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ABSTRACT Wearable and stretchable physical sensors that
can conformally contact on the surface of organs or skin
provide a new opportunity for human-activity monitoring and
personal healthcare. Particularly, various attempts have been
made in exploiting wearable and conformal sensors for ther-
mal characterization of human skin. In this respect, skin-
mounted thermochromic films show great capabilities in body
temperature sensing. Thermochromic temperature sensors
are attractive because of their easy signal analysis and optical
recording, such as color transition and fluorescence emission
change upon thermal stimuli. Here, desirable mechanical
properties that match epidermis are obtained by physical
crosslinking of polydiacetylene (PDA) and transparent elas-
tomeric polydimethylsiloxane (PDMS) networks. The result-
ing PDA film displayed thermochromic and thermo-
fluorescent transition temperature in the range of 25–85°C,
with stretchability up to 300% and a skin-like Young’s mod-
ulus of ~230 kPa. This easy signal-handling provides excellent
references for further design of convenient noninvasive sen-
sing systems.

Keywords: stretchable, skin-like, thermochromic, thermo-
fluorescent, temperature sensor

INTRODUCTION
Ongoing efforts have been devoted to the development of
smart and wearable/implantable devices for ubiquitous
computing or personalized medical care [1–5]. A key
technical issue in designing such wearable devices is to
achieve reasonable stretchability and delightful deform-
ability. It is acknowledged that conventional devices built
on the rigid planar, brittle surfaces (e.g., metal and
semiconductor wafer) cannot survive undergoing large

mechanical deformations because of their high Young’s
modulus (>10 GPa) with limited stretchability (<5%).
Different from them, the main advantages of stretchable
systems are associated with their low modulus, light
weight, and large deformability without performance
failure, and thus enabling close skin contact and con-
formal lamination onto complex nonplanar surfaces [6,7].
To date, various flexible or stretchable devices have been
used in the field of flexible display, and wearable tech-
nologies such as health monitoring and soft robotics [8–
13]. For instance, high-adhesion stretchable electrodes
have been used both for stretchable electrodes and strain
sensors to reliably detect electromyography signals and
the joint motions [14]. Polymeric microelectrode arrays
have been fabricated with high stretchability of 100%, and
used for conformally recording the electrocorticography
signals from rats in normal and epileptic states [15]. In
another example, surface strain redistribution is reported
to significantly enhance the sensitivity of fiber-shaped
stretchable strain sensors that can be reliably used to
monitor the sports activity [16].

Among the various flexible devices, highly stretchable
and biocompatible temperature sensors can serve as a
comfortable and compliant system towards personal
healthcare [6,17–19]. To design these responsive soft
material systems, various strategies have been exploited,
such as integrating the sensor chips or circuits onto the
flexible substrates, or doping the functional materials into
the polymer matrix. In one case, a temperature sensor,
which was firstly fabricated on a silicon-on-insulator
wafer and then transferred to a prestrained elastomeric
polydimethylsiloxane (PDMS) substrate, could be stret-
ched and compressed up to 30% [20]. Likewise, a wear-
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able sensor consisting of flexible circuits and materials
was designed to measure the brain temperature [21]. In
another report, a Ni microparticle-filled binary polymer
composite was fabricated as a flexible wireless sensor to
monitor human body temperature [22]. A similar meth-
odology was also seen with the use of PDMS and poly-
imide (PI) to disperse graphite for flexible temperature
sensor arrays [23]. However, the sensation information
mainly depends on electric detector and electricity input,
which is not directly conveyed. For a convenient and
comfortable sensor, it is highly desirable for the signal
readout to be directly visualized by the naked eye in a
simplified operation condition [24–26].

Thermochromic materials can provide visual response
to thermal stimulus. The change in color, absorption and
luminescence can be directly visualized by the naked eye
and captured by the optical detectors. In this aspect,
polydiacetylene (PDA) appears to be a favorable choice
[27–31]. PDA was selected as the thermo-responsive
element for this platform owing to their responsive color
transition (blue-to-red) and fluorescence change (non-to-
red) when subjected to thermal stimulus. The blue-to-red
colorimetric transition is directly visible to the naked
eyes. Undoubtedly, a good combination of this char-
acteristic and high stretchability facilitates detection ea-
sily, and more importantly, enables safe and compliant
human interaction. In this respect, PDMS is still an ex-
cellent soft matrix because of its high stretchability and
optical transparency, high thermal and environmental
stability, as well as excellent mechanical strength.

Herein, we introduce a highly stretchable, skin-like
temperature sensor by incorporating the thermochromic
PDA into PDMS elastomer. The colorimetric signal upon
thermal stimulus is easily recognized by the naked eyes.
The stretchable capability is mainly from PDMS matrix,
but highly enhanced by the involvement of PDA due to
the enhanced crosslink density. The as-formed system
demonstrates a stretchability up to 300%, with Young’s
modulus (~230 kPa) in the same range as skin. Given its
simplicity and efficiency, the proposed system could serve
as a rational guideline for design of a variety of wearable
and disposable colorimetric sensor protocol. In particular,
the skin-like property facilitates conformal adhesion to
the skin and promises for noninvasive and convenient
physical characterization of the epidermis.

EXPERIMENTAL SECTION

Preparation of PDA-embedded PDMS film
In a typical procedure, a dichloromethane solution

(2 mL), containing 10,12-pentacosadiynoic acid (PCDA)
(4 mg), was injected into the blend of PDMS elastomer
base (2.0 g) and curing agent (10:1 wt. ratio). After re-
moving dichloromethane in vacuo, the mixture was
poured into a Petri dish and cured at room temperature
for one day to get the half-cured PCDA film. The as-
formed PCDA film was then irradiated (under mask)
with a 254 nm UV lamp (1 mW cm−2) for 2 min and
cured for another day to give the blue-phase PDA film
(denoted as PDA-T25). The film thickness was varied
according to the added amount of the PDMS precursor,
so it can be tuned just by changing the precursor amount.
“USTB” mask was prepared by 3D printing.

Structural characterizations
The UV-visible absorption and transmittance spectra in
the range of 400–800 nm were measured using UV−vis
−NIR spectrophotometer (Cary 5000, Agilent Ltd.). The
spectrophotometer was equipped with a heating and
cooling stage (heating stage, Linkam PE120). Fluores-
cence spectra were recorded using an F-4500 fluorescence
spectrophotometer. Raman spectra were recorded using a
Renishaw Raman spectrometer (Invia reflex Raman mi-
croscope) equipped with a semiconductor-cooled CCD
detector and a confocal Leica microscope. The spectro-
graph uses 1,800 g mm−1 gratings and a linearly polarized
Nd:YAG laser (785 nm). The tensile strength of the PDA
films was measured using a Universal Testing Machine
(Testometric, UK) at a strain rate of 30 mm min−1 until
break. A minimum of three measurements were taken for
each sample. Here, PDA films were cut into dumbbell-
shaped specimens with the size of 60 mm×8 mm, and
clamped onto the fixtures with a same force for every test
to minimize operator errors (Fig. S1).

RESULTS AND DISCUSSION
The skin consist of two layers, namely the epidermis
(modulus, 140–600 kPa) and the dermis (modulus,
2–80 kPa) [32]. By comparison, PDMS has a tensile
Young’s modulus in the range of 1.32–2.97 MPa, slightly
higher than that of skin [33–35]. It is proved that com-
patible component can endow the polymer blend im-
proved mechanical properties [36]. The blend of PDMS
and PDA might encourage a reduced Young’s modulus.
Meanwhile, as a commonly used transparent matrix, the
transmittance of the as-prepared PDMS in our in-
vestigation was ~90% in the visible light region of
400–800 nm (Fig. S2), and thus assuring the color yield of
PDA without interfering its normal light absorption. On
the other hand, blue-colored PDA are prepared by in-
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itiator-free UV polymerization of self-assembled diace-
tylene monomers (colorless, Fig. S3). This advantage thus
allows for one-step development of small-scale patterned
functional images during UV polymerization, leading to
the formation of patterned PDA embedded within the
PDMS matrix for better color contrast or imaging. Based
on these considerations, the strategy employed in this
investigation was depicted in Fig. 1. (Masked) UV irra-
diation of the diacetylene monomer films generates
(patterned) blue-colored images (Fig. S4). The as-ob-
tained thin film could be rolled, twisted, bended, or
stretched. It therefore can act as a wearable, or skin-
mounted temperature sensor, which undergoes a blue-to-
red color change or fluorescence change in response to
thermal stimuli.

The visible change was firstly shown from the photo-
graphs of the blend film with regard to its thermochromic
behavior (Fig. 2). Bare PDMS film was totally colorless
and transparent (Fig. 2a). At room temperature, PDA-
T25 was a typical blue-colored film (Fig. 2b) with a
thickness of ~250 µm (Fig. S5). Cross section scanning
electron microscopy (SEM) observation proved the good
compatibility between PDA and PDMS in the blend,
while negligible voids were observed and the two phases

were hardly distinguishable (Fig. S6) [36]. The blue-co-
lored film became purple at ~45°C (PDA-T45, Fig. 2d),
and completely turned red near 55°C (PDA-T55, Fig. 2f).
The apparent color transition can provide a visual signal
for the temperature change.

To quantitatively evaluate the color transition of the
PDA film, spectroscopic monitoring was conducted
through the absorption and transmittance spectra over a
broad temperature range of 25–100°C. As can be seen
from Fig. S7a, the blue-phase PDA-T25 film shows a ty-
pical absorption spectrum with a maximum absorption
peak at ~652 nm and another small one at ~595 nm.
When heating from room temperature to 100°C, the
maximum absorption shows a gradual decrease and blue
shift, and finally converts into shorter wavelength with
the absorption maximum near 545 nm characteristic of
red-phase PDA. The maximum absorption shift (Δλ652) as
a function of temperature was plotted to gain insight into
the thermochromic behavior (Fig. 3a). It could be ob-
served that Δλ652 displayed an upward tendency (25–
70°C) until it reached a plateau. Previous reports usually
used the colorimetric responses (%CR) to determine the
temperature-dependent color transitions [28,29]. CR is
referred to percentage change of the maximum absorp-
tion of the blue phase with respect to the total absorption
of both red and blue phases. As a relative evaluation of
the color transition, it is defined as %CR=100(PB0–PB)/
PB0, where PB=Ablue/(Ablue+Ared) and A is absorption. Fig.
3b shows the plot of %CR followed a sigmoidal curve
upon increasing the temperature, and a sharp colori-
metric transition was found to be within the range of 60–
85°C. PDA film became increasingly transparent with
rising temperature (Fig. S7b) and the integral luminous
transmittance Tlum (400–800 nm) [37,38] was plotted in
Fig. 3c and Fig. S7c. Based on %CR, sharp transmittance
change was also observed to be within the range of 60–
85°C. Here, Tlum provides a much easier way to measure
the colorimetric transition than that of %CR. In addition

Figure 1 Schematic illustration of the design of the stretchable thermochromic temperature sensor.

Figure 2 Photographs of pure PDMS film (a) and the polymerized PDA
films at a heating temperature of 25, 40, 45, 50, 55, 60, and 70°C (b–h),
denoted as PDA-25, PDA-40, PDA-45, PDA-50, PDA-55, PDA-60, and
PDA-70, respectively according to the heating temperature.
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to the visual color transition, the fluorescence (Fig. S7d)
induced by thermal stimuli is a useful tool to monitor the
temperature change.

Changes in the molecular structure of PDA accounted
for the color transition under thermal stimulus, as evi-
denced in Raman spectra (Fig. 4a). In 1,000–2,200 cm−1,

Figure 3 Plots of the maximum blue absorption shift Δλ652 (a), the colorimetric responses %CR (b), and the integral luminous transmittance Tlum

(400–800 nm) (c) as a function of temperature.

Figure 4 (a) Raman spectra of the as-prepared films; (b) magnified window of the green-dotted box in (a), showing PDMS (1414 cm−1) and PDA
(1451 cm−1) fingerprints, which are used to calculate the temperature-dependent intensity ratio; (c) plots of Raman intensity1451/intensity1414 as a
function of temperature; (d) proposed mechanism for the blue-to-red color transition. The applied heat induces the twist of backbone chain as well as
single bond conformational change of a long alkyl side chain.
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PDMS showed two prominent bands at 1,414 cm−1 (–CH3

asymmetric bend), and at 1,262 cm−1 (–CH3 symmetric
bend) [39]. As for the blue-phase PDA-T25, two bands
associated with the conjugated alkene–alkyne structures
were positioned at 2,095 cm−1 (C≡C vibration, νC≡C) and
1,451 cm−1 (C=C vibration, νC=C), respectively [28]. In
addition, alkyl side chains of PDA gave rise to one strong
band at 1,088 cm−1 and two weak bands at 1,104 and
1,129 cm−1, and took fully extended all-trans C–C con-
formation [40]. The investigation of the fingerprint sig-
nals of each component during heating, namely
1,414 cm−1 for PDMS and 1,451 cm−1 for PDA in the
1,350–1,500 cm−1 window, revealed a gradual decrease of
blue-phase PDA (Fig. 4b, c), which matched well with the
absorbance and transmittance spectra. Along with the
temperature increase, the νC≡C and νC=C of blue-phase
PDA increased to 2,127 and 1,520 cm−1, respectively, as
shown in PDA-T55 (Fig. S8). This suggested a decrease of
the conjugation length of the main chain. Meanwhile, the
alkyl-related three bands of blue-phase PDA were re-
placed by one major band appearing at lower frequency
(1,067 cm−1), which suggested a probable alteration from
the major all-trans conformation of the alkyl chain to
gauche as temperature increased. Schematic illustration of
such structural change was proposed in Fig. 4d. When the
temperature elevated, the conjugated main chain of the

PDA became twisted, and meantime a conformational
variation in the side chains disrupted the π overlap and
thus changed its planarity. These changes at last reduced
the conjugation length and increased the energy band
gap, hence leading to the change of the absorption wa-
velengths from 652 nm (blue phase) to 545 nm (red
phase).

A skin-like sensor is required to display mechanical
compliance as high as that of the human skin. Generally,
the effective Young’s moduli of the soft sensor is com-
parable to or lower than that of the epidermis thereby
rendering conformal attachment onto or integration into
the skin. Although PDMS matrix is not well-matched,
PDA modifies the mechanical property by generating a
high crosslink density because of the possible physical
crosslinks. As schemed in Fig. 5a, the crosslinking of the
PDMS was somewhat promoted by the formation of
hydrogen bonds between the Si–OH end groups and the
carboxyl group (–COOH) of the PDA [52]. The high
crosslink density (the hydrogen bonding) thus enabled
chain extension of PDMS and made the formed network
more flexible and extensible. As evidenced in Fig. 5b,
pure PDMS film possessed a tensile Young’s modulus,
ultimate tensile strength and elongation at break of
~1 MPa, 1.8 MPa and 150%, respectively. By comparison,
the blue-phase PDA could sustain up to ~300% stretch-

Figure 5 (a) Schematic representation of the physical crosslinking of PDMS and PDA; (b) tensile stress–strain curves of the as-prepared thin films; (c)
plots of tensile strength and ultimate strain as a function of temperature; (d) tensile strength versus Young’s modulus. Materials include the film
prepared in this work (PDA film), polyvinyl alcohol gel (PVA gel) [41], double network gel (DN gel) [42], poly(N-acryloyl glycinamide) gel (PNAGA
gel) [43], polyurethane (PEU gel) [44], polypyrrole-grafted chitosan gel (DCh-Ppy gel) [45], nanocomposite hydrogels (NC gel) [46], hydrophobic
association hydrogels (HA gel) [47], bacterial cellulose gel (BC gel) [48] and skin [49–51].
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ing, and broke at a stress of ~250 kPa. More importantly,
the presence of PDA brings about a reduction of the
Young’s modulus to ~230 kPa, a value that is quite
compliant with human epidermis. The photographs of
the film taken at different tensile strains could be seen in
Fig. S9. Meanwhile, as temperature increased, PDA film
maintained a relatively stable tensile strength and strain
(Fig. 5c). Because the enhanced stretchability of PDMS-
PDA film resulted from the high crosslink density (the
hydrogen bonding) which was influenced greatly by
temperature, a variation on the modulus of PDMS-PDA
film was observed as temperature changed. In Fig. 5d,
various transparent soft materials were compared in
terms of their strength and elasticity [53]. Hydrogels
constitute another type of transparent soft films [54–56].
However, different from the mechanically tough PDMS,
the hydrogels are usually mechanically weak owing to
their “wet” components (hygrophilic gel). As presented,
PDA film performed much better than most hydrogel
with respect to strength. Meanwhile, because of the en-
hanced elasticity, PDA film yields a Young’s modulus in
the same range of the skin.

CONCLUSIONS
In summary, we fabricated a disposable, skin-like ther-
mochromic temperature sensor through physical cross-
linking of transparent PDMS elastomer and
thermochromic PDA. Thermal stimulus can initiate a
perturbation in the arrangement of PDA molecules, and
leads to a visual response. Absorption and transmittance
spectroscopy determine the colorimetric transition. More
importantly, physical crosslinking improves the me-
chanical property that is more compliant with the human
skin. As a result, the as-prepared PDA film displays
thermochromic transition temperature in the range of
25–85°C, with a Young’s modulus of ~230 kPa that is
comparable to that of human epidermis. To make it more
applicable, the thermochromic transition temperature of
a PDA polymer can be tuned to be closer to that of the
human skin by modifying the PDA monomer. Overall,
such soft blend film with directed response performance
and skin-like elasticity may open up a rational guideline
for developing novel functional materials and devices
with desirable geometries and patterns.
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皮肤式可拉伸变色温度传感器
陈颖芝1, 席崟1, 柯宇杰2, 李文昊1, 龙祎2, 李静媛1, 王鲁宁1,3*, 张晓宏4*

摘要 可穿戴传感器最主要的形式为直接与皮肤接触式, 用于测量各种皮肤表面参数. 一种创新型的传感器使用柔软和极端轻薄的材料,
其机械性质和延展性与人体表皮相似, 因此也被称为表皮传感器. 表皮传感器能够自发地附着在皮肤上, 顺应皮肤的表面形态. 本论文利
用PCDA聚合后的热致变色特性, 及PDMS高分子基体良好的拉伸性, 通过物理交联的方法, 制备了可拉伸的柔性热致变色温度传感器. 对
PDA/PDMS薄膜进行热致变色及力学性能探究发现 PDA薄膜具有较低的变色温度区间25–85°C, 其断裂延伸率平均可达300%, 杨氏模量
接近表皮约为230 kPa. 该方法为发展生物相容性传感体系提供了良好的理论与实际参考.
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