Skip to main content
Log in

“Softness” as the structural origin of plasticity in disordered solids: a quantitative insight from machine learning

以“软度”衡量非晶态固体塑性的结构起源: 一种基于机器学习的定量理解

  • Perspectives
  • Published:
Science China Materials Aims and scope Submit manuscript

摘要

非晶态固体没有长程的平移对称性, 因而缺少像晶体中那样具有明确定义的缺陷及其运动来解释塑性的产生. 长期以来, 人们推测非晶态固体的塑性可能起源于物理意义上的局部软区. 与此相比, 在Cubuk等人最近发表在《科学》杂志上的论文中, 作者基于机器学习技术定义了一个微观结构量“软度”, 并提出可以通过“软度”来衡量多种不同非晶态固体(分子玻璃、 胶体玻璃、 金属玻璃等)的塑性的结构起源. 尽管基于机器学习而得到的“软度”的物理意义仍值得进一步研究, 但是由此得到的“软度”区域确实显示出与局部重排区域非常好的相关性. 这个发现为探究多种非晶态固体塑性的结构起源提供了一个定量的理解.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Schuh C, Hufnagel T, Ramamurty U. Mechanical behavior of amorphous alloys. Acta Mater, 2007, 55: 4067–4109

    Article  Google Scholar 

  2. Telford M. The case for bulk metallic glass. Mater Today, 2004, 7: 36–43

    Article  Google Scholar 

  3. Spaepen F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall, 1977, 25: 407–415

    Article  Google Scholar 

  4. Argon AS. Plastic deformation in metallic glasses. Acta Metall, 1979, 27: 47–58

    Article  Google Scholar 

  5. Falk ML, Langer JS. Dynamics of viscoplastic deformation in amorphous solids. Phys Rev E, 1998, 57: 7192–7205

    Article  Google Scholar 

  6. Lu Z, Jiao W, Wang WH, et al. Flow unit perspective on room temperature homogeneous plastic deformation in metallic glasses. Phys Rev Lett, 2014, 113: 045501

    Article  Google Scholar 

  7. Cubuk ED, Ivancic RJS, Schoenholz SS, et al. Structure-property relationships from universal signatures of plasticity in disordered solids. Science, 2017, 358: 1033–1037

    Article  Google Scholar 

  8. Suykens JAK, Vandewalle J. Least squares support vector machine classifiers. Neural Proc Lett, 1999, 9: 293–300

    Article  Google Scholar 

  9. Cohen MH, Turnbull D. Molecular transport in liquids and glasses. J Chem Phys, 1959, 31: 1164–1169

    Article  Google Scholar 

  10. Argon AS, Kuo HY. Plastic flow in a disordered bubble raft (an analog of a metallic glass). Mater Sci Eng, 1979, 39: 101–109

    Article  Google Scholar 

  11. Langer J. Shear-transformation-zone theory of deformation in metallic glasses. Scripta Mater, 2006, 54: 375–379

    Article  Google Scholar 

  12. Xia X, Wolynes PG. Fragilities of liquids predicted from the random first order transition theory of glasses. Proc Natl Acad Sci USA, 2000, 97: 2990–2994

    Article  Google Scholar 

  13. Ye JC, Lu J, Liu CT, et al. Atomistic free-volume zones and inelastic deformation of metallic glasses. Nat Mater, 2010, 9: 619–623

    Article  Google Scholar 

  14. Liu ZY, Yang Y. A mean-field model for anelastic deformation in metallic-glasses. Intermetallics, 2012, 26: 86–90

    Article  Google Scholar 

  15. Ding J, Patinet S, Falk ML, et al. Soft spots and their structural signature in a metallic glass. Proc Natl Acad Sci USA, 2014, 111: 14052–14056

    Article  Google Scholar 

  16. Wang Z, Sun BA, Bai HY, et al. Evolution of hidden localized flow during glass-to-liquid transition in metallic glass. Nat Commun, 2014, 5: 5823

    Article  Google Scholar 

  17. Liu YH, Wang D, Nakajima K, et al. Characterization of nanoscale mechanical heterogeneity in a metallic glass by dynamic force microscopy. Phys Rev Lett, 2011, 106: 125504

    Article  Google Scholar 

  18. Hu YC, Guan PF, Li MZ, et al. Unveiling atomic-scale features of inherent heterogeneity in metallic glass by molecular dynamics simulations. Phys Rev B, 2016, 93: 214202

    Article  Google Scholar 

  19. Huo LS, Zeng JF, Wang WH, et al. The dependence of shear modulus on dynamic relaxation and evolution of local structural heterogeneity in a metallic glass. Acta Mater, 2013, 61: 4329–4338

    Article  Google Scholar 

  20. Fan C, Liaw PK, Haas V, et al. Structures and mechanical behaviors of Zr55Cu35Al10 bulk amorphous alloys at ambient and cryogenic temperatures. Phys Rev B, 2006, 74: 014205

    Article  Google Scholar 

  21. Frenkel J. Zur Theorie der Elastizitätsgrenze und der Festigkeit kristallinischer Körper. Zeitschrift für Physik, 1926, 37: 572–609

    Article  Google Scholar 

  22. Johnson WL, Samwer K. A universal criterion for plastic yielding of metallic glasses with a (T/Tg)2/3 temperature dependence. Phys Rev Lett, 2005, 95: 195501

    Article  Google Scholar 

  23. Qu RT, Liu ZQ, Wang RF, et al. Yield strength and yield strain of metallic glasses and their correlations with glass transition temperature. J Alloys Compd, 2015, 637: 44–54

    Article  Google Scholar 

  24. Egami T, Poon SJ, Zhang Z, et al. Glass transition in metallic glasses: A microscopic model of topological fluctuations in the bonding network. Phys Rev B, 2007, 76: 024203

    Article  Google Scholar 

  25. Egami T. Atomic level stresses. Prog Mater Sci, 2011, 56: 637–653

    Article  Google Scholar 

  26. Guan P, Chen M, Egami T. Stress-temperature scaling for steadystate flow in metallic glasses. Phys Rev Lett, 2010, 104: 205701

    Article  Google Scholar 

  27. Wagner H, Bedorf D, Küchemann S, et al. Local elastic properties of a metallic glass. Nat Mater, 2011, 10: 439–442

    Article  Google Scholar 

  28. Li FC, Wang S, He QF, et al. The stochastic transition from size dependent to size independent yield strength in metallic glasses. J Mech Phys Solids, 2017, 109: 200–216

    Article  Google Scholar 

  29. Wang S, Ye YF, Wang Q, et al. The breakdown of strength size scaling in spherical nanoindentation and microcompression of metallic glasses. Scripta Mater, 2017, 130: 283–287

    Article  Google Scholar 

  30. Wang CC, Ding J, Cheng YQ, et al. Sample size matters for Al88Fe7Gd5 metallic glass: Smaller is stronger. Acta Mater, 2012, 60: 5370–5379

    Article  Google Scholar 

  31. Schuster BE, Wei Q, Ervin MH, et al. Bulk and microscale compressive properties of a Pd-based metallic glass. Scripta Mater, 2007, 57: 517–520

    Article  Google Scholar 

  32. Liontas R, Jafary-Zadeh M, Zeng Q, et al. Substantial tensile ductility in sputtered Zr-Ni-Al nano-sized metallic glass. Acta Mater, 2016, 118: 270–285

    Article  Google Scholar 

  33. Jang D, Gross CT, Greer JR. Effects of size on the strength and deformation mechanism in Zr-based metallic glasses. Int J Plasticity, 2011, 27: 858–867

    Article  Google Scholar 

  34. Bharathula A, Flores KM. Variability in the yield strength of a metallic glass at micron and submicron length scales. Acta Mater, 2011, 59: 7199–7205

    Article  Google Scholar 

  35. Bian XL, Wang G, Chen HC, et al. Manipulation of free volumes in a metallic glass through Xe-ion irradiation. Acta Mater, 2016, 106: 66–77

    Article  Google Scholar 

  36. Baumer RE, Demkowicz MJ. Radiation response of amorphous metal alloys: Subcascades, thermal spikes and super-quenched zones. Acta Mater, 2015, 83: 419–430

    Article  Google Scholar 

  37. Magagnosc DJ, Ehrbar R, Kumar G, et al. Tunable tensile ductility in metallic glasses. Sci Rep, 2013, 3: 1096

    Article  Google Scholar 

  38. Magagnosc DJ, Kumar G, Schroers J, et al. Effect of ion irradiation on tensile ductility, strength and fictive temperature in metallic glass nanowires. Acta Mater, 2014, 74: 165–182

    Article  Google Scholar 

  39. Yu HB, Luo Y, Samwer K. Ultrastable metallic glass. Adv Mater, 2013, 25: 5904–5908

    Article  Google Scholar 

  40. Magagnosc DJ, Feng G, Yu L, et al. Isochemical control over structural state and mechanical properties in Pd-based metallic glass by sputter deposition at elevated temperatures. APL Mater, 2016, 4: 086104

    Article  Google Scholar 

  41. Chen LY, Fu ZD, Zhang GQ, et al. New class of plastic bulk metallic glass. Phys Rev Lett, 2008, 100: 075501

    Article  Google Scholar 

  42. Kim KB, Das J, Venkataraman S, et al. Work hardening ability of ductile Ti45Cu40Ni7.5Zr5Sn2.5 and Cu47.5Zr47.5Al5 bulk metallic glasses. Appl Phys Lett, 2006, 89: 071908

    Article  Google Scholar 

  43. Greer JR, Oliver WC, Nix WD. Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater, 2005, 53: 1821–1830

    Article  Google Scholar 

  44. Gao Y, Bei H. Strength statistics of single crystals and metallic glasses under small stressed volumes. Prog Mater Sci, 2016, 82: 118–150

    Article  Google Scholar 

  45. Greer JR, De Hosson JTM. Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog Mater Sci, 2011, 56: 654–724

    Article  Google Scholar 

  46. Jang D, Greer JR. Transition from a strong-yet-brittle to a stronger- and-ductile state by size reduction of metallic glasses. Nat Mater, 2010, 9: 215–219

    Article  Google Scholar 

  47. Bharathula A, Lee SW, Wright WJ, et al. Compression testing of metallic glass at small length scales: Effects on deformation mode and stability. Acta Mater, 2010, 58: 5789–5796

    Article  Google Scholar 

  48. Chen CQ, Pei YT, De Hosson JTM. Effects of size on the mechanical response of metallic glasses investigated through in situ TEM bending and compression experiments. Acta Mater, 2010, 58: 189–200

    Article  Google Scholar 

  49. Kuzmin OV, Pei YT, Chen CQ, et al. Intrinsic and extrinsic size effects in the deformation of metallic glass nanopillars. Acta Mater, 2012, 60: 889–898

    Article  Google Scholar 

  50. Ye JC, Lu J, Yang Y, et al. Extraction of bulk metallic-glass yield strengths using tapered micropillars in micro-compression experiments. Intermetallics, 2010, 18: 385–393

    Article  Google Scholar 

  51. Wang WH. The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog Mater Sci, 2012, 57: 487–656

    Article  Google Scholar 

  52. Dubach A, Raghavan R, Loffler J, et al. Micropillar compression studies on a bulk metallic glass in different structural states. Scripta Mater, 2009, 60: 567–570

    Article  Google Scholar 

  53. Lai YH, Lee CJ, Cheng YT, et al. Bulk and microscale compressive behavior of a Zr-based metallic glass. Scripta Mater, 2008, 58: 890–893

    Article  Google Scholar 

  54. Lee CJ, Huang JC, Nieh TG. Sample size effect and microcompression of Mg65Cu25Gd10 metallic glass. Appl Phys Lett, 2007, 91: 161913

    Article  Google Scholar 

  55. Schuster BE, Wei Q, Hufnagel TC, et al. Size-independent strength and deformation mode in compression of a Pd-based metallic glass. Acta Mater, 2008, 56: 5091–5100

    Article  Google Scholar 

  56. Volkert CA, Donohue A, Spaepen F. Effect of sample size on deformation in amorphous metals. J Appl Phys, 2008, 103: 083539

    Article  Google Scholar 

  57. Zhou X, Zhou H, Li X, et al. Size effects on tensile and compressive strengths in metallic glass nanowires. J Mech Phys Solids, 2015, 84: 130–144

    Article  Google Scholar 

  58. Şopu D, Foroughi A, Stoica M, et al. Brittle-to-ductile transition in metallic glass nanowires. Nano Lett, 2016, 16: 4467–4471

    Article  Google Scholar 

  59. Delogu F. Molecular dynamics study of size effects in the compression of metallic glass nanowires. Phys Rev B, 2009, 79: 184109

    Article  Google Scholar 

  60. Zhao P, Li J, Wang Y. Extended defects, ideal strength and actual strengths of finite-sized metallic glasses. Acta Mater, 2014, 73: 149–166

    Article  Google Scholar 

  61. Chen DZ, Jang D, Guan KM, et al. Nanometallic glasses: size reduction brings ductility, surface state drives its extent. Nano Lett, 2013, 13: 4462–4468

    Article  Google Scholar 

  62. Uchic MD, Dimiduk DM, Florando JN, et al. Sample dimensions influence strength and crystal plasticity. Science, 2004, 305: 986–989

    Article  Google Scholar 

  63. Dimiduk DM, Uchic MD, Parthasarathy TA. Size-affected singleslip behavior of pure nickel microcrystals. Acta Mater, 2005, 53: 4065–4077

    Article  Google Scholar 

  64. Volkert CA, Lilleodden ET. Size effects in the deformation of submicron Au columns. Philos Mag, 2006, 86: 5567–5579

    Article  Google Scholar 

  65. Brinckmann S, Kim JY, Greer JR. Fundamental differences in mechanical behavior between two types of crystals at the nanoscale. Phys Rev Lett, 2008, 100: 155502

    Article  Google Scholar 

  66. Ng KS, Ngan AHW. Stochastic theory for jerky deformation in small crystal volumes with pre-existing dislocations. Philos Mag, 2008, 88: 677–688

    Article  Google Scholar 

  67. Jennings AT, Burek MJ, Greer JR. Microstructure versus size: mechanical properties of electroplated single crystalline Cu nanopillars. Phys Rev Lett, 2010, 104: 135503

    Article  Google Scholar 

  68. Han SM, Bozorg-Grayeli T, Groves JR, et al. Size effects on strength and plasticity of vanadium nanopillars. Scripta Mater, 2010, 63: 1153–1156

    Article  Google Scholar 

  69. Kiener D, Minor AM. Source truncation and exhaustion: insights from quantitative in situ TEM tensile testing. Nano Lett, 2011, 11: 3816–3820

    Article  Google Scholar 

Download references

Acknowledgements

Yang Y acknowledges the research funding from Research Grant Council (RGC) of Hong Kong with the grant number CityU 11207215 and CityU11209317.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Yang  (杨勇).

Additional information

Xiaodi Liu obtained his bachelor and master degree from Shandong University, Jinan, China, in 2012 and 2015 respectively. He is currently a PhD student under the supervision of Prof. Yong Yang at the Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China. His research focuses on the creep and relaxation behavior of metallic glasses.

Fucheng Li is currently a PhD candidate at the Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China. He received his bachelor degree and master degree from Central South University, Changsha, China in 2013 and 2016, respectively. His PhD research focuses on the mechanical behavior of both bulk nano-grained metallic glass and metallic-glass based nanostructures.

Yong Yang obtained his bachelor degree in 2001 from Peking University, Beijing, China, and PhD in 2007 from Princeton University, NJ, USA. He is currently a Professor at Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China. His research focuses on mechanical behavior of structural materials and the high throughput design of alloys, such as metallic glasses and high entropy alloys.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Li, F. & Yang, Y. “Softness” as the structural origin of plasticity in disordered solids: a quantitative insight from machine learning. Sci. China Mater. 62, 154–160 (2019). https://doi.org/10.1007/s40843-018-9316-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-018-9316-2

Navigation