Skip to main content
Log in

Polyurethane networks based on disulfide bonds: from tunable multi-shape memory effects to simultaneous self-healing

基于二硫键的聚氨酯网络: 从可调多重形状记忆性能到同步修复

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

With the prompt development in intellectualization nowadays, the smart materials with multi-functionality or multi-responsiveness are highly expected. But it is a big challenge to integrate the different actuating units into a single system in a synergy pattern. Herein, we put forward a new strategy to develop the polyurethane networks which can present shape-memory effect and self-healing effect in independent way as well as simultaneous acting mode. To realize this goal, poly(tetremethylene ether) glycol was chosen as the soft segment to ensure the polymer chains a good mobility, and disulfide bond as the dynamic covalent bond was embedded in the backbone of polyurethane to endow it with desirable self-healing capacity under mild condition. Moreover, a rational control of the architecture of the networks by adjusting the content of disulfide bond and the degree of cross-linking, a broad glass transition temperature (Tg) was achieved, which enabled the network a versatile shape-memory effect, covering from dual-, triple- so far as to quadruple-shape memory effect. More importantly, the shape recovery and healing process can be realized simultaneously because of the highly matched actuating condition in this system.

摘要

随着智能化时代的迅速发展, 具有多功能或多响应的智能材料受到高度关注. 但如何将多个智能单元以协同模式结合到单一系统中仍是研究者面临的巨大挑战. 本文设计合成了一种新型聚氨酯动态交联网络, 该材料能够以独立的方式和协同作用模式呈现形状记忆效应和自修复效应. 为了实现这一目标, 本文选择了聚四氢呋喃作为软链段以确保聚合物链具有良好的运动性, 同时将动态共价键二硫键引入聚氨酯的主链中以实现材料在温和条件下的自修复. 此外, 通过有效调节二硫键含量、 交联度和网络结构, 获得了较宽的玻璃化转变温度(Tg), 使网络具有两重、 三重甚至四重形状的记忆效应. 在此基础上, 利用该材料的形状回复和修复的外界刺激条件的高度吻合, 同时实现了材料修复和回复, 拓宽了材料的应用范围.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lendlein A, Kelch S. Shape-memory polymers. Angew Chem Int Ed, 2002, 41: 2034–2057

    Article  CAS  Google Scholar 

  2. Behl M, Lendlein A. Shape-memory polymers. Mater Today, 2007, 10: 20–28

    Article  CAS  Google Scholar 

  3. Lendlein A, Langer R. Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science, 2002, 296: 1673–1676

    Article  Google Scholar 

  4. Huang WM, Song CL, Fu YQ, et al. Shaping tissue with shape memory materials. Adv Drug Deliver Rev, 2013, 65: 515–535

    Article  CAS  Google Scholar 

  5. Pilate F, Toncheva A, Dubois P, et al. Shape-memory polymers for multiple applications in the materials world. Eur Polymer J, 2016, 80: 268–294

    Article  CAS  Google Scholar 

  6. Sun L, Huang WM, Wang CC, et al. Polymeric shape memory materials and actuators. Liquid Crysts, 2013, 41: 277–289

    Article  CAS  Google Scholar 

  7. Behl M, Razzaq MY, Lendlein A. Multifunctional shape-memory polymers. Adv Mater, 2010, 22: 3388–3410

    Article  CAS  Google Scholar 

  8. Yang Y, Urban MW. Self-healing polymeric materials. Chem Soc Rev, 2013, 42: 7446–7467

    Article  CAS  Google Scholar 

  9. Wool RP. Self-healing materials: a review. Soft Matter, 2008, 4: 400

    Article  CAS  Google Scholar 

  10. Wu DY, Meure S, Solomon D. Self-healing polymeric materials: a review of recent developments. Prog Polymer Sci, 2008, 33: 479–522

    Article  CAS  Google Scholar 

  11. Mauldin TC, Kessler MR. Self-healing polymers and composites. Int Mater Rev, 2013, 55: 317–346

    Article  CAS  Google Scholar 

  12. Syrett JA, Becer CR, Haddleton DM. Self-healing and self-mendable polymers. Polym Chem, 2010, 1: 978–987

    Article  CAS  Google Scholar 

  13. Jia R, Li L, Ai Y, et al. Self-healable wire-shaped supercapacitors with two twisted NiCo2O4 coated polyvinyl alcohol hydrogel fibers. Sci China Mater, 2018, 61: 254–262

    Article  CAS  Google Scholar 

  14. Boyer C, Hoogenboom R. Multi-responsive polymers. Eur Polymer J, 2015, 69: 438–440

    Article  CAS  Google Scholar 

  15. Xie T. Recent advances in polymer shape memory. Polymer, 2011, 52: 4985–5000

    Article  CAS  Google Scholar 

  16. Zhan MQ, Yang KK, Wang YZ. Shape-memory poly(p-dioxanone)–poly(-caprolactone)/sepiolite nanocomposites with enhanced recovery stress. Chin Chem Lett, 2015, 26: 1221–1224

    Article  CAS  Google Scholar 

  17. Miaudet P, Derré A, Maugey M, et al. Shape and temperature memory of nanocomposites with broadened glass transition. Science, 2007, 318: 1294–1296

    Article  CAS  Google Scholar 

  18. Xie T. Tunable polymer multi-shape memory effect. Nature, 2010, 464: 267–270

    Article  CAS  Google Scholar 

  19. Luo Y, Guo Y, Gao X, et al. A general approach towards thermoplastic multishape-memory polymers via sequence structure design. Adv Mater, 2013, 25: 743–748

    Article  CAS  Google Scholar 

  20. Wen Z, Zhang T, Hui Y, et al. Elaborate fabrication of well-defined side-chain liquid crystalline polyurethane networks with triple-shape memory capacity. J Mater Chem A, 2015, 3: 13435–13444

    Article  CAS  Google Scholar 

  21. Cui J, del Campo A. Multivalent H-bonds for self-healing hydrogels. Chem Commun, 2012, 48: 9302–9304

    Article  CAS  Google Scholar 

  22. Wei M, Zhan M, Yu D, et al. Novel poly(tetramethylene ether) glycol and poly(ε-caprolactone) based dynamic network via quadruple hydrogen bonding with triple-shape effect and self-healing capacity. ACS Appl Mater Interfaces, 2015, 7: 2585–2596

    Article  CAS  Google Scholar 

  23. Zhu D, Ye Q, Lu X, et al. Self-healing polymers with PEG oligomer side chains based on multiple H-bonding and adhesion properties. Polym Chem, 2015, 6: 5086–5092

    Article  CAS  Google Scholar 

  24. Hui Y, Wen ZB, Pilate F, et al. A facile strategy to fabricate highlystretchable self-healing poly(vinyl alcohol) hybrid hydrogels based on metal–ligand interactions and hydrogen bonding. Polym Chem, 2016, 7: 7269–7277

    Article  CAS  Google Scholar 

  25. Burattini S, Colquhoun HM, Fox JD, et al. A self-repairing, supramolecular polymer system: healability as a consequence of donor–acceptor π–π stacking interactions. Chem Commun, 2009, 319: 6717–6719

    Article  CAS  Google Scholar 

  26. Zhong HY, Chen L, Ding XM, et al. Physio-and chemo-dual crosslinking toward thermoand photo-response of azobenzene-containing liquid crystalline polyester. Sci China Mater, 2018, 61: 1225–1236

    Article  CAS  Google Scholar 

  27. Kakuta T, Takashima Y, Nakahata M, et al. Preorganized hydrogel: self-healing properties of supramolecular hydrogels formed by polymerization of host-guest-monomers that contain cyclodextrins and hydrophobic guest groups. Adv Mater, 2013, 25: 2849–2853

    Article  CAS  Google Scholar 

  28. Zhang M, Xu D, Yan X, et al. Self-healing supramolecular gels formed by crown ether based host-guest interactions. Angew Chem Int Ed, 2012, 51: 7011–7015

    Article  CAS  Google Scholar 

  29. Chen X, Dam MA, Ono K, et al. A thermally re-mendable cross-linked polymeric material. Science, 2002, 295: 1698–1702

    Article  CAS  Google Scholar 

  30. Li QT, Jiang MJ, Wu G, et al. Photothermal conversion triggered precisely targeted healing of epoxy resin based on thermoreversible Diels–Alder network and amino-functionalized carbon nanotubes. ACS Appl Mater Interfaces, 2017, 9: 20797–20807

    Article  CAS  Google Scholar 

  31. Zhang J, Niu Y, Huang C, et al. Self-healable and recyclable triple-shape PPDO–PTMEG co-network constructed through thermoreversible Diels–Alder reaction. Polym Chem, 2012, 3: 1390–1393

    Article  CAS  Google Scholar 

  32. Canadell J, Goossens H, Klumperman B. Self-healing materials based on disulfide links. Macromolecules, 2011, 44: 2536–2541

    Article  CAS  Google Scholar 

  33. Lafont U, van Zeijl H, van der Zwaag S. Influence of cross-linkers on the cohesive and adhesive self-healing ability of polysulfide-based thermosets. ACS Appl Mater Interfaces, 2012, 4: 6280–6288

    Article  CAS  Google Scholar 

  34. Yang WJ, Tao X, Zhao T, et al. Antifouling and antibacterial hydrogel coatings with self-healing properties based on a dynamic disulfide exchange reaction. Polym Chem, 2015, 6: 7027–7035

    Article  CAS  Google Scholar 

  35. An SY, Noh SM, Nam JH, et al. Dual sulfide-disulfide cross-linked networks with rapid and room temperature self-healability. Macromol Rapid Commun, 2015, 36: 1255–1260

    Article  CAS  Google Scholar 

  36. Xu Y, Chen D. A novel self-healing polyurethane based on disulfide bonds. Macromol Chem Phys, 2016, 217: 1191–1196

    Article  CAS  Google Scholar 

  37. Kim SM, Jeon H, Shin SH, et al. Superior toughness and fast self-healing at room temperature engineered by transparent elastomers. Adv Mater, 2018, 30: 1705145–1705152

    Article  CAS  Google Scholar 

  38. Rekondo A, Martin R, Ruiz de Luzuriaga A, et al. Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis. Mater Horiz, 2014, 1: 237–240

    Article  CAS  Google Scholar 

  39. Deng G, Tang C, Li F, et al. Covalent cross-linked polymer gels with reversible sol−gel transition and self-healing properties. Macromolecules, 2010, 43: 1191–1194

    Article  CAS  Google Scholar 

  40. Liu F, Li F, Deng G, et al. Rheological images of dynamic covalent polymer networks and mechanisms behind mechanical and self-healing properties. Macromolecules, 2012, 45: 1636–1645

    Article  CAS  Google Scholar 

  41. Roberts MC, Hanson MC, Massey AP, et al. Dynamically restructuring hydrogel networks formed with reversible covalent cross-links. Adv Mater, 2007, 19: 2503–2507

    Article  CAS  Google Scholar 

  42. He L, Fullenkamp DE, Rivera JG, et al. pH responsive self-healing hydrogels formed by boronate–catechol complexation. Chem Commun, 2011, 47: 7497–7499

    Article  CAS  Google Scholar 

  43. Zhang Y, Yang B, Zhang X, et al. A magnetic self-healing hydrogel. Chem Commun, 2012, 48: 9305–9307

    Article  CAS  Google Scholar 

  44. Zhang Y, Tao L, Li S, et al. Synthesis of multiresponsive and dynamic chitosan-based hydrogels for controlled release of bioactive molecules. Biomacromolecules, 2011, 12: 2894–2901

    Article  CAS  Google Scholar 

  45. Rodriguez ED, Ounaies Z, Luo XF, Mather PT. Shape memory miscible blends for thermal mending. Proc of SPIE, 2009, 7289: 728912

    Article  CAS  Google Scholar 

  46. Luo X, Mather PT. Shape memory assisted self-healing coating. ACS Macro Lett, 2013, 2: 152–156

    Article  CAS  Google Scholar 

  47. Rodriguez ED, Luo X, Mather PT. Linear/network poly(ε-caprolactone) blends exhibiting shape memory assisted self-healing (SMASH). ACS Appl Mater Interfaces, 2011, 3: 152–161

    Article  CAS  Google Scholar 

  48. Du L, Xu ZY, Fan CJ, et al. A fascinating metallo-supramolecular polymer network with thermal/magnetic/light-responsive shape-memory effects anchored by Fe3O4 nanoparticles. Macromolecules, 2018, 51: 705–715

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (51773131 and 51721091), and the International S&T Cooperation Project of Sichuan Province (2017HH0034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-Ke Yang  (杨科珂).

Additional information

Xiao-Ying Deng received her bachelor degree in applied chemistry from Southwest University in 2015. Now she is a Master candidate in polymer chemistry and physics under the supervision of Professor Ke-Ke Yang at Sichuan University. Her research interests are related to the preparation and properties of shape-memory or self-healing polymers.

Ke-Ke Yang received her BSc degree in polymer materials (1994), MSc degree in chemical fiber (1997), and PhD degree in material science from Sichuan University in China. She joined Sichuan University in 1997, and now is a full professor in polymer chemistry and physics. Her research is focused on biodegradable polymers, polymer composites, shape-memory polymers and self-healing materials.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, XY., Xie, H., Du, L. et al. Polyurethane networks based on disulfide bonds: from tunable multi-shape memory effects to simultaneous self-healing. Sci. China Mater. 62, 437–447 (2019). https://doi.org/10.1007/s40843-018-9318-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-018-9318-7

Keywords

Navigation