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Porous aromatic framework (PAF-1) as hyperstable
platform for enantioselective organocatalysis
Peng Chen1,3, Jin-Shi Sun1, Lei Zhang1, Wen-Yue Ma1, Fuxing Sun1 and Guangshan Zhu1,2*

ABSTRACT High density of phenyl rings makes PAF-1 have
robust structure and highly lipophilic pore, which make it very
suitable for organocatalysis. However, there is no report about
using PAF-1 as platform for enantioselective organocatalysis.
In this paper, using PAF-1 as the platform, a chiral prolina-
mide catalytic site was introduced onto the framework of
PAF-1 via a series of stepwise post-synthetic modifications,
obtaining a novel PAF-supported chiral catalyst named
PAF-1-NHPro. Then its enantioselective catalytic perfor-
mance was studied by subjecting it to catalyze the model Aldol
reaction between p-nitrobenzaldehyde and cyclohexanone.
PAF-1-NHPro showed good diastereoselectivity and
enantioselectivity with excellent and easy recyclability.

Keywords: porous aromatic frameworks, L-prolinamide, het-
erogeneous enantioselective organocatalysis, Aldol reaction

INTRODUCTION
Porous materials have been used for many practical
applications that exploit the porosity of their structures.
Among the applications, immobilization of homogeneous
catalysts, especially chiral catalysts, on cavity surfaces of
the solid porous materials is of great importance. In this
field, the latest developments involved enantioselective
catalysis based on metal-organic frameworks (MOFs) [1–
14], covalent organic frameworks (COFs) [15–24] and
porous organic polymers (POPs) [25–32]. Many
advantages of MOFs, COFs and POPs for heterogeneous
enantioselective catalysis have been elaborated by scien-
tists. However metal-organic coordinative bonds in
MOFs make the materials usually suffer from low stability
to thermal treatments, water, and most organic solvents,
which has restricted their further development in catalysis

field. On the other hand, in the case of COFs, because the
materials are all prepared by reversible reactions, the re-
sultantly formed covalent bonds (most of them are bor-
on-oxygen bonds or imine bonds) are also a hidden
trouble for the stability of COFs under certain conditions
and can interfere with some catalytic reactions, which
might limit their application in enantioselective catalysis.
Moreover, the POPs constru- cted only by stable covalent
bonds are very stable but usually do not have robust
structure and ordered pores. In recent years we have
developed a series of porous aromatic frameworks (PAFs)
featured by the high density of aromatic rings linked only
by strong covalent carbon-carbon single bonds. PAFs can
combine the advantages of MOFs, COFs and POPs and
can be used for diverse applications [33–36]. Further-
more, it was found that PAF materials are perfect plat-
forms for organocatalysis and organometallic catalysis by
our group in recent studies [37,38].

Among the reported PAF materials, the most well-
known and intensively studied one is PAF-1 [39] devel-
oped by our group, which is the seminal work of PAFs
and has many attractive and great prospects [34,40–42].
So far PAF-1 and functionalized PAF-1 have been widely
used for adsorption [43–56], separation [57,58], hetero-
geneous catalysis [59], detection [60] and other diverse
applications [61–64]. On the one hand, PAF-1 has high
level of porosity and extraordinary stability to thermal
treatments and almost all of the solvents. On the other
hand, the framework structure of PAF-1 is so robust that
the material can endure even very harsh reaction condi-
tions, which makes PAF-1 very easily functionalized
through established reactions. Although the above ad-
vantages have offered PAF-1 superior potentials as plat-
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forms for enantioselective organocatalysis, this research
field is still in its infant stage. To the best of our knowl-
edge, in the enantioselective organo- catalysis field, the
only related example is the use of defective PAF-1 as the
platform for chiral organocatalyst, which was synthesized
by one-pot copolymerization of the primitive tetrahedral
building blocks and the low-connected functional chiral
building blocks [32]. However, the introduction of the
low-connected monomer could seriously influence the
polymerization and generate a large number of defects,
and thus the obtained defective framework was obviously
different from that of PAF-1. In a word, PAF-1 has got
less attention than they should in the enantioselective
organocatalysis field given their vastly superior features.
Hence, in this work we would pioneer the use of func-
tionalized PAF-1 material in the enantioselective orga-
nocatalysis field.

As in the cases of the known solid catalysts, the basic
but important issue is how to combine the PAF-1 fra-
mework and the chiral catalytically active site. In our
design, the L-prolinamide was selected as the chiral cata-
lytically active site. As we all know, L-proline and its
derivatives are one type of the most famous organocata-
lysts, which can catalyze various enantioselective trans-
formations including the Aldol, Michael, and Mannich
reactions. Meanwhile, owing to the appropriate size as
well as the easy preparation, the proline-type organoca-
talysts are one of the best candidates to investigate if a
new solid material could be used as the platform for
enantioselective catalysis. On the other hand, the Aldol
reaction is an important reaction which is frequently-
used to investigate the catalytic activity of the catalyst
supported by porous materials such as MOFs, COFs and
POPs [1–9,23,24,32]. Thus in this paper we make an
attempt to introduce the chiral catalytically active
L-prolinamide unit into the PAF-1 material by stepwise
post-synthetic modifications and investigate the catalytic
performance of the obtained material for catalyzing the
Aldol reaction.

EXPERIMENTAL SECTION

General
All moisture or oxygen-sensitive reactions were carried
out under an argon atmosphere in oven or heat-dried
flasks. The anhydrous solvents used were purified by
distillation over the drying agents indicated in the square
brackets and were transferred under argon: N,N-di-
methylformamide (DMF) [K2CO3], tetrahydrofuran
(THF) [Na], chloroform [CaCl2]. All reactions were

monitored by thin-layer chromatography (TLC) on gel
F254 plates using UV light as visualizing agent (if applic-
able), and a solution of ammonium molybdate tetra-
hydrate (50 g L−1) in ethanol followed by heating as
developing agents. The products were purified by flash
column chromatography on silica gel (200–300 meshes)
from the Qingdao Marine Chemical Factory in China.

1H NMR spectra were recorded in CDCl3 solution on a
Varian 300 MHz instrument. Chemical shifts were
denoted in ppm (δ), and calibrated by using residual
undeuterated solvent (CHCl3 (7.26 ppm) or tetra-
methylsilane (0.00 ppm)) as internal reference for 1H
NMR. Fourier transform infrared (FT-IR) spectra were
recorded on a Bruker IFS 66v/S Fourier transform in-
frared spectrometer. The solid state 13C CP/MAS TOSS
(cross-polarization/magic-angle spinning total suppres-
sion of spinning sidebands) NMR spectrum was mea-
sured on Bruker Avance III WB 400 spectrometer with
magic angle spinning at 8 kHz frequency. Powder X-ray
diffraction (PXRD) was performed by a Rigaku D/
MAX2550 diffractometer using Cu-Kα radiation, 40 kV,
200 mA with a scanning rate of 1° min−1 (2θ). Thermo-
gravimetric analysis (TGA) was performed using a
Netzch Sta 449c thermal analyzer system at a heating rate
of 10°C min−1 from room temperature to 800°C in an air
atmosphere. The N2 adsorption–desorption isotherms
were measured on a Quantachrome Autosorb-iQ2 ana-
lyzer. Elemental analyses were carried out on a vario EL
cube elemental analyzer. Analytical HPLC was recorded
on a HPLC machine equipped with Agilent 1100 series
quaternary pump with a UV diode array detector. The
chiral stationary phase was Daicel Chiralcel AD-H col-
umn.

Synthesis of PAF-1
Tetrakis(4-bromophenyl)methane (509 mg, 0.8 mmol)
was added to a solution of 2,2’-bipyridyl (565 mg,
3.65 mmol), bis(1,5-cyclooctadiene)nickel(0) (1.0 g,
3.65 mmol), and 1,5-cyclooctadiene (0.45 mL,
3.65 mmol) in anhydrous DMF/THF (60 mL/90 mL), and
the mixture was stirred for 60 h at room temperature
under nitrogen atmosphere. Then concentrated hydro-
chloric acid (60 mL) was added slowly, and the resulting
mixture was stirred for 12 h. The precipitate was collected
by filtration, then washed with 2 mol L−1 hydrochloric
acid (1×100 mL), 1 mol L−1 hydrochloric acid (2×
100 mL), water (4×100 mL) and methanol (4×100 mL),
and dried in vacuum at 150°C for 12 h to produce PAF-1
(248 mg, 98% yield). Elemental analysis calcd. (%) for
C25H16: C 94.90, H 5.10; found: C 94.73, H 5.27.
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Synthesis of PAF-1-NO2

To a suspension of PAF-1 (240 mg) in Ac2O (120 mL) in
an ice bath, 4.8 mL fuming nitric acid was gradually ad-
ded. The resultant reaction mixture was then stirred at
room temperature for 4 days. Subsequently, the mixture
was poured into a large amount of water, and the solid
was filtrated, washed with water (5×100 mL) sub-
stantially, and then dried in vacuum at 120°C for 12 h to
give PAF-1-NO2 (293 mg). Elemental analysis (%) found:
C 73.41, H 3.99, N 6.35.

Synthesis of PAF-1-NH2

250 mg PAF-1-NO2 and 8.2 g SnCl2·2H2O were sus-
pended in 50 mL ethanol. The resultant mixture was
stirred at 70°C for 12 h. The solid was filtrated and sus-
pended in 50 mL concentrated hydrochloric acid. Then
the mixture was centrifuged and the obtained solid was
washed with water (3×100 mL) and ethanol (3×100 mL).
The product was dried in vacuum at 120°C for 12 h to
produce PAF-1-NH2 (211 mg). Elemental analysis (%)
found: C 85.23, H 5.69, N 7.38.

Synthesis of L-proline acid chloride hydrochloride (L-Pro-
Cl·HCl)
This compound was synthesized according to the mod-
ified literature step [65]. To a suspension of phosphorus
pentachloride (38.0 g, 182.5 mmol) in chloroform
(100 mL) was slowly added L-proline (20.0 g,
173.7 mmol) in small portions under argon, keeping the
reaction temperature below 10°C. The resultant reaction
mixture was stirred for 30 min below 10°C. Then the
solid was filtered under argon, washed with chloroform
(1×20 mL) and dried in vacuum at room temperature,
affording L-Pro-Cl·HCl (23.05 g, 135.6 mmol, 78% yield)
as a white solid.

Synthesis of PAF-1-NHPro
PAF-1-NH2 (150 mg) obtained above was added anhy-
drous THF (50 mL) and L-Pro-Cl·HCl (1.09 g). Then the
resulting mixture was stirred for one day at room tem-
perature. Then 50 mL saturated Na2CO3 aqueous solution
was added to the reaction mixture. The resulting mixture
was filtrated. The resultant solid was washed with H2O
(4×50 mL), THF (4×50 mL) and CH2Cl2 (4×50 mL), dried
in vacuum at 120°C for 12 h, yielding the desired PAF-1-
NHPro (175 mg). Elemental analysis (%) found: C 75.88,
H 6.26, N 8.83.

Typical procedure for Aldol reaction catalyzed by PAF-1-
NHPro
To a mixture of p-nitrobenzaldehyde (0.25 mmol), PAF-

1-NHPro (27 mg), glacial acetic acid (HOAc) (0.2 mmol)
and m-xylene (0.5 mL) was added cyclohexanone
(2.5 mmol) at −20°C. The resulting mixture was stirred at
−20°C for 7 days. Then the mixture was centrifuged and
the obtained solid was washed with THF (6×5 mL). The
combined organic solutions were evaporated to dryness.
The resultant residue was directly column chromato-
graphed over silica gel (200–300 mesh) to afford the
mixed Aldol product. The diastereomeric ratio (dr) was
determined by 1H-NMR analysis of the mixed Aldol
product. 1H NMR (300 MHz, CDCl3): δ = 8.23−8.14 (m,
2H for anti isomer and 2H for syn isomer), 7.53−7.44 (m,
2H for anti isomer and 2H for syn isomer), 5.47 (s, 1H for
syn isomer), 4.89 (d, J=8.4 Hz, 1H for anti isomer), 2.65
−2.27 (m, 3H for anti isomer and 3H for syn isomer), 2.16
−2.01 (m, 1H for anti isomer and 1H for syn isomer),
1.90−1.22 ppm (m, 5H for anti isomer and 5H for syn
isomer). The enantiomeric excess (ee) was determined by
HPLC analysis with a Daicel Chiralcel AD-H column
[hexane/2-propanol=90:10, flow rate 1 mL min−1, tR (anti
isomer)=22.6 min (minor), 30.5 min (major)]. The cata-
lyst was directly dried in vacuum at 40°C for 12 h for
reuse when required.

RESULTS AND DISCUSSION
Our strategy for introducing chiral catalytically active site
to the PAF-1 is via a series of stepwise post-synthetic
modifications. Inspired by the excellent work of Ma and
co-workers [59], in which PAF-1 was bifunctionalized as
a platform for cascade catalysis, we used a similar method
to graft the chiral L-prolinamide functional group onto
the framework of PAF-1. As shown in Scheme 1, PAF-1
was nitrated by HNO3 and then reduced by SnCl2 to af-
ford PAF-1-NH2, which further reacted with L-proline
acid chloride hydrochloride (L-Pro-Cl·HCl) to afford
PAF-1-NHPro.

First, FT-IR spectra of the materials, as shown in Fig. 1,
were used to verify the preparation of the chiral cataly-
tically active site tethered PAF by using the above strat-
egy. Compared with PAF-1, the FT-IR spectrum of
PAF-1-NO2 shows two strong peaks at 1,533 and
1,350 cm−1 which are the characteristic peaks of –NO2

group, indicating the introduction of nitro groups into
the PAF-1. After reduction process, in the FT-IR spec-
trum of PAF-1-NH2 the above two peaks of –NO2 group
disappeared and the characteristic double peaks of –NH2

(3,473 and 3,383 cm−1) appeared, together indicating the
construction of the designed amino-containing PAF
material PAF-1-NH2. In the FT-IR spectrum of PAF-1-
NHPro, the strong attenuation of the characteristic dou-
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ble peaks of –NH2 and the appearance of the character-
istic peaks of carbonyl group (the new peaks at around
1,600 cm−1) indicated that the L-prolinamide group was
introduced into the PAF material.

The chemical composition of PAF-1-NHPro was fur-
ther characterized by solid-state 13C CP/MAS TOSS NMR
spectroscopy (Fig. 2). The solid-state 13C NMR (Fig. 2) of
PAF-1-NHPro showed one broad peak around 170 ppm
which was the characteristic peak of the amide carbon.
The four peaks at 24, 29, 46, 60 ppm could be assigned to
the aliphatic carbons in the proline-type ring. The peak

corresponding to the aliphatic quaternary carbon linked
by four benzene rings was observed at 64 ppm and the
peaks corresponding to the aromatic carbons were ob-
served at 117−152 ppm in the spectrum. In a word, the
peaks in the 13C NMR spectrum agree well with the de-
signed immobilized catalyst, which confirms that the L-
prolinamide catalyst has been well embedded into the
PAF material.

The above analyses of the FT-IR spectra of the four
PAF materials and the solid-state 13C NMR spectrum of
PAF-1-NHPro together demonstrated that PAF-1-NHPro
with L-prolinamide catalytic unit was obtained as de-
signed. In addition, the PXRD patterns (Fig. S1) of
PAF-1, PAF-1-NO2, PAF-1-NH2 and PAF-1-NHPro in-
dicated that the four PAF materials all do not have long-
range ordered structures.

The nitrogen adsorption–desorption isotherms of
PAF-1, PAF-1-NO2, PAF-1-NH2 and PAF-1-NHPro (Fig.
3) all showed a rapid uptake at low relative pressure,

Scheme 1 Synthetic route to L-prolinamide tethered PAF (PAF-1-
NHPro).

Figure 1 FT-IR spectra of PAF-1, PAF-1-NO2, PAF-1-NH2 and PAF-1-
NHPro.

Figure 2 Solid state 13C CP/MAS TOSS NMR Spectrum of PAF-1-
NHPro. The assignments of the 13C NMR signals are indicated (top).

Figure 3 Nitrogen adsorption (solid symbols)–desorption (open sym-
bols) isotherms of PAF-1, PAF-1-NO2, PAF-1-NH2 and PAF-1-NHPro
measured at 77 K.

SCIENCE CHINA Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ARTICLES

February 2019 | Vol. 62 No.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018



which indicated the existence of micropores in these
materials. The Brunauer–Emmett–Teller (BET) surface
area was 4,358 m2 g−1 for PAF-1, 1,358 m2 g−1 for PAF-1-
NO2, 2,542 m2 g−1 for PAF-1-NH2 and 677 m2 g−1 for
PAF-1-NHPro. The BET surface area changes from
PAF-1 to PAF-1-NO2 to PAF-1-NH2 were in good
agreement with the intrinsic size properties of the cor-
responding functional groups. Noteworthily, there is a
sharp decrease of the BET surface area from 2,542 m2 g−1

for PAF-1-NH2 to 677 m2 g−1 for PAF-1-NHPro. This
sharp decrease further indicated that the chiral L-proli-
namide units were introduced into the pores of PAF-1-
NH2 and thus PAF-1-NHPro was synthesized as expected.

Thermal stability of the obtained PAF materials was
tested by TGA. As shown in Fig. 4, PAF-1, PAF-1-NO2

and PAF-1-NH2 all showed almost no weight loss below
350°C, suggesting their high thermal stability. The ob-
vious decomposition of the framework started at about
400°C for PAF-1 and PAF-1-NH2 and at about 350°C for
PAF-1-NO2. When the temperature reached 560°C for
PAF-1-NO2 and 620°C for PAF-1 and PAF-1-NH2 the
complete decomposition of the materials was in-
vestigated. Interestingly, after introducing the L-prolina-
mide units, repeated experiments ensured that PAF-1-
NHPro (black solid curve, Fig. 4) showed a 4% weight
loss before 100°C, which might be due to the gradual
disappearance of some guest molecules in the pores of the
PAF material. Unlike other three PAF materials, this
distinctive phenomenon of PAF-1-NHPro indicates that
the prolinamide unit has stronger interaction force (such
as intermolecular hydrogen bonding) with the guest
molecule which most likely is water. In addition, PAF-1-
NHPro showed a slow 30% weight loss between

230–480°C, which was attributed to the decomposition of
the L-prolinamide unit. Further obvious decomposition
of the PAF-1-NHPro framework started at 480°C and the
material completely decomposed when the temperature
reached 630°C. Although PAF-1-NHPro showed a lower
thermal stability which mainly resulted from the intrinsic
property of the catalytic unit, the decomposition tem-
perature (230°C) is high enough to meet the need of most
enantioselective organocatalysis. Furthermore, PAF-1-
NHPro could not be dissolved or decomposed in almost
all common solvents such as THF, CH2Cl2, CHCl3,
EtOAc, toluene, methanol (MeOH), ethanol (EtOH),
DMSO, dimethylformamide (DMF), xylene and water,
which makes it very suitable for heterogeneous organo-
catalysis.

To conclude, the above characterization of the obtained
materials clearly proved the successful preparation of
PAF-1-NHPro with chiral catalytically active site as
designed.

With the expected PAF-1-NHPro in hand, its catalytic
performance was evaluated, adopting Aldol reaction
between p-nitrobenzaldehyde and cyclohexanone as a
model reaction. Because the quantity of the immobilized
catalytic site was difficult to accurately calculate for PAF-
1-NHPro, the catalyst loading was selected by an easy
initial investigation and then remained unchanged in the
control experiments as indicated in Table 1. This is dif-
ferent from the research on the homogeneous catalysis.
First, we screened various solvents (neat, hexane, Et2O,
m-xylene) and m-xylene gave the best results in terms of
diastereoselectivity, enantioselectivity and yield of the
current catalytic reaction (entry 1–4, Table 1). So we used
m-xylene as the solvent to further investigate our hetero-
geneous catalysis. The elevation of reaction temperature
from −20°C to room temperature increased the reactivity
of the current reaction but seriously reduced the en-
antioselectivity and diastereoselectivity (entry 5, Table 1).
In addition, the material PAF-1-NH2 (entry 6, Table 1)
could not catalyze the current reaction under the opti-
mized conditions, indicating that the introduced chiral
prolinamide unit in PAF-1-NHPro is indeed the effective
catalytic site for the current reaction. The supernatant
liquid of the m-xylene suspension of PAF-1-NHPro had
no catalytic activity (entry 7, Table 1), which definitely
indicated no leakage of catalytically active species from
the PAF-1-NHPro catalyst during the catalysis process. It
is noteworthy that the operation after reaction is very
simple, in which only centrifugation is needed to remove
the solid catalyst and the obtained solution could be
further directly purified by evaporation and flash column

Figure 4 TGA plots of PAF-1, PAF-1-NO2, PAF-1-NH2 and PAF-1-
NHPro.
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chromatography to yield the desired product.
Under our optimized conditions, the recyclability that

is an important factor for a heterogeneous catalyst was
tested. As shown in Table 2, PAF-1-NHPro was subjected
to 10 cycles of the Aldol reaction between p-nitro-
benzaldehyde and cyclohexanone. In each cycle, the
reaction was driven to react for the same time. After each
cycle, the catalyst could be easily separated from the
reaction system by centrifugation followed by washing
with THF. The recovered catalyst was dried and could be
directly reused in the next cycle. It was demonstrated that
in the 10 cycles, there was no observable loss of the dr and
ee value of the catalytic reaction. The reaction yields had a
slightly decline in the 10 cycles, which is mainly due to
the material loss in the catalyst recovering process. To
further investigate the stability of PAF-1-NHPro in the
recycle test for the Aldol reaction, the recycled PAF-1-
NHPro after 10 cycles was characterized by FT-IR spec-
trum and nitrogen adsorption–desorption isotherms.
Besides some weak peaks that might be attributed to a
very small amount of adsorbed Aldol product or by-
product on the recycled catalyst, the FT-IR spectra
(Fig. S2) of the fresh PAF-1-NHPro and the recycled
catalyst after 10 cycles were almost the same. As shown in
the nitrogen adsorption–desorption isotherms (Fig. S3),
compared with the fresh PAF-1-NHPro, the recycled

catalyst after 10 cycles showed only a slight decrease of
the BET surface area (from 677 m2 g−1 for the fresh
PAF-1-NHPro to 644 m2 g−1 for the recycled PAF-1-
NHPro). The above results indicated that the functional
groups together with the framework and pores of PAF-1-
NHPro remained almost unchanged after 10 cycles of the
Aldol reaction. Notably, PAF-1-NHPro could be kept
under air at ambient temperature for 30 days and showed
no loss of activity. The above results clearly proved the
exceptional chemical stability and perfect recyclability of
the catalyst PAF-1-NHPro.

CONCLUSIONS
In summary, we have developed a route to a PAF-1 based
material (PAF-1-NHPro) with chiral catalytically active
site during stepwise post-synthetic modifications. PAF-1-
NHPro exhibited good diastereoselectivity and enantio-
selectivity for catalyzing the Aldol reaction between
cyclohexanone and p-nitrobenzaldehyde. More
importantly, PAF-1-NHPro demonstrated exceptional
chemical stability and perfect recyclability, that is, it could
undergo at least 10 cycles without any loss of diaster-
eoselectivity and enantioselectivity in the current catalysis
system. Our work demonstrated that the PAF materials
are promising candidates as a new solid platform for
efficient green enantioselective organocatalysis. In parti-

Table 1 The control experiments for PAF-1-NHPro catalyzed Aldol reactiona

Entry Catalyst Solvents T (oC) Time Yield (%)b dr (anti/syn)c ee (anti) (%)d

1 PAF-1-NHPro Neat −20 4 days 80 5.0:1 41

2 PAF-1-NHPro Hexane −20 7 days 41 9.6:1 68

3 PAF-1-NHPro Et2O −20 7 days 59 5.1:1 51

4 PAF-1-NHPro m-Xylene −20 7 days 70 10.3:1 71

5 PAF-1-NHPro m-Xylene RT 1.5 days 95 2.8:1 43

6 PAF-1-NH2 m-Xylene −20 7 days 0 / /

7e
The supernatant liquid of
the m-xylene suspension

of PAF-1-NHPro
/ −20 7 days 0 / /

a) Conditions: a mixture of p-nitrobenzaldehyde (0.25 mmol), catalyst (27 mg), HOAc (0.2 mmol) and cyclohexanone (2.5 mmol) in solvents
(0.5 mL) was stirred at the indicated temperature for the indicated time. b) The isolated yield of the mixture of the anti and syn isomers. c)
Determined by 1H NMR. d) Determined by chiral HPLC. e) 54 mg PAF-1-NHPro was immersed in 1 mL of m-xylene for 7 days at −20°C, after
centrifugation. The supernatant liquid (0.5 mL) was added to cyclohexanone (2.5 mmol), p-nitrobenzaldehyde (0.25 mmol) and HOAc (0.2 mmol),
and then the resulting mixture was stirred at −20°C for 7 days.
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cular, the perfect and easy recyclability of PAF-1-NHPro
has provided this new type of heterogeneous catalyst high
potentials for large-scale industrial production of chiral
chemical products in chemical industry and pharmaceu-
tical industry. Therefore, the presented work opens an
attractive door for PAFs as solid supported materials for
the chiral organocatalysts. Predictably, a variety of chiral
catalytic units can be incorporated into the pores of
various PAFs and the resulting chiral PAF supported
catalysts may catalyze diverse types of asymmetric
transformations. Further work along this line is in pro-
gress.
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以多孔芳香骨架材料PAF-1作为对映选择性有机催化的超稳定固载平台
陈鹏1,3, 孙金时1, 张蕾1, 马文悦1, 孙福兴1, 朱广山1,2*

摘要 PAF-1 是最著名的多孔芳香骨架材料(PAF), 它拥有许多优异的性质并且可被用于多个领域. 由高密度的苯环组成的PAF-1材料拥
有刚性结构和亲脂性孔道, 非常适合用作有机催化的平台. 但是迄今为止, 尚未有将其应用到对映选择性有机催化的报道. 本论文以PAF-1
为固载平台, 将手性脯氨酰胺催化位点通过一系列后修饰的方法固载到PAF-1的骨架上, 得到了新颖的手性固载催化剂PAF-1-NHPro.
PAF-1-NHPro在催化对硝基苯甲醛和环己酮的Aldol反应的过程中表现出了优良的非对映选择性和对映选择性以及良好的可回收利用
性. 本工作展现了PAF材料在非均相对映选择性有机催化领域的应用前景.
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