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Tunable multi-stage wettability and adhesion force on
polymer brushes triggered by temperature and pH
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Smart wettable surface is the base of constructing
microfluidic devices and protein chips for highly
functional integration under different extra-stimuli [1–
5]. The responsive wettability could endow the micro-
channels with the ability of controlling liquid behaviors
[6–8], and meanwhile the stable wettable region on the
surface would ensure a stable liquid flow in the
microchannels. In recent years, responsive wettable
surfaces under different stimuli including temperature
[9–11], pH [12–14], light [15–17], electric [18–20] and
magnetic field [21–23] are realized by atom transfer
radical polymerization (ATRP) [24], electrochemical
deposition [25], chemical/physical vapor deposition
[26,27], self-assembly [28], template method [29] and so
on. For these single-stimuli responsive wettable surfaces,
there are two stable wettable regions before and after
being triggered by the stimuli. In recent years, multi-
stimuli wettable materials have attracted more attention
due to their applications in controlled drug release [30],
protein adsorption [31], and catalysis [32]. These multi-
stimuli wettable surfaces are aiming to integrate more
functions on the smart devices, such as dual-responsive
(temperature and pH [33,34], temperature and light [35],
pH and light [31], voltage and pH [36]) and three-
responsive (temperature, glucose and pH) wettable
surfaces [30]. Single-stage wettability change, namely
two stable wettable regions (hydrophilic and hydro-
phobic), can be observed before and after stimulated in
these studies.
Hack et al. [37] reported a three-stage wettable surface

based on poly[2-(methacryloyloxy)ethyl] phosphate
(PMAEP) brushes containing phosphate groups triggered
by pH. This unique wetting property could be attributed

to the different chemical states derived from the
association-dissociation equilibrium of phosphate groups
in different pH [38]. Besides, we reported a temperature-
responsive three-stage wettable surface synthesized by
poly(N-isopropylmethacrylamide)-b-poly(N-isopropyl-
acrylamide) (PNIPMAM-b-PNIPAM) brushes [39]. The
surfaces exhibited three stable wettable regions corre-
sponding to the two lower critical solution temperature
(LCST) of PNIPAM (32°C) and PNIPMAM (44°C), at
which phase inversion occurred and resulted in the
transition from hydrophility to hydrophobicity. However,
these reports mainly focus on the multi-stage wettable
surfaces triggered by single stimulus. It is still challenging
to fabricate the multi-stage wettable surface triggered by
multi-stimuli for integrating more complex functions to
the smart wettable device in the application of cell capture
and release [40]. Herein, the polymer brushes composed
of PNIPMAM-b-(PNIPAM-co-PMAEP) were synthe-
sized on silicon substrate by ATRP, and their multi-stage
wettable property triggered by temperature and pH was
investigated. The surface adhesion force of the polymer
brushes was observed under different temperature and
pH by atom force microscopy (AFM).
As shown in Fig. 1a, PNIPMAM brushes were firstly

grafted onto the silicon substrate by ATRP, and then
the active bromine atoms at the end of PNIPMAM
chains were capped, which could be used to re-initiate
polymerization of another acrylamide monomers by
adding the fresh catalysis based on the principle of ATRP
[41,42]. Subsequently, NIPAM and MAEP monomers
were polymerized upon the end of PNIPMAM chains.
The polymerization process was investigated by Fourier
transform infrared spectroscopy (FTIR) (Fig. 1b). For the
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PNIPMAM brushes (black line), the absorption peak at
1,696 cm−1 is corresponding to the C=O stretching
vibration in amide group, and the peaks of 1,636 cm−1

and 1,549 cm−1 are ascribed to –NH2 bending vibration in
amide group, which indicates that PNIPMAM is
synthesized on the substrate successfully. The similar
absorption peaks can be also observed on the FTIR
spectra of PNIPMAM-b-(PNIPAM-co-PMAEP) brushes
(red line in Fig. 1b), NIPAM and NIPMAM monomer
(Fig. S1). Moreover, compared with the PNIPMAM
brushes, an absorption peak at 1,026 cm−1 of PNIPMAM-
b-(PNIPAM-co-PMAEP) brushes and MAEP monomer
(Fig. S1) is assigned to the P–O stretching vibrations,
which indicates that PMAEP is grafted on the substrate.
The thickness of PNIPMAM and PNIPMAM-b-(PNI-
PAM-co-PMAEP) brush films is about 7.4 and 15.6 nm,
respectively (Fig. 1c and d). These results illustrate that
NIPMAM, NIPAM and MAEP monomers have been
grafted on the substrate successfully.
The temperature-responsive wettable behavior of

PNIPMAM-b-(PNIPAM-co-PMAEP) brushes was inves-

tigated on a DataPhysics OCA20 system with a
temperature controller (Fig. 2). The contact angle (CA)
increased with the temperature; and two wettable
inflexions were found at about 32 and 44°C, which are
consistent with the two LCSTs of PNIPAM and
PNIPMAM, respectively. Consequently there were three
relatively stable wettable stages corresponding to three
temperature ranges (T<32°C, 32°C<T<44°C, T>44°C).
When the temperature was below the LCST ~32°C of
PNIPAM, the polymer brushes exhibited relatively stable
wetting region with CA about 62°. When the temperature
rised to the range between 32°C and the LCST ~44°C of
PNIPMAM, the surface became weakly hydrophobic with
the second relatively stable wettable region of about 75°.
When the temperature further increased to above 44°C,
the wettable region rise to about 85°, attributed to the
competition between inter- and intra-molecular hydro-
gen bonds below and above the LCSTs of PNIPAM and
PNIPMAM parts.
When the temperature is below 32°C, the inter-

molecular hydrogen bonds between PNIPMAM-b-(PNI-

Figure 1 (a) The preparation of the dual-responsive PNIPMAM-b-(PNIPAM-co-PMAEP) brushes by ATRP. (b) The FTIR spectra of PNIPMAM
brushes (black line) and PNIPMAM-b-(PNIPAM-co-PMAEP) brushes (red line). (c, d) The thickness of PNIPMAM brushes and PNIPMAM-b-
(PNIPAM-co-PMAEP) brushes measured by AFM.
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PAM-co-PMAEP) chains and water molecules contribute
predominantly to the surface hydrophilicity. The polymer
chains exhibit loose conformation (Fig. 3a). The
corresponding adhesion force test was performed on E-
Sweep Probe Station (Seiko instruments Inc, Japan) in
AFM mode. The typical adhesion force at 24°C was
around 114.2 pN (Fig. 3d1) and it was stable when the
temperature was below 32°C. When the temperature is
higher than the LCST of PNIPAM ~32°C, but lower than
that of PNIPMAM ~44°C, phase inversion of PNIPAM
chains will occur at 32°C, on which the inter-molecular
hydrogen bonds change to intra-molecular hydrogen
bonds. The hydrophilic amino and carbonyl groups are

hard to interact with water molecules, which leads to a
compact conformation (Fig. 3b). Meanwhile the lower
PNIPMAM part in PNIPMAM-b-(PNIPAM-co-PMAEP)
chains still exhibits loose conformation and no phase
changes due to its LCST of about 44°C. As reported
[39,43], the compact conformation of polymer brushes
might induce relatively small adhesion force compared
with the coiled polymer conformation. The adhesion
force decreased sharply at 32°C, and exhibited second
stable stage at the temperature range between 32 and
44°C (Fig. 3d). Typical adhesion force at 38°C was about
78.8 pN (Fig. 3d2). Further increasing temperature
(higher than 44°C) initiated phase inversion of the lower
PNIPMAM (Fig. 3c), which resulted in further shrinkage
of polymer chains. Consequently the whole PNIPMAM-
b-(PNIPAM-co-PMAEP) brushes transferred to more
compact conformation. Because the close-packed
PNIPMAM chains were located at the lower layer of
PNIPMAM-b-(PNIPAM-co-PMAEP) brushes, the phase
inversion confined in narrow space limited the further
shrinkage relative to the whole polymer chains. The
adhesion forces decreased sharply at 44°C, and then
presented the third stable stage. A typical adhesion force
was 44.8 pN at 50°C (Fig. 3d3). Therefore it can be seen
that the adhesion force was also presenting a three-stage
change following temperature rising from 24 to 56°C
(Fig. 3d). Moreover, the surface morphology of
PNIPMAM-b-(PNIPAM-co-PMAEP) brushes at 24, 38
and 50°C was homogeneous, but the surface roughness
decreased slightly with the increase of temperature, which

Figure 2 The wettability on PNIPMAM-b-(PNIPAM-co-PMAEP)
brushes following temperature rising from 24 to 56°C at pH ~7.0.

Figure 3 The possible conformation change corresponding to each temperature range (a): T<32°C, (b): 32°C<T<44°C, (c): T>44°C. (d) The adhesion
force of PNIPMAM-b-(PNIPAM-co-PMAEP) brushes following temperature rising from 24 to 56°C. (d1–d3) Typical adhesion force curve at three
temperature set-points of 24, 38 and 50°C, respectively. (e–g) The typical AFM images of PNIPMAM-b-(PNIPAM-co-PMAEP) at 24, 38 and 50°C,
respectively.
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was 4.2, 3.4 and 2.9 nm, respectively (Fig. 3e–g). It might
be attributed to the constriction of polymer brushes,
well consistent with those results of the temperature-
responsive wettability and adhesion force.
In addition, the inverse-designed polymer brushes

PNIPAM-b-(PNIPMAM-co-PMAEP) was also fabricated.
It only presented two stable wettable regions (below 32°C
and above 44°C) (Fig. S2a). CAs increased slowly between
32 and 44°C; but no three-stage wettability could be
found. The reason could be attributed to the limitation on
conformation transition of the lower layer of PNIPAM
chains in the dense package that could not bring the
change in surface wettability.
The pH-responsive wettable behavior of PNIPMAM-b-

(PNIPAM-co-PMAEP) brushes is shown in Fig. 4. The
surface CAs decreased with the increasing of pH; and two
wettable inflexions appeared at pH of around 3.0 and
12.0, which were corresponding to the two pKa (4.5 and
7.7) of phosphate groups on PNIPMAM-b-(PNIPAM-co-
PMAEP) chains, respectively. In theory, pKa1 ~4.5 of
phosphate group is corresponding to the pH of 2.0. It
shifts to 3.0 in this case, because the protonated free-
energy consumption of phosphate group is larger in
confined space between close-packaged polyelectrolyte
brushes than that in the bulk due to the electrostatic
repulsions between the negative charges [38]. Three
relatively stable wettable regions (about 68°, 63° and 56°)
were shown corresponding to three pH ranges (pH<3.0,
3.0<pH<12.0, pH>12.0) (Fig. 4). Here the pH set-points
used for CA investigation were chosen from 1 to 12.6, but
not extended to 14, because silicon substrate would be
corroded in strong alkaline condition. The CAs would
decrease sharply when pH was higher than 13.0 (Fig. S3a).
The prepared polymer surface at pH of 14.0 (Fig. S3c) was
much rougher than that of pH<13.0 (Fig. S3b).
This pH-responsive three-stage wettability change

might be induced by the dissociation of phosphate group
with the dependence of pH. The dissociation process is
exhibited in Fig. 5. When pH was below 3.0, the
phosphate groups were completely protonated and
presented as diacid (R–PO4H2) (Fig. 5a). The adhesion
force at pH ~1.0 was around 81.5 pN (Fig. 5d1). When
pH was higher than 3.0, but lower than 12.0, first
chemical equilibrium was broken, and the uncharged

Figure 4 The wettability on PNIPMAM-b-(PNIPAM-co-PMAEP)
brushes following pH change from 1.0 to 12.6.

Figure 5 The dissociation of phosphate groups on PNIPMAM-b-(PNIPAM-co-PMAEP) chains following different pH: (a) pH<3.0; (b) 3.0<pH<12.0;
(c) pH>12.0. (d) The relation between adhesion force and pH on PNIPMAM-b-(PNIPAM-co-PMAEP) brushes. (d1–d3) Typical adhesion force curve
at three pH setpoints of 1.0, 6.0 and 12.6, respectively. (e–g) Typical AFM images of PNIPMAM-b-(PNIPAM-co-PMAEP) at pH of 1.0, 6.0 and 12.6,
respectively.
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state changed to monovalent charged state (R–PO4H
−)

(Fig. 5b). The conformation of polymer chains spread due
to the electrostatic repulsion. The adhesion force of
polymer brushes at pH ~6.0 increased to 119.5 pN
(Fig. 5d2). The surface became hydrophilic simulaneously
due to the increased hydrophilic groups of monovalent
charged (R–PO4H

−). When pH was higher than 12.0, the
monovalent charged state of phosphate groups would
change to divalent charged state (R–PO4

2−) (Fig. 5c). The
electrostatic repulsion between polymer chains became
much stronger compared to the diacidic and monovalent
charged state, which resulted in more spread and loose
conformation. The water molecules could contact with
polymer brushes more easily. Consequently the adhesion
force further increased to 168.4 pN at pH ~12.6
(Fig. 5d3). Three-stage in the adhesion force-pH curve
(Fig. 5d) was well consistent with pH-responsive three-
stage wettability on PNIPMAM-b-(PNIPAM-co-PMAEP)
film. The AFM images in Fig. 5e–g exhibited the
topography of the polymer film at pH ~1.0, 6.0 and
12.6, respectively. The roughness increased slightly from
1.9 to 5.2 nm that corresponded to the spreading
conformation change of polymer chains at these three
pH range. In addition, the inverse-designed PNIPAM-b-
(PNIPMAM-co-PMAEP) brushes showed similar three-
stage wettability change with those on PNIPMAM-b-
(PNIPAM-co-PMAEP) brushes, which could be attrib-
uted to that pH-responsive PMAEP was on the upper
layer of the whole brushes (Fig. S2b).
Detailed wettability change on PNIPMAM-b-(PNI-

PAM-co-PMAEP) film was investigated under different
temperature and pH (Fig. 6). The prepared brushes was

treated by aqueous solution with a certain pH value (1.0,
2.0, 3.0, 4.0, 7.0, 9.0, 12.0, 12.2 and 12.4), and the CA was
measured with temperature increased from 24 to 56°C. It
can be seen that, at each pH, three-stage wettability
appeared following temperature increase. Meanwhile,
when temperature was fixed, three-stage wettability was
also presented following pH change. It means that stable
wettable regions can be regulated elaborately on the
prepared PNIPMAM-b-(PNIPAM-co-PMAEP) film fol-
lowing temperature and pH change.
In conclusion, PNIPMAM-b-(PNIPAM-co-PMAEP)

brushes were fabricated by ATRP. PNIPAM and
PNIPMAM in the polymer chains endow the surface
three-stage wettability following temperature; PMAEP in
the polymer chains contributes to the pH-responsive
three-stage wettability. The adhesion force on the
polymer film exhibits three-stage change. This work
offers a possible way to construct multi-functional
microfluidic devices under multi-triggers. Futher research
may focus on integrating diversified stimulators for
achieving multi-stage responsive surface.
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温度和pH触发的可调多级浸润和粘附力聚合物刷
张爽1†, 王健1†, 张雪巍1, 宋文龙1*, 王树涛2,3

摘要 智能响应性可以将丰富的功能集成到微流体器件中; 同时在刺激前后稳定的润湿区域赋予微流体器件稳定的功能表达. 因此在微
流体器件领域, 如何构建具有多重响应的多梯度润湿表面仍然是目前面临的一个巨大挑战. 本文应用原子转移自由基聚合方法在硅基底
上制备聚(N-异丙基甲基丙烯酰胺)-b-(N-异丙基丙烯酰胺)-co-2-(甲基丙烯酰氧基)乙基磷酸)聚合物刷. 通过对温度和pH值的控制, 在聚
合物表面实现了浸润性的多级梯度变化. 同时, 伴随着温度和pH值的变化, 聚合物刷表面的粘附力也表现为多级梯度变化. 这种多重响应
的多级梯度变化的聚合物刷将为多功能微流体和生物分析器件的构建提供一种新方法.
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