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SPECIAL ISSUE: Diagnostic and Theranostic Platforms Based on Dendrimers and Hyperbranched Polymers

Dendrimer-based nanoparticles in cancer
chemotherapy and gene therapy
Lei Jiang1,2, Sensen Zhou1, Xiaoke Zhang1, Wei Wu1 and Xiqun Jiang1*

ABSTRACT This review discusses recent studies on den-
drimer-based nanoparticles in cancer chemotherapy and gene
therapy. In order to achieve the high efficacy and low side
effects of chemotherapy and gene therapy, it is essential to
combine the unique features of dendrimers and the specific
tumor microenvironment to target delivery and control re-
lease of therapeutic agents to tumor tissues and cells. Strate-
gies to design the dendrimer-based delivery system in this
review include non-modified dendrimers, dendrimer con-
jugates, assembled amphiphilic dendrimers, nanohybrid
dendrimer carriers and dendrimers with inherent activity. In
addition, specific functional groups on these dendrimers as
stimuli-responsive system for targeting delivery and con-
trolled release of therapeutic agents are discussed.

Keywords: dendrimer-based nanoparticles, cancer, chemother-
apy, gene therapy

INTRODUCTION
Cancer has become the major diseases threatening human
health [1]. Chemotherapy and gene therapy are the usual
methods to combat cancer [2–5]. However, the serious
side effects and individually versatile therapeutic response
always limit their future application [6–9]. In particular,
tumor microenvironment shows numerous unique
properties compared with normal tissues, such as vascular
abnormalities induced by the enhanced permeability and
retention (EPR) effect, lower pH, anoxia, abnormal ex-
pressions of specific proteases and receptors. Therefore, it
is possible to design nanomedicine as specific drug de-
livery systems, which are based on passive targeting, ac-
tive targeting (e.g., ligand-receptor interaction) or

stimuli-responsiveness to target delivery and control the
release of therapeutic agents to tumor tissues and cells,
which result in high efficacy and low side effects [10–14].

Dendrimers are a category of synthetic macromolecules
with highly branched, monodispersed and well-defined
tree-like architecture. The commonly used dendrimers
include poly(amidoamine) (PAMAM) [15,16], poly(pro-
phylenimine) (PPI), poly(L-lysine) (PLL) [17], triazine
dendrimer [18,19], poly(ether imine) (PETIM) [20–22],
carbosilane dendrimer [23], viologen dendrimer [24], and
phosphorus dendrimer [25–27]. The functional nano-
particles (NPs) can be constructed based on the unique
features of dendrimers for delivery of therapeutic agents
[28–35]. The well-defined nanoscale size and di-
mensionality could be used to satisfy various applications,
especially to enhance the tumor accumulation and pe-
netration of the therapeutic agents for tumor treatment
[36–38]. The abundant surface functional groups of
dendrimers enable multivalent effect to enhance binding
and cellular uptake by ligand/receptor recognition [39];
the globular architecture of dendrimers can mimic pro-
teins to avoid immunogenicity and improve biocompat-
ibility [40]. Dendrimers with rich terminal reactive
groups and excellent solubility can be easily modified
with multiple ligands for specific therapies [41]. And
more importantly, the interior hydrophobic cavity of
dendrimers can load poor solubility drugs via non-
covalent interactions, while the surface functional groups
can be conjugated with drugs by covalent bond [42–44].
The cationic groups on the surface of dendrimers also can
condense nucleic acids into nano-vehicle for efficient
gene delivery [45,46]. Therefore, dendrimer-based NPs
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with the above properties are promising delivery systems
for drugs and genes.

This review will introduce new strategies based on
dendrimer-based NPs in cancer chemotherapy and gene
therapy. Strategies adopted in the design of dendrimer-
based delivery systems in this review include non-mod-
ified dendrimers, dendrimer conjugates, assembled am-
phiphilic dendrimers, nanohybrid dendrimer carriers and
dendrimers with inherent activity, as shown in Scheme 1.
Then we will discuss how to introduce specific functional
groups onto these dendrimers as stimuli-responsive sys-
tem for targeting delivery and controlled release of ther-
apeutic agents.

CHEMOTHERAPY
To overcome disadvantages of the traditional che-
motherapy, dendrimer-based NPs are often utilized for
drug delivery. Drugs can be encapsulated in the interior
cavities or conjugated on the surface of dendrimers via
covalent linkages to improve drug solubility and func-
tionalization. In the meantime, the nanoscale structure
can enhance tumor accumulation and improve penetra-
tion capability of antitumor drugs [42–44,47,48].

Dendrimer-drug complexes in chemotherapy
Dendrimers contain highly branched internal cavities,
which can be employed for loading hydrophobic drugs,
forming dendrimer complexes to enhance their poor

water solubility and enhance tumor tissue accumulation
by EPR (Fig. 1a) [33,49,50]. To efficiently avoid the
macrophage uptake and enhance accumulation in tumor
tissue, dendrimer complexes modified with polyethylene
glycol (PEG) linked ligands (such as PEG-folic acid, PEG-
iRGD and PEG-lactobionic acid) showed better anti-
tumor effect than unmodified carriers (Fig. 1b) [51–53].
For improving drug release, dendrimer complexes with
stimuli-responsive capacity can be built by introducing
sensitive bonds into the dendrimer core (Fig. 1c) [54], or
a spacer between dendrimer and shielding ligand (Fig.
1d) [55]. Besides, hydrophilic drugs also can be bonded
onto the dendrimer surface to form dendrimer complexes
via electrostatic interactions, hydrogen bond, and van der
Waals interactions [56].

Dendrimer-drug conjugates in chemotherapy
Noncovalent encapsulation of drugs can hardly controll
the release of payload from the dendrimer core, such as
drug leakage in blood circulation, uncontrolled release
rate, and so on [50]. Construction of dendrimer-drug
conjugates with degradable linkages between the den-
drimers and drug by stimuli-cleavable is a promising
approach to control the release of drug. On the other
hand, only few drugs can take effect without linkage
broken [57–59]. Hydrazone bond is widely utilized for
exploiting acid-responsive dendrimer-drug conjugates as
prodrugs (Fig. 2a) [60–64]. The linkage is stable, and can
resist hydrolysis in blood circulation (pH 7.4), but de-
grades in tumor extracellular matrix (pH 6.5–6.8) and
accelerates the release of drug after endocytosis into
cancer cells (pH 5.0–6.0). Recently, the boronate ester
bond was also applied for developing acid-responsive

Scheme 1 A scheme showing the exploration of dendrimer-based NPs
in cancer chemotherapy and gene therapy.

Figure 1 Dendrimer-drug complexes: (a) nonmodified dendrimers-
drug complexes; (b) ligand modified PEGylated dendrimers-drug
complexes; (c) sensitive bonds cross-linked dendrimers-drug complexes,
(d) sensitive bonds as linker on dendrimers-drug complexes.

SCIENCE CHINA Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REVIEWS

November 2018 | Vol. 61 No.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1405© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018



prodrugs (Fig. 2b) [65,66], which was more sensitive
under pH 6.5 than hydrazone bond and induced fast drug
release under tumor extracellular condition.

Disulfide bond was usually employed for development
of reduction-responsive dendrimer-drug conjugates,
which can be rapidly cleaved by abundant intracellular
reduction agent glutathione (GSH) to release free drug
[67–69]. In order to reduce the adverse effects and en-
hance the therapeutic index, doxorubicin and paclitaxel
could be made into GSH-responsive dendrimer-drug
conjugates as prodrugs (Fig. 2c). These dendrimer-drug
conjugates show lower toxicity and higher efficacy,
compared to free drugs by largely accumulation in tumor
tissue [70–73].

Enzyme-labile bonds also could be employed for con-
struction of enzyme-responsive prodrugs [74]. Proteases,
such as matrix metalloproteinases (MMP) and cathepsin
B are unusually expressed in the tumor microenviron-
ment. Some specific sequences peptides can be cleaved by
those over-expressed proteases, e.g., collagen peptide is
cleavable by abundant MMP-9, and Gly-Phe-Leu-Gly
oligopeptide (GFLG) is degradable in the presence of
cathepsin B. When the specific peptide like GFLG (Fig.
2d) or collagen (Fig. 2e) is chosen as linkers to construct

paclitaxel or doxorubicin prodrug, the specific therapy
would be achieved by efficiently killing the cancer cells in
tumor tissues and minimizing the toxicity to normal cells
[75–77].

Light-labile bonds could be employed for light-re-
sponsive dendrimer-drug conjugates, which can be ra-
pidly cleaved by external light trigger (e.g., ultraviolet
(UV), visible or near-infrared (NIR)) to release free drug.
Some specific linkers, such as orthonitrobenzyl (ONB),
cleave under UV. The burst release of drugs happens in
the presence of UV irradiation, when ONB is chosen as
linker to conjugate the dendrimer and chemother-
apeutics. These conjugates will minimize the toxicity on
normal cells in the dark (Fig. 2f) [78,79].

Assembled amphiphilic dendrimers in chemotherapy
Self-assembly of amphiphilic molecules is one of the most
commonly phenomena in biological systems [80,81].
Generally, amphiphilic dendrimers have two structural
segments, the hydrophobic and hydrophilic components.
Recently, self-assembly of amphiphilic dendrimers into
nanocarriers is a promising approach to avoid dis-
advantages of dendrimer in cancer treatment, such as the
uncontrolled drug release and serious toxicity of high
generation dendrimers [82–84]. Particularly, well de-
signed amphiphilic dendrimers could give the nano-vec-
tors a series of special features in cancer therapy.

Wei and coworkers [85] reported a supramolecular
nanomicellar carrier based on amphiphilic dendrimer
(AmDM), which consisted of one small PAMAM den-
drimer as hydrophilic part and two C18 alkyl chains as
hydrophobic part. The resulting doxorubicin (DOX)
loaded AmDM/DOX nanomicelles possess small size
(about 10 nm) and very high drug-loading ability (>40%).
AmDM/DOX drug delivery system can effectively im-
prove anticancer efficiency and overcome drug resistance
via the combination of enhanced cellular uptake and
markedly reduced efflux of the drug. In addition, the
AmDM/DOX nanocarriers significantly decrease sys-
temic toxicity compared to the free DOX.

To achieve tumor-specific delivery of antitumor drug,
acid-responsive amphiphilic dendrimers were designed.
These amphiphilic dendrimers could self-assemble into
nanocarriers, and the nanostructures could be dis-
assembled to release drug under a changed hydrophilic-
lipophilic balance (HLB) in tumor tissue or organelle with
specific acidic condition. This disassembly behavior could
be triggered by protonation, deprotonation or cleavage of
pH-sensitive covalent bonds, such as ketal, boronate ester
and hydrazone bonds [84,86–94]. Recently, an amide

Figure 2 Dendrimer-drug conjugates: (a) dendrimer–drug conjugate by
a hydrazone linkage; (b) dendrimer-drug conjugate by a boronate ester
bond; (c) dendrimer-drug conjugate by disulfide bond; (d) dendrimer-
drug conjugate via GFLG or (e) collagen peptide; (f) dendrimer-drug
conjugate by light-responsive bonds.
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bond formed from 2-propionic-3-methylmaleic anhy-
dride (CDM) was employed to develop newly acid-re-
sponsive amphiphilic dendrimers, which cleaved under
tumor extracellular acid environment (pH ∼6.5–7.2) [95].
Li and coworkers [96] synthesized an amphiphilic den-
drimer PCL-CDM-PAMAM/Pt and co-assembled with
PEG-b-PCL and PCL to prepare pH-sensitive clustered
NP (iCluster) by nanoprecipitation method. This iCluster
could overcome systematically a series of barriers by se-
quentially reacting in the tumor microenvironment. At
physiological pH, iCluster hold a particle size about
100 nm, which was helpful for long blood circulation and
tumor tissue accumulation through the EPR effect. When
iCluster heaps at tumor sites, the tumor extracellular
acidic condition triggers the release of platinum prodrug
PAMAM/Pt (diameter around 5 nm) that greatly im-
proves tumor penetration and cell internalization. The
internalized PAMAM/Pt would be further reduced to
release free cisplatin to eliminate cancer cells. The su-
perior in vivo antitumor effect of iCluster also has been
validated in various tumor models, which indicates this
acid-responsive amphiphilic dendrimer facilitates over-
coming systematically multilevel barriers to improve de-
livery efficacy and reduce adverse effects of drug.

Redox-responsive amphiphilic dendrimers based on
disulfide bond are efficient drug carriers in tumor treat-
ment. Shao and coworkers [97] proposed an amphiphilic
dendrimer (named as telodendrimer), which was com-
posed of dendritic polylysine, linear PEG and specific
peripheral groups. Telodendrimer could self-assemble
into nanocarriers and be disassembled via the respon-
siveness of the built-in disulfide cross-linker to the redox
tumor microenvironment for controlled drug release and
efficient drug delivery in vivo. Recently, Li and coworkers
[98] designed lipoic acid (LA)-functionalized amphiphilic
dendrons and PEG derivatives, which could self-assemble
into supramolecular dendritic systems (TSPDSs) for ef-
ficient platinum delivery. This supramolecular dendritic
system is able to stably exist by bio-reducible disulfide
bonds and PEGylated platinum derivatives could co-
ordinate with peripheral carboxyl of dendritic systems for
tumor treatment. TSPDSs obviously improve the biodis-
tribution and pharmacokinetics of platinum, due to the
PEGylated shell and stable nanostructure in the blood
circulation. High glutathione concentration of tumor in-
tracellular environment could lead to the rapid dis-
assembly of TSPDSs due to redox-cleavable disulfide
bonds, and then platinum is transported into the nuclei to
play antitumor role. Compared to clinical cisplatin,
TSPDSs have higher antitumor efficiency and lower renal

toxicity.
Enzyme-induced drug release via enzyme-sensitive

chemical bond cleavage is a strategy to design enzyme-
responsive NPs based on amphiphilic dendrimers for
tumor therapy. A PEGylated amphiphilic peptide den-
dritic-drug conjugate is constructed via antitumor drug
conjugated to the periphery of dendrimer by an enzyme-
responsive linker and could self-assemble into enzyme-
sensitive anti-cancer NPs. Owing to the on-off demand of
drug and the nanoscale size, the in vivo antitumor efficacy
of these enzyme-sensitive NPs is verified with reduced
side effects [99–101]. Enzyme-responded hydrophilic-li-
pophilic balance (HLB) disruption is another strategy to
construct enzyme-responsive materials. Amphiphilic
dendrimer composed of enzyme-sensitive dendrons could
self-assemble into nanocarriers that disassemble to release
drug under action of enzymes [102].

Light-induced HLB disruption also is a strategy to de-
sign light-responsive amphiphilic dendrimers. Sun and
coworkers [103] designed diazonaphthoquinone-mod-
ified amphiphilic PAMAM dendrimers, which could as-
semble into DNQ-cored micelles in aqueous solutions.
Irradiated by NIR light, the micelles will produce an HLB
change in the supermolecular system, which leads to the
disassembly of the micelles and a quick release of the
loaded DOX. The NIR-responsive amphiphilic dendrimer
nanomedicine shows great potential for controlled drug
delivery.

Multistimuli-responsive delivery system is a more ef-
fective strategy in drug delivery for combating tumor
[104,105]. Li and coworkers [106] designed tumor-spe-
cific multistimuli-responsive nanoassemblies with a me-
tabolic barrage to completely overcome both
physiological and cellular barriers of multidrug resistance
(Fig. 3). The nanoassemblies were self-assembled from
amphiphilic dendrimers which consisted of tumor mi-
croenvironment MMP sensitive peptides (GPLGLAG se-
quence) to discharge hydrophilic PEG parts, cytoplasmic
redox-labile disulfide bonds between peptide dendrons,
and lysosome acid-breakage hydrazone bonds for linking
antitumor drugs DOX. Impressively, the nanoassemblies
could hierarchically overcome the serial barriers of drug
resistance, including PEGylated corona to extend blood
circulation, the nanostructures for large tumor accumu-
lation by EPR, enzyme-sensitivity to enhance tumor pe-
netration and cellular uptake, redox-active discharge for
effective release of DOX, and lysosome acid-responding
nucleus delivery of DOX. Simultaneously, several drug
resistance pathways were restrained by these na-
noassemblies. Ultimately, the nanoassemblies were found

SCIENCE CHINA Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REVIEWS

November 2018 | Vol. 61 No.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1407© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018



to inhibit 84% drug-resistant MCF-7R tumor in vivo,
compared to 32% tumor growth inhibition accomplished
by free DOX·HCl treatment.

Dendrimer nanohybrid carriers in chemotherapy
Dendrimer and other nano-vehicles-based hybrid carrier
is another strategy for drug delivery [107]. Compared to
some conventional nanocarriers, dendrimers have a
smaller size, which can be easily loaded or conjugated to
construct nanohybrid carriers with enhanced antitumor
efficiency. Conventional NPs could make for accumula-
tion at tumor tissue depending on the EPR effect, but they
have poor deep penetration capacity into tumor tissues
for uniform distribution. Fan and coworkers [108] de-
signed a multistage nanocarrier by anti-tumor model
drug methotrexate (MTX) loaded on PAMAM den-
drimers encapsulated in gelatin NPs. This nanohybrid
carrier was stable during systemic circulation and largely
accumulated in tumor tissue via EPR effect. In the tumor
microenvironment, PAMAM dendrimers were released
from these nanohybrid carriers in response to MMP-2
enzymes and penetrated deeply into tumor tissue due to
smaller size. Sun and coworkers [109] thought the sy-
nergistic effect between the components of nanocarriers
with various functions could enable them to complete the
circulation-accumulation-internalization-penetration-re-

lease (CAPIR) cascade and achieve high therapeutic ef-
ficacy, and thus they designed nanohybrid carriers using
DOX loaded PAMAM dendrimers encapsulated in lipo-
some (Fig. 4). These nanohybrid carriers could complete
the role of prolonging blood circulation and enhance
tumor accumulation, while its “bomblets”, DOX loaded
PAMAM dendrimers with smaller size (<5 nm) complete
the task of tumor penetration and cell internalization.
Remarkably, the nanohybrid carriers could overcome the
membrane-associated drug resistance and uptake DOX
into drug-resistant cell. Ultimately, in-vivo therapeutic
efficacy of the nanohybrid carrier had 85% tumor in-
hibition rate in drug-resistant MCF-7 tumor.

Dendrimers with inherent activity in chemotherapy
Recently, therapeutic dendrimers as a new type of effi-
cient chemotherapy drugs have been reported. Zhang and
coworkers [110] designed the bioinspired tryptophan-
rich peptide dendrimers (TRPDs) as a chemotherapy
drug for efficient tumor treatment (Fig. 5a). The trypto-
phan-rich dendrimeric structures of TRPDs significantly
induced supramolecular interactions with DNA. Most
importantly, TRPDs showed excellent cytotoxicity against
various tumor cells by strong membrane permeability and
prominently disturbed the cell cycle. Further experiment
showed that the TRPDs also restrained the proliferation

Figure 3 Schematic illustrations of (a) molecular and supramolecular engineering on tumor-specific multiple stimuli activated dendrimeric na-
noassemblies with metabolic blockade and (b) their synergistic effects for overcoming physiological barriers and cellular factors of chemotherapy
resistance. Reprinted from Ref. [106]. Copyright 2017, the American Chemical Society.
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and boosted apoptosis of cancer cell in vivo. Shao and
coworkers [111] reported a polyacylthiourea dendrimer
G4 polyacylthiourea (PATU), which had inherent potent
anticancer activity and the absence of cytotoxicity in mice
(Fig. 5b). The anticancer activity of G4 PATU in vivo was
from the exhaust of bioavailable copper, the subsequent
suppression of angiogenesis and cell proliferation. Re-
markably, compared to DOX, this dendrimer could effi-

ciently inhibit multidrug resistance (MDR) and tumor
metastasis, with no-cytotoxin induced side effects.

GENE THERAPY
Gene therapy is a promising option for the treatment of
cancers [112–114]. However, few safe and efficient gene
vectors for the delivery of DNA and siRNA limit the
development of clinical gene therapy. Cationic den-

Figure 4 (a) Schematic of the cluster-bomb-like nanoassembly and how it accomplishes the CAPIR cascade. (b) The nanoassembly structure: the
dendrimers were self-assembled with DOPE and DSPE-PEG lipids as well as cholesterol to form the nanoassembly with a dendrimer core and lipidic
shell, which was confirmed by cryo-TEM imaging. Scale bar = 50 nm. Reprinted from Ref [109]. Copyright 2014, WILEY-VCH.

Figure 5 (a) Chemical structures of the TRPDs and (b) G4 PATU dendrimer.
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drimers, which possess cationic groups on the surface and
peripheral multivalency, can bind nucleic acids for effi-
cient condensation and intracellular delivery [45,46].

Traditional dendrimer/nucleic acid complexes in gene
therapy
The definite number of amine groups on the surface of
dendrimer can efficiently condense DNA or siRNA into
nanocarriers (dendriplexes) by electrostatic interaction
and avoid their degradation by enzymes [115–118]. Then,
the formed nanocarriers can be internalized into cells and
localized in endosomes or lysosomes. In addition, plenty
of tertiary amine groups of dendrimers can facilitate the
endosomal escape of dendriplexes via a “proton-sponge”
mechanism [115,119,120]. Up to now, PAMAM [15,16],
PPI [17], and PLL [121,122], were among the most-re-
searched traditional dendrimers in gene delivery
[20,70,123–129]. Haensler and coworkers [130] first re-
ported that PAMAM dendrimers as non-viral gene vec-
tors could efficiently express luciferase in cultured cell
and found that Generation 6 (G6) PAMAM dendrimer
had maximal gene transfection efficiency among G1 to
G10 PAMAM dendrimers. Different generations of den-
dritic PLL were synthesized by Luo and colleagues, they
found that G5 PLL complexes with plasmid DNAs
showed the higher gene transfection than other den-
drimers similar to PEI, but with lower cytotoxicity [131].
Disulfide cross-linked low generation (G2) PAMAM
dendrimers were constructed as highly efficient gene
carriers, which could avoid high cost and serious cyto-
toxicity of high generation dendrimers [132]. Cationic
dendrimers are not only able to effectively deliver plasmid
DNA but also siRNA to silence the heat shock protein 27,
resulting in a prominent anticancer effect in prostate
cancer model [133,134].

Dendrimer conjugates in gene therapy
The effects of traditional dendrimers in gene transfection
are not desirable, which are usually blocked by poor
transfection efficacy and serious cytotoxicity [45]. Mod-
ifying dendrimers with various functional groups or in-
troducing degradable linkages by stimuli-cleavable bonds
to construct dendrimer conjugates for gene delivery may
be a promising task to improve gene transfection effect.

Dendrimers modified with alkaline amino acid (such as
arginine, histidine and lysine) can improve the transfec-
tion efficacy (Fig. 6). Positively charged groups in alkaline
amino acid can evidently increase the charge density of
dendrimer surface, which is beneficial for DNA con-
densation and polyplex stability [135]. Guanidinium

group of arginine shows stronger interaction with phos-
phates in DNA and cell membrane [136,137]. Histidine
modified dendrimer can improve endosomal escape and
the serum-resistance resulting from the imidazole group
in the structure [138]. As a result, alkaline amino acid-
modified dendrimer conjugates were widely used as ef-
ficient vectors for DNA and siRNA during the past dec-
ade [131,139–160].

Cancer cell-specific receptor modified dendrimer con-
jugate can achieve the targeted gene delivery via ligand-
receptor or antibody-antigen interaction. For example,
epidermal growth factor receptors (EGFR) modified
dendrimer conjugate can increase transfection efficiency
of pDNA in liver cells 10-fold compared to the un-
modified ones [161]. Antibody anti-CD71-modified PA-
MAM dendrimer shows much higher cellular uptake and
more efficient antiapoptotic gene silencing in prostate
cancer cells compared to no-antibody ones [162].
Transferrin-conjugated dendrimers can highly express
tumor necrosis factor α (TNFα) by delivery of plasmids in
prostate cancer cells in vitro and in vivo [163]. Major
histocompatibility complex (MHC) class II–targeting
peptides modified dendrimers can deliver DNA-based
vaccines to specifically accumulate in professional anti-
gen-presenting cells, which enhances immunostimulatory
potency and provides an immunotherapy for tumor
treatment [164].

Dendrimers modified with acid-responsive groups can
also increase the transfection efficacy. Shen and cow-
orkers [165] constructed acid active peptide pHLIP-con-
jugated PLL dendrimer to inhibit tumor growth by

Figure 6 (a) Lysine, (b) arginine and (c) histidine modified dendrimers.
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enhanced expression of siRNA targeting vascular en-
dothelial growth factor. This dendrimer conjugate can
weakly interact with cell membrane in physiological en-
vironment, whereas it can enhance gene internalization
via a transmembrane α-helix forming from pHLIP at
tumor acidic microenvironments (Fig. 7). Benns and
colleagues [166] developed a pH-sensitive dendrimer
conjugate PLH-g-PLL, which improved transfection by
excellent membrane fusion at endosomal pH values and
enhanced endosomal release of DNA.

Dendrimer conjugates containing disulfide bonds as
gene carriers can improve the transfection efficacy. The
spermine groups are conjugated to the dendritic scaffold
of dendrimer via a disulfide linkage, which can easily be
discharged by intracellular GSH. Owing to the weak af-
finity towards DNA of spermine groups, these reduction-
responsive carriers show a controlled release of spermine
groups and DNA [167]. Introducing disulfide bonds be-
tween dendrimer and a cell-binding ligand also can im-
prove transfection effect. The ligand can enhance
complex accumulation in the target cell, and further the
carriers can release nucleic acids in an intracellular re-
duction-responsive manner [168].

Amphiphilic dendrimers in gene therapy
Amphiphilic dendrimers with hydrophilic and hydro-
phobic domains are able to form multivalent delivery
systems for gene therapy. Lipid compounds such as fatty
acids and cholesterol are always chosen as the hydro-
phobic parts. Lipids have strong fusogenic activity, which
can improve cellular uptake and endosomal escape of
polyplexes for effective transfection [169]. Amphiphilic
dendrimers show the combined advantages of lipid and
dendrimer for high-efficiency and safe gene delivery,
which can be constructed by conjugation of lipids to the
core or surface of dendrimer.

In general, high generation dendrimers with the high
density positive charges facilitate the stability and inter-

nalization of polyplexes into cells [115]. However, extra
positive charges of polyplex may induce increased cyto-
toxicity [170]. Amphiphiles formed from conjugation of
lipids to the core of low-generation dendrons, can self-
assemble into micelles for safe and efficient gene delivery.
In the early stages, PLL modifed with three dodecanoyl
chains can achieve self-assembly and effective gene de-
livery (Fig. 8a) [171]. Yu and colleagues [172] constructed
a series of amphiphilic PAMAM dendrimers with various
alkyl chain length and dendron structure as siRNA vec-
tors. They found that the vector bearing a C18 alkyl chain
and a PAMAM dendron with third-generation structure,
was able to transport Hsp27 siRNA and induce significant
gene silencing against a castration-resistant cancer (Fig.
8b). G1 PAMAM conjugated with two alkyl chains such
as unsaturated octadecyl (DL-G1-2C18) (Fig. 8c) and
saturated octadecenyl (DL-G1-2C18-U2) (Fig. 8d) show
much improved gene transfection efficacy. Particular,
DL-G1-2C18-U2 presents more efficient transfection on
HeLa cells compared to DL-G1-2C18. The results indicate
that the unsaturated chains for the amphiphilic den-
drimers with excellent gene transfection are very im-
portant [173]. Amphiphilic dendrimers having the same
octadecyl chains but different generation of dendron
parts show different transfection activity (Fig. 8e) [174].
Multivalent amphiphiles, which have a C18 alkyl chain in
the core and a second-generation dendrimer (G2-octaa-
mine, 4) with four glycine arrays on the surface, can be a
safe and efficient carrier to transport siRNA and acquire
effective gene silencing in HeLa cells (Fig. 8f) [175]. Self-
assembling the defined arginine-containing amphiphilic
dendritic lipopeptides for virus-inspired nanocarriers can
greatly enhance transfection efficiency and reduce cyto-
toxicity in HepG2 cells (Fig. 8g) [176].

Conjugation of lipids to the periphery of dendrimer can
also improve the efficacy of transfection. PAMAM den-
drimers conjugated with different length alkyl chains can
achieve efficient DNA delivery. The presence of alkyl

Figure 7 Liver cancer cells were treated with (a) nonmodified or (b) pHLIP conjugated PLL NPs at pH 6.0 (for representing tumor acidic pH
environments and solid tumor cells) or pH 7.4 for 30 min. Reprinted from Ref. [165]. Copyright 2013, WILEY-VCH.
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chains obviously increases the cellular uptake of poly-
plexes and the effect is positively correlated with the
length. However, the smallest hydrophobic chains show
the higher efficiency due to effortless DNA release. Si-
milarly, PPI dendrimer modified with alkyl chains of
suitable length increases 60-fold transfection efficiency
than the unmodified one [177]. Cholesterol and alkyl
chains modified G2 PAMAM dendrimers are also benefit
for gene transport, including excellent low cytotoxicity,
serum-resistance, and efficient transfection. Among these
dendrimers, G2 PAMAM dendrimer modified with a
saturated C18 alkyl chain exhibits the highest transfection
efficacy [178].

Stimuli-responsive amphiphilic dendrimers can be de-
signed for effective gene delivery. Tschiche and coworkers
[179] designed an amphiphilic dendrimer, which is
composed of a lipoic acid-derived dendron structure and
had the ability to self-assemble into supramolecular na-
nostructure. The redox-triggered disassembly leads to
faster siRNA release and higher transfection efficiencies
for gene silencing compared to noncrosslinked ones. Si-
milarly, conjugating a disulfide bond to the surface of the
core lipid-functionalized PLL dendrimer results in high-
efficiency RNA interference and low toxicity in vivo
[180]. Recently, Liu and coworkers [181] proposed an
amphiphilic dendrimer bola4A, which introduces a re-
active oxygen species (ROS)-activatable thioacetal group
in hydrophobic part and two PAMAM dendrons as the

peripheral groups. Bola4A could compact siRNA into
nanostructure to enhance cellular uptake and efficiently
disassemble under the response of the built-in thioacetal
linker in ROS-rich tumor cells for effective gene delivery
and silencing.

Dendrimer nanohybrid carriers in gene therapy
Dendrimer nanohybrid carriers, which are constructed by
dendrimer grafting onto NPs, such as quantum dots,
carbon nanotubes, magnetic NPs, gold NPs, are widely
used in gene delivery with enhanced transfection effi-
ciency and reduced cytotoxicity compared to unmodified
ones.

For example, Xu and coworkers [182] designed a
functionalized low generation peptide dendrimer, which
could self-assemble onto the surface of quantum dots to
prepare multifunctional supramolecular hybrid den-
drimers. These hybrid dendrimers show 50,000-fold
higher gene transfection efficiency than single low gen-
eration peptide dendrimer and real-time tumor fluor-
escent signaling properties (Fig. 9a).

PAMAM dendrimers are grafted onto gold nanorods
for delivering short hairpin RNA (shRNA) into breast
cancer cells (Fig. 9b). These conjugates also can be used to
kill cancer cells by synergetic photothermal ablation role
via NIR light irradiation [183]. In addition, PAMAM
dendrimers encapsulating gold NPs also exhibits much
improved gene transfection efficacy and reduced cyto-

Figure 8 Structures of dendrimer-bearing lipids.
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toxicity on several cancer cells [184–187].
Fe3O4 nano-worm is modified with PAMAM den-

drimers and utilized for siRNA delivery (Fig. 9c), which
obviously promotes endosomal escape and suppresses the
EGFR protein expression in glioblastoma in vivo [188].
Similarly, ternary magnetoplexes polyplexes containing
PAMAM dendrimer-modified magnetic iron oxide
greatly improve the transfection efficiency [189].

CONCLUSIONS AND PERSPECTIVES
Dendrimer-based NPs are emerging as a promising de-
livery system in cancer chemotherapy and gene therapy
due to their well-defined nano size, 3D hyperbranched
structure, and globular architecture. The dendritic scaf-
folds provide hydrophobic interior to load drug, while the
periphery can link multifunctional surface groups for
diverse applications. The unique features of tumor mi-
croenvironment also can be used to explore the active
targeting or stimuli-responsive dendrimer based NPs to
enhance therapeutic effect and reduce the toxic effect.
There are several structures usually adopted in the design
of dendrimer-based delivery systems, such as non-mod-
ified dendrimers, dendrimer conjugates, assembled am-
phiphilic dendrimers, nanohybrid dendrimer carriers and
dendrimers with inherent activity. Although dendrimer-
based NPs are effective against some cancers by single
chemotherapy or gene therapy, the successful anticancer
treatment is frequently impeded by MDR or tumor me-
tastasis. Therefore, to take full advantage of dendrimers to
develop the various combinations of chemotherapy and
gene therapy, successful antitumor therapy may be
achieved by overcoming MDR and inhibiting tumor
metastasis. In addition, despite the numerous advantages
of dendrimers as drug/gene carriers, most of them are
limited by the implementation of concept and high cost
for clinical applications. Therefore, researchers should
pay attention to the complexity of in vivo environments
and monitoring cost to reduce these problems and ensure
clinical usefulness.
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基于树状大分子纳米载体的化疗及基因治疗在肿瘤治疗中的应用
姜雷1,2, 周森森1, 张小可1, 武伟1, 蒋锡群1*

摘要 针对肿瘤组织的微环境, 结合树状大分子的特点可以构建定向可控药物、基因传递系统, 实现化学或基因治疗中的高效低毒. 本综
述从树状大分子的结构出发, 总结了其纳米载体在肿瘤治疗中的最新进展, 尤其重点讨论了传统树状大分子、树状大分子偶联物、可自
组装的两亲性树状大分子、杂化树状大分子及自身具有药理活性的树状大分子作为药物或基因递送载体的应用. 我们希望本综述将有助
于启发未来的相关研究, 以进一步拓展这种材料在肿瘤治疗中的新应用.
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