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Isomerization and rearrangement of boriranes: from
chemical rarities to functional materials
Soren K. Mellerup1 and Suning Wang1,2*

ABSTRACT Stimuli responsive materials have recently been
the subject of tremendous research efforts owing to their
numerous potential applications. Although there currently
exist many different types of “smart” materials, those based on
photoresponsive transformations are especially attractive. In
this review, we focus on a relatively new class of photochromic
molecules based on the photochemistry of chelate organobo-
rates, which form intensely colored, base-stabilized boriranes.
Recent efforts to exploit the reactivity of these systems are
summarized, and future prospects in materials science dis-
cussed.
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INTRODUCTION
Molecular systems whose physical or chemical properties
can be controlled by external stimuli represent an emer-
ging class of functional materials with wide-spread ap-
plications in a number of topical fields [1–5]. Of the many
so-called “smart” materials that respond to a variety of
triggers, including electric field [6], pressure [7,8], tem-
perature [9–12], pH [13,14], etc., photoresponsive sys-
tems offer several unique opportunities due to their quick
response and remote delivery of the external stimuli
[15,16]. These types of systems are often based on pho-
tochromism, which is defined as the reversible transfor-
mation of a chemical species between two distinct states
with different optoelectronic properties (Fig. 1), wherein
at least one of the transformations is governed by light. In
general, the mechanism of photochromic systems usually
relies on either: 1) cis-trans isomerization of C=C or N=N
π-bonds [17,18], or 2) the making and breaking of che-
mical bonds [19]. While the simplicity of the former does
lend itself to certain applications [20], we will focus on
the latter due to its relevance in the photochemical for-
mation of azaboratabisnorcaradienes (hereafter referred

to as “dark isomers”, see ppyBMes2-DI in Fig. 1). Many of
the well-known photochromic systems that rely on this
strategy tend to follow electrocyclic ring closing/opening
reactions, with spiropyrans [21], fulgides [22], and dia-
rylethenes [23] being some of the more prominent. Di-
thienylethenes (DTEs) in particular are used in
applications such as self-tinting ophthalmic lenses and
memory devices [24].

Our interest in photochromic materials began with the
serendipitous discovery that four-coordinated N,C-che-
late organoboron compounds (ppyBMes2; ppy = 2-phe-
nylpyridine, see Fig. 1) undergo thermally reversible C–C
bond formation/rearrangement around the boron core to
afford a base-stabilized borirane [25].
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Figure 1 (a) General schematic showing the photochromic switching of
A→B; (b) photoresponsive boron system ppyBMes2 and its “dark” iso-
mer (DI).
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These “dark” isomers are intensely colored and often
absorb strongly in the visible region of the spectrum.
Furthermore, appropriate substitution can lead to addi-
tional photo- and/or thermal reactivities of the boron
chromophore, yielding a variety of new isomers with
interesting photophysical properties. This mini-review
will provide a brief introduction to base-stabilized bor-
iranes, with particular emphasis on what makes them
special among photochromic systems, as well as describe
recent attempts to demonstrate their potential as a new
class of “smart” materials.

BORIRANES
Analogous to cyclopropanes, boriranes are molecules
bearing a three-membered ring containing one boron and
two carbon atoms (Fig. 2). In addition to having sig-
nificant ring strain, they are also π-acidic due to the in-
corporation of an electron deficient B atom, which makes
them highly reactive in comparison to other analogues of
cyclopropanes (e.g., aziridines, epoxides, silacyclopro-
panes, etc.) [26–28]. In fact, free boriranes remain ex-
tremely rare [29,30]. One method of stabilizing such
systems is the use of Lewis bases (LBs) which can co-
ordinate to Lewis acidic boron, thereby suppressing some
of its reactivity. This strategy has been effectively utilized
by researchers [31–35] in the isolation and characteriza-
tion of several different base-stabilized boriranes. Aside
from stabilization, the bonding arrangement in these
systems also gives rise to their intense colors as shown in
Fig. 2.

From time-dependent density fountional theory calcu-
lations, the all carbon analogues display the highest oc-
cupied molecular orbital (HOMO) (π-cyclohexadiene +
σ-C–C bonds) to the lowest unoccupied molecular orbital
(LUMO) (π*-cyclohexadiene) as the main transition for
S1 at 283 nm. While the N–B isostere does have a similar
HOMO orbital composition, its LUMO consists of the σ*
orbital of the N atom, meaning that the S1 transition
(328 nm) is of primarily charge-transfer (CT) character
and bathochormically shifted by ~35 nm due to HOMO
destabilization of ~1 eV. In the dark isomer of ppyBMes2,
the S1 transition is an intense CT from the azabor-
atabicycloheptadiene core to the ppy backbone (π→π*). It
is these unique electronic features, combined with the
reversible nature of their phototransformations, that give
ppyBMes2 and derivatives their potential as photochromic
materials.

FOUR-STATE COLOR SWITCHING
Despite the fact that photochromic switching at a boron
core remains rare [36–39], there do exist several examples
of photochromic systems which incorporate organoboron
subunits to act as modulators of various chemical prop-
erties [40–42]. In particular, –BMes2 substitution has
proven to be an effective strategy for controlling the color
and state-switching of DTEs via the introduction/removal
of fluoride ions (F−), which bind strongly to three-co-
ordinated boron atoms and disrupt the π-conjugation of
the molecule [43–45]. This approach has also been suc-
cessfully implemented in the development of diboron-

Figure 2 Free vs. base-stabilized boriranes (a) and calculated TD-DFT data of B–N isosterism in simple bicyclo[4.1.0]heptadienes (b; B3LYP/6-31G*).
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based photoswitches [46] capable of changing between
four different states (Fig. 3). The –BMes2 unit was at-
tached at both proximal (B2, B2O, B2S) and distal (B2N)
locations on the π-conjugated ligand to probe the impact
of acceptor position on the color switching of the pho-
tochromic boron compounds. Placing the –BMes2 further
away from the π-conjugated backbone resulted in no
obvious photophysical change upon the addition of F− to
B2N (λfl. = 495 vs. 480 nm) or B2N-dark (λabs = 614 vs.
604 nm) due to its minimal participation in the π-con-

jugation of the molecules backbone. Conversely, F− dra-
matically affects both the emission and visible color of B2,
B2O, B2S, and their dark isomers (Fig. 3), as the empty pz

orbital of boron participates directly in the conjugated
backbone. This is understood as a consequence of de-
stabilizing their LUMO levels upon F-adduct formation,
which hypsochromically shifts the λmax of B2O vs. B2O-F
and B2O-dark vs. B2O-dark-F by ~ 56 and 156 nm re-
spectively, giving each state a unique color. Both the
neutral and F-bound molecules undergo thermally re-

Figure 3 Top: four-state color switching and structures of selected diboron compounds. Bottom: UV/vis spectra and colors of the various isomers of
B2O.
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versible switching with UV light irradiation with com-
parable efficiencies. Furthermore, the stability of the dark
isomers towards water allows four-state switching to be
achieved as shown in Fig. 3, where the fluoride ions can
be readily extracted with a simple aqueous workup. The
forward and reverse transformations of the diboron
molecules and their F-adducts persist even when doped
into a polystyrene matrix, suggesting that four-state
switching of these photochromic systems is possible in
the solid state with the appropriate choice of a water
permeable polymer.

PHOTOCHROMIC ORGANOBORON
COPOLYMERS
In general, polymeric materials are preferred over small
molecules in practical applications due to their flexible,
lightweight nature which makes them easier to process,
compared to small molecules. Although polymers in-
corporating either traditional photochromic systems (e.g.,
spiropyrans and DTEs; [47,48]) or organoboron func-
tionalities [49–53] have been widely explored, photo-
chromic polymers with a switchable boron core remained
unknown until recently [54]. These polymers (Fig. 4)
were designed to minimize π-conjugation of the ppy
backbone in order to maintain the high photoisomeria-

tion quantum yield (ΦPI) of the boron chromophore.
Random co-polymers with varying –ppyBMes2 (100 →

2.5%; P1–P5) content were prepared by atom transfer
radical polymerization (ATRP) using mixtures of me-
thacrylate derived photochromic units (BHMA) and
t-butyl methacrylate. Much like BHMA and ppyBMes2,
the polymers absorb in the near-UV region of the spec-
trum (λabs=358 nm), display intense blue luminescence
(λem=~476 nm, ΦFl.=~43%), and undergo photo-
isomerization at the boron core to give deep blue (λabs~
580 nm) color in solutions and as thin films, with the
efficiency of the switching depending on the spacing of
the photochromic units. The ΦPI vs. the number of the
ppyBMes2 moieties follows a reciprocal relationship, with
decreasing chromophore content from P1 to P5 yielding
higher isomerization efficiencies. This observation is ex-
plained according to a Förster resonance energy transfer
(FRET) mechanism, where the excited states of the un-
reacted ppyBMes2 units are quenched via inter- and in-
trachain energy transfer to the dark isomers within the
polymer [55]. Due to the comparable color purity but
higher ΦPI for polymers with less boron content, P5 was
chosen for optical device applications. Patterned images
can be generated on either transparent glass Petri dishes
or P5-coated non-fluorescent filter papers by spin-casting

Figure 4 (a) Photochromic polymers/random copolymers based on the ppyBMes2 unit. (b–d) Photographs showing the pattern created by photo-
chromic switching of the P5 polymer film on a glass substrate (b), on a filter paper (c), and the writing with a Chinese brush and P5 polymer as the ink
on glass (d), (top: illuminated by ambient light; bottom: by UV light). Images in (b) and (d) are reprinted with permission from Ref. [54]. Copyright
2017, the American Chemical Society.
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or soaking with toluene solutions of P5 respectively and
irradiating the substrates after applying an appropriate
mask (Fig. 4b and c). Images generated in this way are
fully erasable upon heating, and the write-erase cycles can
be repeated at least five times without any significant loss
of color purity. Polymer solutions can also be used as
switchable ink when applied to substrates through a pen
or Chinese brush (Fig. 4d). These blue patterned images
are persistent for days at ambient conditions, which is in
stark contrast to the dark isomer of the parent ppyBMes2,
which decomposes in a few hours under the same con-
ditions. Incorporation of these photochromic molecules
into a polymer therefore increases their applicability by
protecting the boron core while it undergoes photo-
chemical switching.

BORIRANES AS REACTIVE
INTERMEDIATES TOWARDS
LUMINESCENT MATERIALS
Aside from the direct use of base-stabilized boriranes in
materials science, these high energy species can also be
used as reactive intermediates in the facile preparation of
functional materials such as singly annulated borepins
[56] and chiral N,B,X-heterocycles (X = S or O) [57].
Borepins are charge neutral, boron-containing analogues
of the tropylium cation, where the boron atom is typically
protected by bulky substituents [58]. Due to integration
of the boron’s empty pz orbital into the π-system of the
molecule, these molecules often display substantially
different photophysical/chemical properties compared to
their carbon congeners such as intense blue to green lu-
minescence (λem = 400–491 nm, ΦFl. ~50-70%) and tun-
able redox properties [59]. On the other hand,
heterocyclic scaffolds that contain N, B, and either S or O,
are virtually unknown, with the closest relatives being
aza- [60], thia- [61], and oxaborinines [62]. This type of
isosterism in aromatic systems has garnered increasing
attention due to the potential use of these B,N- or B,X-
embedded aromatics in optoelectronic materials and
medicinal science [63].

Converting boriranes into novel molecular motifs relies
on designing organoboron compounds with appropriate
chelating ligands or substituents on boron. Beginning
with choice of ligand, it was recently established that peri-
substituted naphthalenes with 2-pyridine and –BMes2

groups (pynaphB) are capable of undergoing a photo-
chemical reaction involving C=C bond breaking in the
arene ring with concomitant boron insertion and mesityl
migration (Fig. 5a).

The product of this reaction was the base-stabilized

benzoborepin (BBP), which represents some of the only
examples of singly annulated borepins. The BBP deriva-
tives are all blue fluorescent with λem = 411–472 nm and
ΦFl. ~10%, while these values are quite low for lumines-
cent materials. Achieving high ΦFl. and tunable emission
colors should be possible with further modification of
either the ligand or substituents, which is currently on-
going in our laboratory. The excited-state process that
converts pynaphB to BBP involves several steps that
culminate in the formation of a borirane (pynaphB-a),
which is highly unstable and ring-opens to give the an-
nulated borepin.

With respect to the aryl groups on boron, new photo-
chemical C–X bond activation and boron insertion re-
actions have been discovered for chiral chelate
organoboron compounds bearing heteroaromatic sub-
stituents (Fig. 5b). This reactivity takes advantage of the
fact that regioselective borirane formation occurs on the
less bulky substituent in these types of systems, and that
H-boriranes are highly reactive [64]. Following photo-
excitation, a C–C coupled biradical intermediate is ex-
pected, which either collapses to the H-borirane or
undergoes C–X ring-opening to give unprecedented N,B,
X-heterocycles. The H-borirane “side products” formed
during this reaction are capable of converting into N,B,X-
heterocycles via a second excited-state pathway which
regenerates the biradical intermediate. The resulting N,B,
X-heterocycles are weakly emissive in solution, but no-
ticeably luminescent in the solid state due to restricted
rotation of the mesityls (ImBS, NHCBS, and pyBSPh in
Fig. 5b). In particular, pyBSPh exhibits orange-red
emission with a ΦFl. ~10%, which is quite high for solid-
state luminescence at these wavelengths considering the
energy gap law [65]. Depending on the position of the N,
B, and S atoms within the molecule, tunable emission
from blue-green to orange-red is readily achieved.
Therefore, the luminescent properties of N,B,X-hetero-
cycles can be easily manipulated to make them better
suited for materials applications.

CONCLUSIONS
In summary, the photochemistry of chelate organoborates
is incredibly rich and diverse, offering various opportu-
nities for innovation and discovery. As a product/an in-
termediate in the photoreaction, the borirane species
plays a key role in the versatile applications and bond
activation chemistry mediated by boron. The recently
discovered four-state switchable systems, photochromic
polymers, and novel luminescent materials based on
boriranes show great promise for future applications in
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memory and optoelectronic devices, as well as write-erase
technologies. Although still in its infancy, we anticipate a
bright future for borirane-based photochromic/photo-
responsive materials, with future developments focusing
on the optimization of their photophysical/photo-
chemical properties, as well as establishing new potential
applications via unexplored reactivities.
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Boriranes异构和重排: 罕见的有机硼化合物及其在功能性材料中的应用
Soren K. Mellerup1, 王苏宁1,2*

摘要 刺激响应材料因其广泛应用而备受关注. 科学家们已开发了多种智能材料, 其中基于有机硼的新型光响应材料尤为引人注目. 本文
侧重评论近期发现的基于含螯合基团的光响应有机硼分子. 这类分子可发生高效率的光致变色, 生成罕见的、深颜色的Boriranes. 近期研
究结果显示这类分子不仅具有独特的光化学性能, 还在材料化学里有多种应用. 此外, 本文介绍了近期对这类分子的研究和进展并展望了
其应用前景.
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