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SPECIAL ISSUE: Biomaterial Foundations of Therapeutic Delivery

Cell membrane-coated nanoparticles for
tumor-targeted drug delivery
Zhilan Chai, Xuefeng Hu and Weiyue Lu*

ABSTRACT  Nanoparticles can be enriched at tumor site
and improve the therapeutic efficacy of many chemother-
apy drugs with the well-known enhanced permeability and
retention (EPR) effect. While conventional preparations of
materials for nanoscale drug delivery system mainly focused
on chemical synthesis, recently the combination of synthetic
carrier and natural biomimetic carrier has gained more
and more attention. As a new generation of biomimetic
nanoparticles, cell membrane-coated nanoparticles combine
the complex biological functions of natural membranes and
the physicochemical properties of synthetic nanomaterials
for a more effective drug delivery. Herein, we briefly review
the recent advances on cell membrane-coated nanoparticles
for tumor-targeted drug delivery via the prolonging systemic
circulation lifetime and the active targeting effect. Since the
preferential accumulation of cell membrane-coated nanopar-
ticles in tumor site, they are able to improve the therapeutic
efficacy of conventional chemotherapy drugs in antitumor
treatment as well as to reduce the systemic toxicity. We also
introduce a systematic targeted strategy for the promising
application of this platform on brain tumors.

Keywords:  cell membrane, biomimetic nanoparticle, tumor-tar-
geting, drug delivery

INTRODUCTION
At present, nature-inspired biomimetic delivery systems
which combine synthetic materials and natural biomate-
rials have caught the attention of researchers due to their
unique advantages. Coating the intact membranes isolated
from cells on the surface of nanoparticles can endow this
new nanocarrier with both the physicochemical properties
of synthetic nanomaterials and the complicated biological
functions of cell membranes. For instance, the red blood
cell membrane-coated nanoparticles (RBCNPs) have been
developed for detoxification. Loading RBCNPs into hy-
drogels and the resulting nanosponge could absorb toxins

in local bacterial infection treatments [1], while RBCNPs
detained staphylococcal α-hemolysin (Hla) were also for-
mulated as an anti-virulence vaccine for protection against
bacterial pathogens [2]. With the expression of functional
membrane-bound acetylcholinesterace on red blood cell
membranes (RBC membranes), an anti-organophosphate
agent was developed to improve the acetyl cholinesterase
(AChE) activity in the blood for systemic organophosphate
neutralization [3]. Moreover, utilizing the adhesion anti-
gens and immunomodulatory of the platelets, the platelet
membrane coated-nanoparticles enhanced the therapeutic
efficacy of docetaxel and vancomycin in coronary resteno-
sis and systemic bacterial infection treatments [4].

Current studies have proved the great potential of the
cell membrane-coated nanoparticles in the development of
nanoscale drug delivery system in various therapies [5]. In
recent years, cancer has been one of the main threats to hu-
man health. Presently, most of the anticancer drugs used
in clinic do not possess targeting functions [6]. Their sim-
ple diffusion and free distribution in human body lead to
the lack of tumor specificity and the low drug concentra-
tion in tumor site which cause the limited therapeutic ef-
ficacy to tumors and serious side effects to normal tissues
and organs [7], and therefore reduce the life quality of pa-
tients. Still the lack of clinical efficacy and safety remains
the main reason of the failure in late-stage clinical trials of
most chemotherapy drugs [8].

Compared with conventional pharmaceutical formula-
tions, nanoscale drug delivery system has shown its obvi-
ous advantages in improving drug solubility [9], prolong-
ing systemic circulation time [10] and in controlling re-
lease of drug [11]. On the one hand, since the existence
of EPR effect in tumors [12], nanoparticles are able to en-
ter and concentrate in the tumor site through the pores on
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tumor angiogenesis and achieve the so-called passive tar-
geting [13]; on the other hand, with the conjugation of
targeting molecules like glycosyl [14,15], small molecules
[16], antibodies [17], peptides [18–20] on the surface of
nanoparticles, they can specifically bind to the target cells
and achieve the so-called active targeting. Meanwhile, to
decrease the identification of monocytes and macrophages
and to prolong the systemic retention time of nanoparticles,
hydrophilic polymers such as polyethylene glycol (PEG) are
covalently conjugated to the surface of nanoparticles in or-
der to improve the hydrophilicity, flexibility and steric hin-
drance [21]. However, recent studies have suggested that
exogenous substances like PEG possess immunogenicity
and that the in vivo clearance rate of PEGylated nanoparti-
cles could be accelerated after multiple doses [22].

Cell membrane-coated nanoparticles can be disguised as
endogenous substances, not only reduce reticuloendothe-
lial system uptake [23], but also avoid the immunological
recognition [24]. With the targeting capability to source
cells of cell membrane itself, active-targeting can be
achieved by this platform as well. This review is to illustrate
the applications of cell membrane-coated nanoparticles in
tumor-targeted drug delivery from its prolonging systemic
circulation and tumor-specific targeting effect.

THE PROLONGING SYSTEMIC
CIRCULATION OF CELL MEMBRANE-
COATED NANOPARTICLES
The long-circulating nanoparticles can sustainedly release
drug in vivo and increase the accumulation of drug in tu-
mor site through the EPR effect [25]. Along with the new
developments in molecular and cellular biology, currently
scientists have turned their attention from synthetic mate-
rials to natural materials.

The red blood cell (RBC) was found to be a natural
long-circulating carrier [26], and its unique biological
structure and function provide it with the possibility to be
designed as a new kind of carrier material [27]. However,
due to the complexity of the surface proteins of a biological
cell, it is impractical to synthesize all the proteins through
conventional chemical methods. Hu et al. [28] have suc-
cessfully formulated this biomimetic carrier through the
separation and extraction of RBC membrane and then
coated it onto the surface of nanoparticles. The RBCs
are isolated from whole blood and their membranes are
obtained after the removal of intracellular components by
hypotonic treatment. The membrane vesicles were formed
with the collected whole cell membranes through physical
extrusion and then are coated onto the poly(lactic-co-gly-

colic acid) (PLGA) nanoparticles through mechanical
coextrusion and the resulting RBC membrane-coated
nanoparticles (RBCNPs) present a core-shell structure.
Surface chemistry study has demonstrated that the RBC
membranes are coated onto the surface of nanoparticles in
a right-side-out manner to ensure the same performance
of molecule interactions of the surface antigens [29,30].
Immunohistochemistry studies have shown that the sur-
face antigen density (such as CD47) of RBCNPs was the
same as that of RBCs; with respect to PLGA nanoparticles,
the uptake by macrophages was reduced by 64% in vitro,
confirming its immune circumvention [31]. Based on a
two-compartment model, the RBCNPs possessed a signif-
icantly longer systemic circulation than PEGylated PLGA
nanoparticles, the elimination half time of RBCNPs was
39.6 h and that of PEGylated nanoparticles was only 15.8
h [28]. A similar result was provided by the comparison
between gold nanocages (AuNCs) and RBC membrane
coated AuNCs (RBC-AuNCs) [32]. The RBC-AuNCs
possessed a nearly ten-fold in vivo circulation lifetime than
the poly(vinylpyrrolidone)-coated AuNCs. In summary,
coating synthetic nanoparticles with cell membranes equip
them with the surface proteins of the membranes, leading
to the reduction of in vivo clearance rate and a longer
circulation time compared to conventional nanoparticles,
which is the strength for targeting drug delivery.

Drug loaded RBCNPs have shown an outstanding tumor
suppression effect and a lower systemic toxicity as well.
Compared to free doxorubicin (Dox), Dox-loaded RBC-
NPs presented better in vitro stability and sustained drug
release, with approximately 85% of drug released from
RBCNPs in comparison to 100% from PEGylated NPs in
72 h [33]. A recent study indicated that RBCNPs could de-
liver Dox to solid tumor site and inhibit the tumor growth
in a lymphoma model with excellent in vivo safety and im-
munocompatibility [34]. The median survival of mice was
extended from 24 d for the isotonic sucrose-treated group
to 47 d for the RBCNPs/Dox-treated group. Hematological
parameters showed no abnormality in white blood cell
count of RBCNPs/Dox-treated mice while a significant
decrease was observed in that of free Dox-treated group.
Additionally, no elevation of serum IL-6 level was observed
with RBCNPs administration, indicating the lack of acute
systemic inflammatory response. Su et al. [35] formulated
paclitaxel-loaded RBCNP and co-administrated it with
iRGD for antitumor therapy. While taking advantages of
the prolonging circulation of RBCNPs and the tumor pen-
etration property of iRGD, the antitumor studies used a
metastatic 4T1 breast cancer model and illustrated that the

 June 2017 | Vol.60 No.6 505 
© Science China Press and Springer-Verlag Berlin Heidelberg 2017

SCIENCE CHINA Materials REVIEWS



tumor growth was inhibited by 90% and lung metastasis
was suppressed by 95% with lower hematological toxicity.
These findings highlight the potential therapeutic efficacy
of drug loaded RBCNPs in antitumor treatments since the
existence of EPR effect and the sustained drug release in
tumor sites.

Overall, the current studies have suggested that RBCNPs
possess a prolonged circulation lifetime and sustained drug
release property. The resulting enhanced therapeutic effi-
cacy of RBCNPs paired with the reduced systemic toxicity
endows this drug delivery systemwithmany essential prop-
erties for a clinical transformation.

THE TUMOR-SPECIFIC TARGETING CELL
MEMBRANE-COATED NANOPARTICLES
In order to improve the selectivity and specificity of
nanoscale drug delivery system, cell-specific targeting
nanocarrier has become the hotspot of tumor therapy. Ac-
tive targeting drug delivery system has been demonstrated
to selectively enter into the tumor cell and results in better
therapeutic efficacy [36–38]. For cell membrane-coated
nanoparticles, active-targeting can be achieved by intro-
ducing targeting ligands through lipid insertion method
or by utilizing the targeting capability to source cells of cell
membrane itself.

Tumor-specific targeting via lipid insertion
Currently, chemical synthesis strategies are most widely
used to functionalize nanoparticles with targeting ligands,
including carboxyl-, amine- and thiol-based chemistry
[39,40]. However, for cell membrane-coated nanoparticles,
other functionalization strategies should be developed
instead of chemical synthesis to protect the integrity of
carbohydrates and proteins located on the cell membranes.
Fang et al. [41] developed a non-destructive strategy to
introduce targeting ligands to RBCNPs, which is so-called
lipid insertion. Targeting ligands was first conjugated to
lipid molecules and then inserted into the RBC mem-
branes. This kind of insertion is allowed by the fluidity and
dynamic conformation of themembrane bilayers, therefore
it not only protects the surface proteins of RBC mem-
branes but also controls the density of targeting ligands.
Researchers successfully decorated small molecules like
folic acid (Mw = 441 Da) and macromolecules like AS1411
(Mw = 9000 Da) onto the surface of RBCNPs, and the
functionalized RBCNPs showed significant targeting effect
on KB cells and MCF-7 cells. Fu et al. [42] decorated a tu-
mor-targeting peptide RGD (Arg-Gly-Asp) onto the RBC

membrane coated magnetic O-carboxymethyl-chitosan
nanoparticle and co-encapsulated two drugs, doxoru-
bincin and paclitaxel, into it. The resulting tumor-targeted
nanoparticles were superior to the traditional PEGylated
nanoparticles and non-targeted RBC membrane coated
nanoparticles in the inhibition of tumor growth since its
prolonging circulation and specific cell uptake.

Tumor-specific targeting via cell membrane-coating
Besides the lipid insertionmethod, the cellmembrane coat-
ing itself can also achieve the active targeting because of the
intrinsic homotypic or heterotypic adhesion properties of
source cells. This kind of natural adhesion plays an impor-
tant role in biology and can be utilized.

The homologous adhesion domains of the surface anti-
gens on cancer cell membrane like carcinoembtyonic anti-
gen and galectin-3 provided it with the homotypic target-
ing property [43]. This kind of adhesion property is the
key to tumor formation and metastasis [44]. Researchers
separated membranes from MDA-MB-435 breast cancer
cells and coated them onto the PLGA nanoparticles. The
resulted cancer cell membrane-coated nanoparticles were
significantly uptaken by MDA-MB-435 cells in vitro, about
40-fold than PLGA NPs and 20-fold than RBCNPs. More-
over, the uptake was specific as there was no significant dif-
ference on the uptake by human foreskin fibroblasts cells
among these three formulations. This platform colocal-
ized multiple antigens and immunological adjuvants in one
particle, which enabled the uptake of membrane-bound
tumor antigens for efficient presentation and downstream
immune activation [45].

The surface proteins on macrophage cell membrane
(MPCM) such as Toll-like receptors and interleukin-1
receptor can specifically recognize the tumor endothelium
which enables it to actively target tumor site [46]. Xuan et
al. [47] coated MPCMs onto Dox loaded magnetic silica
nanoparticles (MSNs) and the resulted MPCM-coated
MSNs showed higher toxicity to 4T1 breast cancer cells
in vitro, compared to free Dox and Dox loaded silica
nanoparticles. The in vivo antitumor study illustrated that
the tumor growth of mice with 4T1 breast cancer model
was effectively inhibited by Dox-loading MPCM-coated
MSNs due to the prolonging circulation and active target-
ing ability. The tumor volume of mice of MPCM-coated
MSNs group showed almost no change 15 d after injection,
while those of free Dox group and MSNs group increased
by approximately 5.4-fold and 3.5-fold, respectively.

Since the existence of adhesion receptors-mediated
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leukocyte-endothelial cell recognition and interactions
[48], the leukocytes possess the capability to bind the in-
flamed endothelium and the potential to actively recognize
tumor endothelium. The leukocyte membrane-coated
nanoparticle (LMNP) was developed, and the surface
adsorption of protein (IgG and albumin) was decreased
and the uptake by macrophages was reduced by 75%. Since
LMNP was able to communicate with endothelial cells and
transport across the endothelial layer, the accumulation
of nanoparticles in tumor site was improved by approxi-
mately 2-fold based on a melanoma model [49].

The biomolecular binding such as P-selectin and CD44
receptors and the structure-based capture [50,51] enable
platelets to recognize and interact with circulating tumor
cells (CTCs). The aggregation of platelets around CTCs
contributes to their survival in blood and leads to tumor
metastasis [52–54]. Recently researchers have developed
a platelet membrane-coated nanomedicine (PMNP) with
TRAIL inserted onto the outer membrane and Dox loaded
into the inner nanoparticles. Owing to the interaction be-
tween platelet and CTCs, the PMNP specifically delivered
TRAIL to cancer cell membrane and activated the extrinsic
apoptosis pathway. Meanwhile, Dox accumulation at nu-
clei was also increased and activated the intrinsic apopto-
sis pathway. The in vivo antitumor efficacy was studied on
MDA-MB-231 breast cancer model and the TRAIL-Dox-
PMNP group showed the most significant tumor growth
inhibition and a slight decrease in lung metastasis, with no
obvious toxicity on normal organs observed [55].

Ultimately, lipid insertion method allows RBCNPs to
become long-circulating nanoparticles with tumor-tar-
geting effect, while cell membrane (including cancer cell,
macrophage, leukocyte and platelet) -coated nanoparticles
achieve the same purpose utilizing the biological functions
of cell membranes themselves. In either way, this kind of
biomimetic nanoparticles have shown great potential for
tumor-targeted drug delivery, with improved accumula-
tion in tumor sites and reduced side effects.

CONCLUSIONS AND PROSPECTIVE
Coating cell membranes onto the surface of nanoparticles
in a right-side-out manner endows this new biomimetic
nanocarrier with significant potential for tumor-targeting
therapy. The membrane maintaining all the lipids, pro-
teins and glycosyls prolongs the circulation time of the
nanoparticle and improves the accumulation in tumor site
utilizing the biological properties of membrane itself. For
precise treatment on tumor, active-targeting strategy has
attracted extensive attention in recent decades [56–58].

Through lipid insertion or certain cell membrane coating,
the resulted nanoparticles are functionalized with specific
targeting property without destruction on membrane pro-
teins and become an active-targeting strategy for a variety
of cancers (Fig. 1), including solid tumor cancer (breast
cancer and lymphomas) and circulating and metastasis
cancer (leukemias). Currently, cell membrane-coating
strategy has been rapidly applied on various types of
nanostructures, including PLGA nanoparticles [59,60],
gold nanoparticles [61,62], silica nanoparticles [47] and
gelatin [63]. Towards the future, individual formulations
can be customized according to patients’ certain treat-
ments in clinic. Since cell membrane-coated nanoparticles
maintain the biological function of cell membranes, this
platform possesses splendid in vivo safety and biocom-
patibility which are most regarded in clinical application.
Meanwhile, the antitumor effect of this platform has also
been proved in various cancer models on mice. Cell mem-
brane-coated nanoparticles, as a new nanotherapeutics
with reduced systemic toxicity and enhanced therapeutic
efficacy, hold great potential on clinical translation.

Nevertheless, the current researches on cell mem-
brane-coated nanoparticles mainly focus on peripheral
system diseases, little advances have been achieved in the
central nervous system (CNS) diseases. Primary brain and
CNS tumors threaten human health severely since their
fast development, poor diagnosis and rapid recurrence.
Due to the existence of blood brain barrier (BBB) and
the blood brain tumor barrier (BBTB) [64–66], conven-
tional chemotherapy drugs cannot be delivered to brain
effectively, which causes few accumulation in tumor sites
and severe systematic side effects. In this case, an overall
targeting drug delivery system called “systematic targeted
drug delivery” has been proposed to be a promising way for
the treatments of brain tumors. The “systematic targeted
drug delivery” aims at all the potential targets existing in
the whole process of brain tumors oncogenesis and devel-
opment. At the early stage of brain tumors, BBB remains
intact and continues to be the key barrier for drug delivery;
With the progression of brain tumors, tumor neovascula-
ture has formed and BBTB which locates between tumor
tissues and microvessels becomes the main limitation of
drug delivery, meanwhile BBB still exists around the tumor
edge of infiltrating glioma and impedes the transport of
drugs. Additionally, vasculogenic mimicry, the microen-
vironment of tumor site and tumor stem cells should also
be taken into consideration in the design of drug delivery
system as potential targets in brain tumor treatment. With
successful modification  of  targeting  ligands,  “systematic
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Figure 1   Stategies to “camouflage” nanoparticle for prolonged circulation and active tumor-targeting.

targeted drug delivery” is hoped to be achieved by cell
membrane-coated nanoparticles, the obvious less retic-
uloendothelial system uptake and immunorecognition
of this platform also endow it with a longer systematic
retention time and more probabilities to traverse multiple
barriers in order to release drugs in tumor site accurately
and sustainedly. We believe that with the continuous
improvements and perfection of the targeting strategies
of cell membrane-coated nanoparticles, this platform will
hold great potential for a more effective tumor-targeted
drug delivery system.
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用于肿瘤靶向递药的细胞膜包覆纳米粒子
柴芝兰, 胡雪峰, 陆伟跃*

摘要   由于EPR效应,纳米粒子能够在肿瘤部位浓集并提高许多化疗药物的治疗指数. 传统纳米递药系统的载体材料主要通过化学合成方
法制备,而目前将化学合成载体与天然仿生载体相结合的策略得到越来越多的关注. 细胞膜包覆纳米粒子作为新一代仿生纳米制剂,它将
细胞膜特有的生物学功能与化学合成材料的理化性质相结合,形成更有效的递药系统. 本文就细胞膜包覆纳米粒子的长循环效果及主动
靶向作用在肿瘤靶向治疗中的研究进行综述,并就其在脑部肿瘤治疗中的应用前景进行了展望.
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