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ABSTRACT In this study, a clew-like ZnO superstructure was
synthesized by a copolymer-controlled self-assembly homo-
geneous precipitation method. Ni was impregnated to the
clew-like ZnO superstructure to obtain Ni/ZnO adsorbents.
The synthesized materials were characterized by scanning
electron microscopy, transmission electron microscopy, N2

sorption, X-ray diffraction, Fourier transform infrared spec-
trometry, and H2-temperature programmed reduction tech-
niques. The reactive adsorption desulfurization (RADS)
performance of the adsorbents was evaluated in a fixed bed
reactor using thiophene in n-octane as a model fuel. Sample
Ni/ZnO-4h exhibits a remarkably high performance with a
sulfur capacity of 189.1 mg S g–1, which is above 6 times that of
the one prepared with commercial ZnO. Characterization re-
sults show that the morphology changes from micro-clews to
large solid sticks with the increase of the crystallization time.
The loose and open architecture of the clew-like ZnO super-
structure facilitates the diffusion of reactants/products, and
prevents the adsorbent particles from breakage by supplying
space for the volume expansion during the RADS process. The
small nanoparticles in ZnO nanostrips result in a high sulfur
adsorption capacity and also favor the dispersion of Ni,
leading to an excellent RADS performance.

Keywords: ZnO, reactive adsorption desulfurization, nanos-
tructure, adsorbent

INTRODUCTION
Fossil fuels contain significant quantity of organic sulfur
compounds, which are the major source of detrimental
SOx and particulate pollutions [1]. The desulfurization of
fossil fuels gains an increasing attention for more strin-
gent environmental regulations and legislation on the
production of clean fuels [2–4]. According to the Euro V
emission standard, the sulfur content of transportation

fuels is regulated to be less than 10 ppm [5]. However, it
is difficult for the traditional industrial hydro-
desulfurization (HDS) process to reduce the sulfur con-
tent to such low level especially for the thiophenes and
aromatic thiophenes rich fuels, due to the steric hin-
drance effect [6]. Furthermore, H2S engendered during
the HDS process is easy to react with olefins in gasoline to
produce thiols, creating difficulties in the ultra-deep de-
sulfurization of gasoline. Therefore, to reduce the sulfur
content in gasoline below 10 ppm, it is necessary to in-
crease the severity of HDS process, which results in the
excessive saturation of olefins, causing the loss in octane
value of gasoline. Alternative technologies, such as ad-
sorption desulfurization [7–9], oxidation desulfurization
[10,11], extraction [12,13] and bio-catalytic treatment
[14,15] have been developed. Among them, the reactive
adsorption desulfurization (RADS) using a solid ad-
sorbent is considered to be the most effective approach
for the ultra-deep desulfurization of gasoline [16].
The origin of RADS technology could be traced back to

1920s, when some metal oxides such as ZnO, CaO and
MnO2 were found to show good adsorption performance
for H2S and later applied in the desulfurization of liquid
fuel [17,18]. Tawara et al. [19] utilized the metal oxide
supported Ni adsorbent for the RADS process, including
Ni/Al2O3 and Ni/ZnO. It was found that Ni/Al2O3 catalyst
exhibited a better activity than that of catalyst Ni/ZnO,
while Ni/ZnO exhibited a higher sulfur capacity due to
the storage of H2S by ZnO, which opened ways for the
design of adsorbents with high sulfur capacities. Follow-
ing this pioneer work, a significant amount of efforts have
been made for the development of Ni/ZnO based ad-
sorbents [20–22]. By studying the desulfurization me-
chanism of thiophenic compounds [9,22,23], the RADS
process using Ni/ZnO adsorbent was found to combine
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advantages of both HDS and adsorption desulfurization
[24–26]. As revealed, organic sulfur compounds in the
feed firstly decompose on the surface of Ni particles to
form Ni3S2 [27]. In the presence of H2, Ni3S2 is converted
to H2S and Ni sites are restored to Ni0. ZnO, as the sulfur
acceptor, reacts with H2S and is transformed to ZnS. After
regeneration in O2 atmosphere, ZnO is regenerated to
complete a continuous RADS-regeneration cycle [28].
Bezverkhyy and co-workers [29–31] carried out a series of
kinetics experiments on the RADS reactions with Ni/ZnO
based adsorbents. It is found that the rate-limiting step is
the decomposition of the organosulfur compounds on Ni
species at the beginning. With the partial sulfidation of
ZnO, the sulfur diffusion in ZnO becomes the rate-de-
termining step. Based on the RADS mechanism, it is
obvious that the dispersion of Ni species and ZnO mor-
phology influence the RADS performance of adsorbents.
Therefore, a ZnO structure that can improve the sulfur
compound diffusion into ZnO particles and favor the
nickel dispersion is desired [32]. As reported, smaller
ZnO particles are favorable for the sulfur transfer from Ni
to ZnO with lower activation energy, resulting in a higher
ZnO conversion and a larger sulfur capacity. Besides, the
smaller ZnO particle size would favor the Ni particle
dispersion and enhance the interaction between Ni and
ZnO, resulting in the formation of Ni-Zn alloy, which
prohibits Ni particles from agglomeration [5]. Different
nanostructured ZnO materials have been synthesized
[33,34]. ZnO nanowires prepared by Gupta et al. [35]
were tested in the RADS reaction. The adsorbent exhibits
a high RADS activity and a large sulfur capacity, which is
attributed to the easy sulfidation of ZnO nanowires and
the fast sulfur transfer from NixSZny to ZnO nanowires.
Besides the particle size, the morphology of ZnO also has
a significant effect on the RADS performance of the ad-
sorbent. Liu et al. [36] synthesized a hierarchically
structured poly-crystalline ZnO. Compared with that
derived from the rod-shape ZnO particles, the adsorbent
with the hierarchically structured ZnO exhibits a higher
sulfur capacity.
In our previous work [37], a clew-like ZnO super-

structure was synthesized via a copolymer-controlled self-
assembly approach (CCSA). The superstructure was
constituted by ZnO nanostrips, which wrapped each
other around a common axis in a clew-twisting way. The
nanostrips with a thickness of ca. 50 nm are consisted of
nanoparticles with sizes from 50 to 100 nm, and exhibit a
porous structure with pore sizes in the range of
30–100 nm. The intersecting and stacking nanostrips
form a loose and open three dimensional (3D) archi-

tecture, which is favorable for the diffusion of reactants/
products in the clews and also helps to alleviate the ag-
gregation of adjacent nanostrips during the RADS pro-
cess. Therefore, this unique superstructure may exhibit a
superior RADS performance. In this work, we synthesized
the ZnO superstructures using the CCSA approach and
varied the morphology of ZnO by changing the crystal-
lization time. The Ni/ZnO adsorbents were prepared
using an impregnation method. The RADS performance
of adsorbents was evaluated in the reactive adsorption
desulfurization of a model fuel and compared with that
prepared with a commercial ZnO. By combining char-
acterization results from a variety of techniques, the re-
lationship between the structural properties of adsorbents
and their RADS performance was revealed.

EXPERIMENTAL SECTION

Materials preparation
The ZnO superstructure was synthesized through a CCSA
method according to our previous procedure [37]. In a
typical synthesis, 2.32 g of (PEO)20(PPO)70(PEO)20(P123)
was dissolved in 60 mL of deionized water, followed by
the addition of 7.2 g of urea and 5.95 g of Zn(NO3)2·6H2O
with continuous stirring for 30 min. Then, the solution
was transferred into a stainless steel autoclave with a
Teflon liner and crystallized in an oven at 100°C for
different times (4, 8, 17 and 48 h). White precipitates
engendered were filtered, washed for several times with
deionized water and dried in an oven for 12 h at 80°C.
Finally, the white solids were calcined at 500°C for 2 h.
The white and yellowish powders before and after calci-
nation were denoted as ZCH-xh and ZnO-xh, respec-
tively, where x represented the crystallization time.
The Ni/ZnO adsorbents (10 wt.% Ni) were prepared by

an ultrasonic-aided incipient wetness impregnation
method. In a typical procedure, 0.495 g of Ni(NO3)3·6H2O
was dissolved in 5 mL of tetrahydrofuran (THF), followed
by adding 1 g of ZnO into the solution. The suspension
was ultrasonically dispersed at 30°C for 1 h, then dried at
80°C overnight and calcined at 400°C for 1 h. The ad-
sorbents obtained were denoted as Ni/ZnO-xh. For
comparison, a Ni/ZnO adsorbent was prepared in the
same way from a commercial ZnO (purchased from Si-
nopharm Chemical Reagent Co. Ltd) and denoted as Ni/
ZnO-C.

RADS reactions
RADS experiments were carried out in a fixed bed reactor
with a stainless steel column which had an internal di-
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mension of 8 mm and a length of 250 mm. The model
fuel with 3000 ppm sulfur was prepared using thiophene
as a sulfur source and n-octane as the solvent. Before the
reaction, the reactor was flushed by ethanol for 24 h to
clean the thiophene remaining in the system. The flush-
ing was conducted at 150°C with an ethanol flow rate of
0.5 mL min–1. Then the whole system was purged with a
N2 gas flow (20 mL min–1, 0.5 MPa) at 150°C for 24 h to
clean up the whole system. After that, 1 g of fresh ad-
sorbent (NiO/ZnO) was put in the center of the column
and reduced by H2 with a flow rate of 40 mL min–1 under
0.5 MPa at 400°C for 7 h. After the reduction, the tem-
perature of reactor was reduced to 350°C and the pressure
was increased to 1.0 MPa. The pre-heated model fuel was
carried by H2 and flowed through the adsorbents with a
liquid hourly space velocity (LHSV) of 4 h–1, and the H2/
Oil volume ratio was 400. The liquid product was cooled
in a cryogenic ice trap, periodically collected and analyzed
by a gas chromatograph (Bruker 450-GC) coupled with a
pulsed flame photometric detector (PFPD). The sulfur
capacity of the adsorbents at breakthrough points of
10 ppm (normalized by the adsorbent weight) was cal-
culated based on [38]

S v
m

C C t=
1000

( )d ,
t

t
sorbent

0 0 (1)

where S is the mass of sulfur adsorbed per gram of ad-
sorbent (mg S g–1), C0 is the initial sulfur concentration in
the model fuel (mg L–1), Ct is the sulfur concentration in
the effluent at time t (min), v is the flow rate of model fuel
(mL min–1), and msorbent is the weight of Ni/ZnO-xh ad-
sorbent. The ZnO conversion of the adsorbent at the
adsorption breakthrough point (10 ppm) was calculated
by

X S= 0.0029 × 100%, (2)
where X is the ZnO conversion to ZnS of the adsorbent at
breakthrough point (10 ppm), and S is the sulfur capacity
at the breakthrough point (10 ppm).

Characterization of materials
The N2 adsorption was measured on a Micromeritics
TRISTAR 3000 analyzer at 77 K. Before adsorption,
samples were degassed at 300°C for 4 h under vacuum.
The specific surface area of the samples was calculated by
the Brunauer-Emmett-Teller (BET) method in the re-
lative pressure range of 0.05–0.25. The pore size dis-
tribution (PSD) curves were derived from the desorption
branches using the Barrett-Joyner-Halenda (BJH) meth-
od. The total pore volumes were calculated by the ad-
sorption amount at P/P0=0.993. X-ray powder diffraction

(XRD) patterns were obtained by a PANalytical X’Pert
diffractometer with a Cu-Kα radiation generated at 35 kV
and 40 mA. The scanning angle ranged from 20° to 70°
with a scanning rate of 2° min–1. Average crystallite sizes
of the ZnO crystals were calculated from the XRD pat-
terns using Debye-Scherrer equation

D K= / cos , (3)
where K is the Scherrer constant (K=0.89), λ is the X-ray
wavelength, β is the peak width at the half maximum, and
θ is the Bragg diffraction angle. The reducibility of sam-
ples was investigated by a hydrogen temperature pro-
grammed reduction (H2-TPR) technique using a Chem-
BET 3000 TPD/TPR analyzer (Autochem II, USA). The
morphology of materials was investigated by a JEOL JSM-
5600LV scanning electron microscope (SEM) and a JEOL
JEM-2100UHR transmission electron microscope (TEM).
Fourier transformed infrared (FT-IR) spectra of the ad-
sorbents were measured on a Nicolet 6700 spectrometer
coupled with a MCT liquid nitrogen cooling detector, and
the samples were dehydrated at 300°C for 3 h and then
subjected to pyridine adsorption for 24 h. After adsorp-
tion of pyridine, the samples were transferred into a va-
cuum oven at 150°C for 3 h to remove the physisorbed
pyridine. Samples were then pressed into disks with a
radius (R) of 1.0 cm. The amount of Lewis acid (L acid)
was quantified according to the Equation (4) described
elsewhere [39]

C IA R W(pyridine on L acid sites) = 1.42 (L) / ,2 (4)

where C is the concentration of L acid sites (mmol g–1
catalyst), IA is the integrated absorbance of L acid band
(cm–1), R is the radius of catalyst disk (cm) and W is the
weight of the disk (mg).

RESULTS AND DISCUSSION

RADS performance of adsorbents
Figs 1, 2 show sulfur adsorption breakthrough curves and
breakthrough sulfur capacities of adsorbents, respectively.
As can be seen, the RADS activity of the adsorbents de-
creases with increasing the crystallization time of ZnO.
Amongst all samples, sample Ni/ZnO-4h achieves the
highest breakthrough time up to 25.5 h with a sulfur
adsorption capacity up to 189.1 mg S g–1. Compared with
Ni/ZnO-4h, Ni/ZnO-8h, Ni/ZnO-17h and Ni/ZnO-48h
achieve a shorter breakthrough time with a decreasing
breakthrough sulfur adsorption capacity. Among all
samples, the adsorbent prepared with the commercial
ZnO presents the lowest RADS activity with a break-
through time of 4.6 h and a sulfur adsorption capacity of
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28.7 mg S g–1, which is only 15.2% of that of Ni/ZnO-4h.
Calculated ZnO conversions of different adsorbents at
breakthrough points are shown in Table 1. As is seen,
among all adsorbents, sample Ni/ZnO-4h has the highest
ZnO conversion of 54.8%. Furthermore, sample Ni/ZnO-
4h also shows a higher capacity than most of other Ni/
ZnO adsorbents with various types of ZnO reported be-
fore [35,36,40–42]. It was widely recognized that the
RADS activity and sulfur adsorption capacity were closely

related to the structure of Ni/ZnO adsorbents, including
the dispersion of active sites (such as metallic Ni0) for C–S
bond cleavage [43], and particle size of ZnO for sulfur
storage [5,22]. Compared with the commercial ZnO de-
rived adsorbent, the superior RADS performance of Ni/
ZnO-xh adsorbent may be related to the unique mor-
phology and nanostructure of ZnO prepared using the
CCSA approach.

SEM analysis
Our previous results have shown that the ZnO precursor
before calcination is a monoclinic zinc carbonate hydro-
xide (ZCH) phase [Zn5(CO3)2(OH)6] (JCPDS card No. 00-
19-1458) [37]. Fig. 3 shows the SEM images of ZCH
precursors obtained at different crystallization times and
corresponding ZnO materials after calcination. As can be
seen, a clew-like 3D superstructure (Fig. 3a) was obtained
after 4 h of crystallization with diameters ranging from 10
to 20 μm. This clew-like superstructure consists of na-
nostrips with a thickness of 30 to 50 nm, and the gaps
between nanostrips are around 100 to 500 nm. After 48 h
of crystallization, a solid rod-like morphology was ob-
tained with a diameter of 78 to 180 μm. According to
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Figure 1 Sulfur adsorption breakthrough (10 ppm) curves of ad-
sorbents.

Table 1 ZnO conversion of different adsorbents to ZnS at the
breakthrough point (10 ppm)

Adsorbents ZnO conversion (%)
Ni/ZnO-4h 54.8
Ni/ZnO-8h 39.6
Ni/ZnO-17h 33.0
Ni/ZnO-48h 10.6
Ni/ZnO-C 8.3
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Figure 2 Breakthrough sulfur capacities of adsorbents.
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Figure 3 (a) SEM images of ZCH-4h; (b) magnified image of the circled
area in image (a); (c) ZnO superstructure after calcining the ZCH pre-
cursor shown in (a); (d) magnified image of the circled area in (c); (e)
ZCH-48h; (f) ZnO particles after calcining the ZCH precursor shown in
(e).
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morphology evolution experiments conducted before
[37], it was believed that the clew-like superstructure of
ZCH precursor was a metastable phase during the crys-
tallization process. In order to reduce the surface energy
of the superstructure, the shrinkage of segment gaps oc-
curred due to the coagulation of the nanostrips and the
surface-smoothing effect [44], resulting in the formation
of the large rod-like structures.
After calcination, the ZnO-4h sample retains the same

clew-like morphology as its ZCH precursor (Fig. 3c). The
magnified SEM image (Fig. 3d) shows that the 3D clew-
like ZnO superstructure consists of numerous thin ZnO
strips with a thickness of about 50 nm, and the nanostrips
are constituted by irregular ZnO nanoparticles connected
with small bridges, exhibiting a nanoporous motif.
Compared with the image shown in Fig. 3b, after calci-
nation, the thickness of the strips remains almost the
same, while a lot of pores appear in the strips due to the
decomposition of ZCH. As the lattice parameters of ZnS
are much higher than those of ZnO, which result in the
volume expansion of adsorbents during the RADS pro-
cess [45], the existence of the small bridges and pores in
ZnO strips is favorable for protecting the adsorbents
particles from breakage by supplying space for the vo-
lume expansion. Furthermore, the unique clew-like
morphology alleviates the agglomeration of ZnO particles
due to the gaps formed by the intersecting and stacking
between different nanostrips, which allow the clew-like
ZnO superstructure to remain loose and open, facilitating
the diffusion of sulfur compounds into it. By contrast, the
morphology of ZCH synthesized with a crystallization
time of 48 h undergoes no obvious change after calcina-
tion. The obtained ZnO exhibits a similar rod-like dense
structure as its ZCH precursor. Such dense structure
brings about strong diffusion resistance to sulfur transfer
into the inner part of the big rods, when the surface of the
big rods is covered with ZnS during the RADS process
[5,30]. Therefore, the superior RADS performance of the
clew-like superstructure could be partially attributed to
the loose structure and small ZnO nanoparticles endowed
by this unique morphology.

XRD characterization
XRD patterns of the Ni/ZnO adsorbents before and after
RADS are shown in Fig. 4. All fresh adsorbents contain
two crystalline phases, a hexagonal wurtzite phase (ZnO,
JCPDS card No. 01-74-0534) and a nickel oxide (JCPDS
card No. 03-065-6920), which is in accordance with that
reported by Babich [28]. For fresh adsorbents, with in-
creasing the crystallization time, the intensity of ZnO

peaks increases, and the crystallite size (shown in Table
S1 (Supplementary information)) calculated by Debye-
Scherrer equation [46], increases from 29 to 57 nm,
which is attributed to the growth of ZCH crystals under
hydrothermal synthesis conditions, consistent with the
SEM results shown in Fig. 3.
The peak intensity of commercial ZnO is higher than

those of synthesized samples, indicating the larger crys-
tallite size of the commercial ZnO sample, which explains
well the lowest RADS performance of Ni/ZnO-C among
all samples. By contrast, an opposite trend is observed for
NiO, i.e., the crystallite size of NiO decreases with the
increase of the crystallization time (Table S1), which is
partially attributed to the smaller ZnO particle size in
ZnO superstructures. Besides, the loose and open super-
structure of ZnO-4h could restrain the aggregation of
NiO and ZnO particles [47] during the calcination pro-
cess because of the gaps between different ZnO nano-
strips. This result indicates that there are more metallic
Ni0 sites available for the C–S bond cleavage in ad-
sorbents with ZnO synthesized at a shorter crystallization
time, which accounts for the highest activity of sample
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Figure 4 XRD patterns of the fresh (a) and spent (b) adsorbents.
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Ni/ZnO-4h among all prepared adsorbents.
As shown in Fig. 4b, after RADS, all samples exhibit a

cubic ZnS phase (JCPDS card No. 03-065-1691). As is
clearly seen, the intensity of ZnS peaks follows a de-
creasing trend with increasing the crystallization time and
the calculated crystallite sizes of ZnS are shown in Table
S1. The ZnO of 29 nm in sample Ni/ZnO-4h is trans-
formed to ZnS of 57 nm, and the ZnO of 57 nm in sample
Ni/ZnO-48h is converted to ZnS of 60 nm.
Therefore, the sample Ni/ZnO-4h has the biggest

crystallite size change when converting from ZnO to ZnS
among all adsorbents, which is in good agreement with
the previous work [48] that the smaller ZnO particles
have a higher conversion rate during RADS process
compared with larger ones. Since the diffusion of sulfur in
ZnO particles becomes the rate-limiting step when ZnO
particles are partially sulfidized [31,49], the ZnO particles
in Ni/ZnO-4h could be more easily sulfidized than those
in other samples because of the smaller crystallite size,
which agrees well with the calculated ZnO conversion
results as shown in Table 1.

TEM analysis
TEM images of the fresh and spent adsorbents are shown
in Fig. 5. As can be seen, Fig. 5a, b shows the micro-
structure of fresh sample Ni/ZnO-4h, and two kinds of
lattice fringes with different spacings are identified, at-
tributed to ZnO and NiO crystals. The porous structure
of the nanostrips shown in Fig. 3 is observed, and the
loose stacking of nanoparticles facilitates the diffusion of
sulfur compounds in adsorbent particles, which partially
explains the excellent activity of sample Ni/ZnO-4h in
RADS. In comparison, as seen in Fig. 5c, d, the particle
size of ZnO in sample Ni/ZnO-48h is much larger than
that in sample Ni/ZnO-4h. The compact structure of
sample Ni/ZnO-48h obstructs the diffusion of reactant/
product molecules in the adsorbent and restrains the ZnO
conversion to ZnS. TEM images of the spent sample Ni/
ZnO-4h shown in Fig. 5e, f clearly demonstrate the pre-
sence of Ni, ZnS and ZnO crystals, consistent with the
XRD results in Fig. 4b. The porous structure of ZnO
nanostrips is retained after RADS and ZnO nanoparticles
are not agglomerated or sintered to form bigger particles
as that usually happens to ZnO nanoparticles, verifying
the intrinsic advantages of the unique clew-like mor-
phology. The voids between and within nanostrips could
also protect the adsorbents particles from breakage
caused by the volume expansion during ZnO sulfidation.
It should be mentioned that Ni, ZnS and ZnO appear in a
single particle, which partly supports the RADS me-

chanism proposed by Huang et al. [27]. During the RADS
process, the thiophenic compound reacts with the active
site Ni0 on the ZnO and produced the Ni3S2. Subse-
quently, the sulfur in Ni3S2 is converted to H2S in the
hydrogen atmosphere, which is captured by ZnO and
converted to ZnS. As a result, Ni is regenerated to Ni0 and
ready for the next RADS cycle.

Textual properties
Fig. S1 shows the N2 adsorption-desorption isotherms
and PSD curves of the fresh Ni/ZnO adsorbents. All ad-
sorbents derived from the synthesized ZnO materials
exhibit adsorption isotherms of between type-IV and
type-III, indicating the adsorbents contain both meso-
pores and macropores. By contrast, sample Ni/ZnO-C
shows a typical non-porous structure with a very low N2

adsorption quantity, indicating the low surface area and
low pore volume, which is confirmed by the results
shown in Table S2. Except sample Ni/ZnO-C, all samples
possess an H-3 hysteresis loop in the isotherms, eviden-
cing that adsorbents are aggregates of plate-like particles
giving rise to slit-shape pores [50], consistent with the
nanostrip structure of ZnO as confirmed by SEM results.
The PSD curves (Fig. S1b) show that all samples exhibit a
bimodal pore size distribution. The sharp peak at around
3 nm is attributed to the tensile strength effect (TSE) and
is not an indication of a real pore size distribution [51],
while the larger and broad one in the range of 10–40 nm
could be ascribed to the nanopores in the ZnO nanostrips
[52].

a b

f

dc

e

Figure 5 TEM images of the fresh Ni/ZnO-4h (a, b), fresh Ni/ZnO-48h
(c, d), and spent Ni/ZnO-4h (e, f).
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In order to understand the variation in adsorbent’s pore
structure during the RADS process, the textural proper-
ties of the spent adsorbents were characterized and shown
in Fig. S2. As can be seen, the N2 adsorption amount
decreased for all adsorbents after RADS, which may be
attributed to the sulfur adsorption, sintering and/or coke
deposition during the RADS process. As summarized in
Table S2, there are obvious declines in both surface area
and pore volume for all samples after RADS. With in-
creasing the crystallization time, the variations in surface
area and pore volume generally exhibit a decreasing
trend, reflecting the difference in the reactivity of ad-
sorbents. Since the lattice parameters of ZnS are larger
than those of ZnO, the pore shrinkage and blockage will
occur during the RADS process due to the ZnO volume
expansion, resulting in the decrease in both surface area
and pore volume. As sample Ni/ZnO-4h possesses the
highest reactivity, it has the largest decrease in both
surface area and pore volume after RADS. By contrast,
sample Ni/ZnO-C exhibits the lowest variation in the
pore structure due to its poor RADS activity.

FT-IR analysis
To study the structural variation of ZnO, FT-IR spec-
troscopy was applied to characterize the Ni/ZnO ad-
sorbents before and after RADS (Fig. S3). As can be seen,
FT-IR spectra of the fresh adsorbents (Fig. S3a) show a
series of transmission bands at 664, 881 and 1385 cm–1,
which are assigned to Zn–O stretching vibrations
[20,53,54]. After RADS, the characteristic peaks of ZnS
(Fig. S3b) appear in all samples at around 623, 1049 and
1090 cm–1. The band at 623 cm–1 is ascribed to the Zn–S
stretching vibration [54,55], while that at 1049 cm–1 is
assigned to the resonance interaction of S2− on the ZnS
crystals [20,54,56]. And the characteristic peak at around
1090 cm–1 is attributed to the stretching mode of ZnS
[20,55]. Besides the characteristic Zn–O stretching bands,
a peak at 1400 cm–1 assignable to the OH bending vi-
bration in pure ZnO is observed for all spent samples,
indicating the incomplete conversion of ZnO during the
RADS process [53]. In a comparison, the intensity of the
band at 1385 cm–1 clearly exhibits a decreasing trend with
increasing the crystallization time, evidencing the higher
ZnO conversion in adsorbents with ZnO synthesized at a
shorter crystallization time, consistent with the results
shown in Table 1.
As organosulfur compounds have strong tendency to

adsorb on Lewis acid sites due to the basicity of lone
electron pair, a high amount of Lewis acid sites are
beneficial for the adsorption of thiophene molecules and

the subsequent C–S bond cleavage [57,58]. Therefore, the
pyridine adsorption FT-IR analysis of adsorbents was
conducted and shown in Fig. S4. As can be seen, all
samples exhibit a band at 1450 cm–1 attributed to the 19bν
(C–C) vibration of pyridine molecules adsorbed at the
Lewis acid site [59,60]. Among all tested adsorbents (see
Table S3), sample Ni/ZnO-4h possesses the highest con-
centration of Lewis acid (1.079 mmol g–1) compared with
other samples, which partially accounts for its high RADS
activity.

H2-TPR measurements
Since the breakage of C–S bonds is the rate-limiting step
in the initial stage of RADS process and metal Ni0 sites
are responsible for the hydrogenolysis activity [31], the
chemical state and reducibility of NiO strongly affect the
reaction rate. Hence, we characterized the adsorbents by
using H2-TPR technique shown in Fig. 6.
As seen, all samples show three H2 reduction peaks

between 200 to 500°C in adsorbents with synthesized
ZnO, whereas only two peaks appear for the adsorbent
synthesized with the commercial ZnO. The appearance of
these peaks is ascribed to the Ni2+�Ni0 reduction [27,61]
of the nickel oxide which has different interactions with
the ZnO [47]. The appearance of a weak peak at 250°C for
all samples except sample Ni/ZnO-C is attributed to
surface free Ni species. The broad peak at ca. 350°C and a
large peak at ca. 450°C for all samples are attributed to the
reduction of Ni2+ species weakly and strongly interacted
with ZnO, respectively [62,63]. The percentage of the H2

consumption peak at ca. 350°C was calculated for all
samples, revealing that the ratio of the NiO reduced at ca.
350°C decreases with increasing the crystallization time
and sample Ni/ZnO-4h has the highest amount (16%) of
weakly interacted Ni2+ species among all the samples,
which implies that the open morphology and small par-
ticle sizes of ZnO in sample ZnO-4h are favorable for the
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Figure 6 H2-TPR profiles of the fresh adsorbents.
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dispersion of easily reducible Ni species. By contrast, the
strongly interacted Ni2+ species with the reduction peak at
ca. 450°C are not able to be reduced under mild pre-
reduction conditions (400°C) [64], not contributing to
the activity of adsorbents. The shoulder spanning from
500 to 750°C could be ascribed to the reduction of NiO
species which are strongly attached to the ZnO crystals
with the possible formation of Ni-Zn alloy [47]. Among
all samples, Ni/ZnO-4h has the lowest ratio of H2 con-
sumption in this range, also indicating the easy re-
ducibility of Ni species in this sample.

CONCLUSIONS
In this work, a clew-like ZnO superstructure was pre-
pared and evaluated with the RADS of a model fuel with a
high sulfur concentration. Among all test samples, sample
Ni/ZnO-4h exhibits the best performance with a
189.1 mg S g–1 sulfur capacity, which is above 6 times that
of the sample prepared with the commercial ZnO. By
combining characterization results, the superior perfor-
mance of Ni/ZnO-4h to others is clarified to be related to
the following factors: (i) small ZnO particles decrease the
diffusion resistance of sulfur diffusion in ZnO crystals
and promote the dispersion of Ni; (ii) the loose and open
architecture of the clew-like ZnO morphology enhances
the diffusion of reactants/products in the adsorbent.
Considering the facile synthesis route of the CCSA ap-
proach and the advantageous features of the clew-like
superstructure, the ZnO prepared via the CCSA approach
exhibits great potential in the design of industrial ad-
sorbents with superior RADS performance.
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