFs introduces a new method to allow
rational tuning of the porosity by controlling the length of
surfactant used. Very recently, Niu et al. [153] reported
the synthesis of two hierarchical porous Zr–MOFs (UiO-
66 and UiO-66–NH2) using a free-template strategy. The
as-synthesized hierarchical porous UiO-66 and UiO-66–
NH2 have smaller nanoparticles (<100 nm) and exhibit
enhanced adsorption and catalytic performances.
To date, many effective methods have been proposed

for the green and cheap synthesis of UiO MOFs. How-
ever, there are few reports on their large-scale production
from kilogram (kg) scale to commercialization at the ton
(t) scale [6,55]. Recently, Karadeniz et al. [154] reported a
green mechanochemical synthesis approach for the con-
tinuous production of a series of Zr–MOFs (UiO-66,
UiO-66–NH2, MOF-801 and MOF-804) using a non-

conventional zirconium dodecanuclear acetate cluster
and a small amount of water as the liquid-assisted
grinding (LAG) additive. The synthesis can be scaled to a
10 g scale using a planetary mill, or to larger scales using
continuous processing by a twin-screw extrusion (Fig. 12)
to produce more than 100 g of UiO-66–NH2 MOFs in a
continuous process at a rate of ca. 1.4 kg h−1. The as-
synthesized Zr–MOFs exhibited high crystallinity, por-
osity, and stability so that there was no need for excessive
workup (activation) or stabilization of the framework
with DMF. This method is expected to realize the
breakthrough of high-performance production of Zr–
MOFs from the laboratory scale to industrial production.
Another example of the green scalable synthesis of Zr–
MOFs was reported by Wang et al. [155], who reported a
green and scalable method to synthesize a stable amino
acid-based Zr–MOFs (Zr–MIP-202) at reflux conditions.
The STY of the obtained Zr–MIP-202 was as high as
7000 kg m−3 per day, which is higher than that of Al–
MOFs currently being produced on ton scale (>1000 m−3

per day) [156]. Moreover, the author successfully realized
the synthesis of Zr–MIP-202 at different scales, thereby
providing the possibility of the green scalability of Zr–
MOFs. The as-synthesized MIP-202(Zr) revealed ex-
cellent proton conductivity performances of 0.011 S cm−1

(363 K, 95% relative humidity (RH)). Relatively, the large-
scale synthesis of MOFs under reflux conditions can be
achieved due to the facile preparation process [70].

CPL series
CPL series are constructed from neutral 2-D layers con-
sisting of metal ions (Cu2+) and ligands (pyrazine-2,3-

Figure 11 Schematic illustration of the construction of hexagonal me-
soUiO-66–NH2 from an aqueous solution. Reprinted with permission
from reference [74]. Copyright 2018, Wiley-VCH.
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dicarboxylate, pzdc) and separated by various pillar li-
gands (L). They can be rationally designed and synthe-
sized by the judicious choice of their building blocks
[157,158]. PCPs have many significant characteristics
such as facile synthesis conditions (e.g., room tempera-
ture and ambient pressure) and flexible frameworks
[159,160].
Chen et al. [161] reported the successful preparation of

CPL-1 ([{[Cu2(pzdc)2(L)]·xH2O}n]) through the reaction
of Cu(ClO4)2·6H2O with Na2pzdc and pyrazine in aqu-
eous solutions. The SEM result indicates that the obtained
CPL comprised of a 2D sheet of [{Cu(pzdc)}n] and pillar
pyrazine linkers that bridge each sheet of thickness ~7.5 Å
(Fig. 13). Moreover, the thermogravimetric analysis
(TGA) result reveals that the as-synthesized CPL-1 pro-
duct has a good thermostability that can remain stable at
260°C. Importantly, CPL-1 is a flexible material that has a
unique guest-responsive nature [162]. Chen et al. [161]
systematically investigated the adsorption and separation
of olefin/paraffin mixtures (C3H6/C3H8) on flexible CPL-
1. The results indicated that the CPL-1 captured C3H6
rather than C3H8 owing to the gate-opening effect. Fur-
thermore, the gate-opening pressure of C3H6 adsorption
onto CPL-1 increased when the operating temperature
increased from 273 to 288 K.
In comparison with conventional solvothermal synth-

eses, mechanochemical methods have significant ad-
vantages for the large-scale production of MOFs such as
lower cost, more safety, easy operation, efficient reaction
rate, and high selectivity. Furthermore, they do not con-
sider the solubility of reactants [163,164]. Sakamoto et al.

[165] reported the preparation of CPL-1 by a mechan-
ochemical method in humid conditions without organic
solvents. Moreover, a series of other CPLs (CPL-2, 3, 4, 5,
and 15) can also be synthesized by a similar process using
different pillar ligands (Fig. 14), even if some pillar li-
gands are almost insoluble in water, thereby indicating
the universality of such mechanochemical methods.
During the mechanochemical process, the added water
plays a vital role because it serves as material transporters
and accelerates the diffusion of the species in inter- and
intraparticle fashion.

PCN series
PCNs are a vital branch of MOFs that have many out-
standing chemical and physical properties [82,166]. Al-
though a large number of PCNs have been fabricated
using various methods, to the best of our knowledge, no
reported PCNs have been synthesized in pure aqueous
systems. PCN syntheses involve the dissolution of most
insoluble ligands that require a large amount of organic

Figure 12 Twin-screw extrusion (TSE) setup used for the continuous mechanochemical fabrication of UiO-66–NH2 MOFs (extruded product was
collected in a 1000 mL beaker). Reprinted with permission from Ref. [154]. Copyright 2018, ACS Publications.

Figure 13 The SEM images of CPL-1 synthesized from aqueous solu-
tions. Reprinted with permission from Ref. [162]. Copyright 2017,
Elsevier.
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solvents such as DMF, N,N-diethylformamide (DEF), and
N,Nʹ-dimethylacetamide (DMA) to ensure the entire
dissolution of PCN precursors [167,168]. Over the past
decades, several investigations on PCNs have focused on
H2 storage [169], small molecules (e.g., CH4, CO2, CO,
N2, and O2) adsorption [170,171], and chemiresistive
sensors [172]. However, based on the environmental and
economic factors, the heavy use of organic solvents hin-
ders the industrial exploitation of PCNs [173]. Therefore,
the switch from organic solvents to aqueous solution is
significant to reducing environmental and economic
impacts for the future large-scale industrial production of
PCNs.
Usually, a kind of synthetic method was developed for a

certain type of MOFs [52,174]. However, some special
synthetic strategies have been developed to synthesize
different types of MOFs in aqueous solutions. For ex-
ample, Sánchez-Sánchez et al. [174] reported the water-
based synthesis of a number of MOFs at room tempera-
ture by employing organic salts as anionic building
blocks, including MOF-5, MOF-74, MIL-100(Fe) and
MIL-53–Al–X (X = H, NH2, NO2). Similarly, Avci-Camur
et al. [175] have described the water-based synthesis of
two types of MOFs (Zr–MOFs and MIL MOFs) using
metal acetylacetonate complexes as alternative source of
metals. Most recently, Jacobsen et al. [176] reported the
successful water-based syntheses of a series of Ce(IV)–

MOFs (UiO-66, CAU-41 and CAU-44) with three dif-
ferent topologies (fcu, body-centered cubic (bcu), and
body-centered tetragonal (bct)) within 30 min via mi-
crowave-assisted reactions using six chiral and achiral
alkane dicarboxylic C4-acids as ligands. In general, the
development of a versatile method to fabricate different
types of MOFs for future large-scale industrial production
is desirable but challenging. In addition to the familiar
MOFs that have already been synthesized using green
chemistry, other examples of MOFs synthesized in aqu-
eous solutions have also been reported, some of which are
summarized in Table 1.

CONCLUSIONS AND OUTLOOK
In general, avoiding the use of harmful solvents even in
only a part of the synthesis procedure is remarkable
progress at a practical synthesis level since the produc-
tion, recycling or treatment of solvents are associated
with a high cost and environmental pollution. In this
review, we have highlighted recent advancements in the
water-based synthesis strategies of MOFs and an em-
phasis on their green production. It is obvious that the
water-based synthesis route possesses distinct advantages
as a green method for the preparation of MOFs. They are
cheap and much simpler, versatile, environmentally
friendly, and with more easily post-treatable solvent,
readily to scale-up and reduce the generation of harmful

Figure 14 Schematic illustration of mechanochemical synthesis of a series of CPLs. Reprinted with permission from Ref. [165]. Copyright 2012, Royal
Society of Chemistry.
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by-products [51,144]. However, it must be noted that
some challenges and limitations still exist in the realiza-
tion of large-scale industrial production of MOFs. For
example, poor crystalline structure, decreased porosity,
and low yields should not be overlooked in the resulting
MOFs synthesized in aqueous solutions [193]. Further-
more, based on similarity-intermiscibility theory, many
organic ligands are hardly soluble in water [194]. In ad-
dition, MOF synthesis is largely conducted in solvother-
mal or hydrothermal conditions, which usually requires a
high temperature and pressure with long reaction time, as
indicated by the examples above [195,196]. These severe
reaction conditions are also known to consume a lot of
energy and reduce the production rate (in general STYs
are below 300 kg m−3 per day) [55,197,198]. In addition,
in terms of green applications, a crucial pre-requisite in
the real world is the ability to achieve the low-cost
synthesis of high-quality MOF materials in large quan-
tities with high efficiency [45,199,200]. Based on the
concept of “green synthesis of MOFs” proposed by Re-
insch et al. [70] and Julien et al. [75], five evaluative
criteria that illustrate how MOF industrial synthesis and
application is turning toward greener and sustainable
concepts are (1) using water or other non-toxicity or low-
toxicity solvents (e.g., ionic liquids) to replace toxic sol-
vents in the synthesis and activation/purification process;
(2) minimizing energy input and preferably the room
temperature and pressures; (3) improving product yields
and STYs, the maximization of incorporating raw mate-
rial or feedstock to the resultant product and the mini-
mum of the synthesis time; (4) avoiding the generation of
additional by-product or waste (except water) and
synthesis steps; (5) continuous manufacturing routes.
Although all examples given above satisfy point (1) and
few examples satisfy points (1) and (2), an effective
synthesis route that can satisfy all the requirements of
“green synthesis of MOFs” remains a current challenge.
The large-scale production of MOFs requires a low

manufacturing cost and addresses the related safety ha-
zards and environmental impacts. Thus, the application
of the principles of “green synthesis” in the preparation of
MOFs is central to their industrial productions and
commercial applications. In recent years, although great
achievements have been made in the water-based pre-
paration of MOF materials, an available method that
achieves the level of “green synthesis” has been hardly
reported. This means that the concept of “green synthesis
of MOFs” is still at its infancy since other synthesis
conditions such as room temperature and ambient pres-
sures, high product yields and STYs have not yet been

considered. Therefore, the exploration of advanced
synthesis routes to reach the level of “green synthesis” is
urgent for the future industrial production of MOFs. This
realization, by both industry and academia, will be one of
the most significant steps toward truly implementing
MOF commercialization.
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金属-有机骨架材料水相合成路线研究进展
段崇雄1, 余仪2, 肖静2, 张雪莲2, 李理波2, 阳鹏飞4, 吴军良3*,
奚红霞2*

摘要 金属-有机骨架材料具有优异的物理化学性质, 因而在气体
储存、吸附分离、药物传输、超级电容器、催化等领域具有广阔
的应用前景. 然而大多数金属-有机骨架材料的合成通常需要用到
大量的有机溶剂, 而这些有机溶剂的使用不仅会增加金属-有机骨
架材料的生产成本, 且极易对环境造成影响. 基于此, 理想的合成
路线是用水代替有害的有机溶剂, 以降低成本及减轻其对环境的
影响. 本文总结了近期金属-有机骨架材料水相合成路线的研究进
展, 重点概括了不同水相合成法制备金属-有机骨架材料的机理,
并分析了各种方法的优缺点. 此外, 还讨论了当前绿色且低成本工
业化生产金属-有机骨架材料存在的问题以及未来可能的发展方
向.
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