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ABSTRACT  Flexible thin-film organic semiconductor de-
vices have received wide attention due to favorable properties
such as light-weight, flexibility, reproducible semiconductor
resources, easy tuning of functional properties via molec-
ular tailoring, and low cost large-area solution-procession.
Among them, ultraflexible electronics, usually with mini-
mum bending radius of less than 1 mm, are essential for the
development of epidermal and bio-implanted electronics,
wearable electronics, collapsible and portable electronics,
three dimensional (3D) surface compliable electronics, and
bionics. This review firstly gives a brief introduction of
development from flexible to ultraflexible organic semicon-
ductor electronics, and design of ultraflexible devices, then
summarizes the recent advances in ultraflexible thin-film
organic semiconductor devices, focusing on organic field
effect transistors, organic light-emitting diodes, organic
solar cells and organic memory devices.

Keywords:  flexible electronics, organic field effect transistors,
organic light-emitting diodes, organic solar cells, organic mem-
ory devices

INTRODUCTION
Organic electronics have received increasing attention
due to favorable properties such as light-weight, flexibil-
ity, reproducible semiconductor resources, easy tuning
of properties via molecular modification, and, most
importantly, low cost, high throughput and large-area
solution-processable fabrication techniques which are
compatible with screen printing, ink jet printing and
roll-to-roll coating techniques. Organic functional elec-
tronic devices, employing organic small molecule or
polymer-based active semiconductors, mainly include

organic field effect transistors (OFETs), organic light-emit-
ting diodes (OLEDs), organic solar cells (OSCs), organic
memory devices (OMDs), and so on. The active semi-
conductors can be organic channel materials for OFETs,
organic light-emitting materials for OLEDs, organic pho-
toactive materials for OSCs, organic memory materials for
OMDs. To date, great improvements have been made for
achieving high performance that is comparable to their
inorganic counterparts [1–18].

However, most of these flexible devices exhibit mini-
mum bending radius (Rb) of more than 1 mm, which easily
causes bending-induced damages unless carefully pro-
tected. This significantly limits their practical applications
for requirements of high durability and robustness such
as intensely packed collapsible and portable electronics,
wearable electronics, epidermal and bio-implanted elec-
tronics, and mechanically three dimensional (3D) surface
compliable in-door and out-door devices, and bionics
[19–27]. For such applications, ultraflexibility (Rb ≤ 1
mm), for intimate conformabilities with the surfaces of
arbitrary complex-shaped static and moving objects, is re-
quired so that the devices can survive repeated crumpling,
creasing, sharp folding, or even stretching.

In this review, the development from flexible to ultraflex-
ible organic semiconductor electronics, and design of ultra-
flexible devices were firstly introduced briefly. Then, the re-
cent advances of ultraflexible functional electronic devices
based on organic semiconductors were summarized, focus-
ing on OFETs, OSCs, OLEDs and OMDs. Some of the sig-
nificant developments were depicted in Fig. 1. Other ultra-
flexible electronic devices,  utilizing  one or  more organic
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Figure 1    The development from flexible to ultraflexible organic semiconductor devices (OLED: organic light-emitting diode, OFET: organic field effect
transistor; OSC: organic solar cell; OMD: organic memory device).

elements, such as sensors [28,29] and organic electrochem-
ical transistor [30], are not included here, and interested
readers are directed to other excellent articles on these sub-
jects.

DEVELOPMENT FROM FLEXIBLE
TO ULTRAFLEXIBLE ORGANIC
SEMICONDUCTOR ELECTRONICS

Brief history of flexible organic semiconductor devices
Since Heeger’s group [31] developed the first full flexible
polymer-based OLED on polyethylene terephthalate (PET)
substrate in 1992, flexible organic semiconductor elec-
tronics have widely received great attentions in scientific
communities. In 1994, the first all polymer flexible OFET
was developed by Garnier and coworkers [32] using print-
ing techniques. Based on this, flexible OLED array [33]
and circuit matrix [34] have been reported, respectively. In
2003, the first organic write-once read-many-times mem-
ory device was demonstrated by Forrest’s group [35]. In
2004, Aernouts and coworkers [36] used highly conductive

poly(3, 4-ethylenedioxythiophene)/poly(4-styrenesul-
fonate) (PEDOT:PSS) as a flexible transparent anode to
fabricate flexible organic solar cell modules. In the last
decades, high-performance flexible organic semiconduc-
tor devices have been continually pursued by scientific
communities [16,37−48]. For example, OLEDs with ex-
ternal quantum efficiency (EQE) of >30% for blue [1–4]
and green [5–9] emitting devices, and>20% for red [49]
emitting devices, OSCs [10,11] and organic-inorganic
hybrid perovskite solar cells [12] with power current effi-
ciency (PCE) of >10% and 20%, respectively, OFETs with
mobility of several tens cm2 V−1 s−1 [13,14] and OMDs
with high densities, high on/off ratios, fast response and
long durability [15–18] have been reported.

Design of flexible organic semiconductor devices

Flexible device configurations
To fabricate flexible devices, utilization of the thin-film
flexible substrates and/or electrodes is commonly adopted
[50]. The flexible substrates usually are plastic platforms
such as PET, polyimide (PI), polyethylene naphthalate
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(PEN) and polycarbonate (PC). Other flexible substrates
include textile [51,52], silk [53,54], paper [55–58], metal-
foil [59,60], shape-memory polymer [61–63] and so on.
Besides, weavable and fiber-like electrode [17,64]/device
configurations [65–69], or even substrate-free free-stand-
ing configurations [70] are also demonstrated as effective
ways for obtaining flexible devices. This review will focus
on the thin-film organic semiconductor devices.

Design of flexible electrodes
As fundamental components of organic electronic devices,
thin-film electrodes firstly need to be endowed with flex-
ibility for fabrication of ultraflexible organic electronic
devices. The flexible electrodes should exhibit little or
even no change in conductivity at bending or folding
states. The non-transparent flexible electrodes are mainly
based on ductile metals such as Au and Al [37,39,40], and
other conductors which are either dispersed in polymer
matrix [31] or deposited onto flexible substrates [71].
However, for organic optoelectronic devices such as OSCs
and OLEDs, in addition to high conductivity, high trans-
parency is also demanded for efficient light transmittance.
The most commonly used transparent electrode is indium
tin oxide (ITO), due to its high conductivity for ensuring
high performance as well as high transparency for efficient
light penetration [72–74]. Although, flexible ITO-based
devices such as OSCs [74,75], OLEDs [76,77] and OLECs
[78,79] are reported, the intrinsic brittleness of ITO limits
the further improvement of their flexibility for various ap-
plications. Therefore, it is essential to develop transparent,
flexible, and conductive (TFC) electrodes to fabricate the
ultraflexible organic optoelectronic devices.

For thin conducting films, sheet resistance (Rs) and trans-
mittance (T) are linked through Equation (1) [80]:

T
R

( ) 1 188.5 ( )
.
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Tomeetminimum industry standards, a conductive elec-
trode with σOP/σDC ≥ 35, corresponding to T = 90% and Rs

= 100 Ω/sq, is generally demanded [80,81]. For the same
electrode material, when Rs decreases, T simultaneously
decreases. Therefore, the compromise between these two
parameters should be reached to optimize the conductive
films.

To date, the TFC electrodes are mostly based on PE-
DOT [36,70,74,82–98], graphene (GF) [73,75,99–112],
carbon nanotubes (CNTs) [73,101,102,106–109,113],
Ag-based nanowires/grids/films [72,114–125], cop-
per nanowires [126] and ionic hydrogels [127], some

of which exhibit good performances comparable to
ITO electrodes (see Fig. 2). Correspondingly, some
of optoelectronic devices using these TFC electrodes
exhibit comparable performances to their ITO-based
counterparts on rigid glass or flexible plastic substrates
[45,70,72,74,75,83,87,88,101,103,118–120,128,129] . To
further enhance the light extraction or light trapping in the
devices, nanostructures or nanoparticles are introduced
into these TFC electrodes for improving the device perfor-
mances [47,130–140]. Besides these thin-film electrodes,
fiber-/mesh-shaped electrodes also demonstrated good
flexibility [17,51,64,67,68].

Fabrication of ultraflexible devices
It is known that a bending strain is defined by a func-
tion of ε = hs/(2Rb), where hs is the substrate thick-
ness and Rb is the bending radius [141]. Therefore, to
reduce the bending strain at extreme bending states
(corresponding to a very small Rb), ultra-thin substrate
[60,96,97,123,124,139,142–148] or even substrate-free
configurations [149–151] which reduce the total thickness
of the devices and achieve ultraflexibility or extreme con-
formability, are generally employed.

Another consideration is to place a device at the neu-
tral strain or neutral-plane position, i.e., the exact center
along the film thickness direction where no strain is in-
duced when the film is bent [26,27]. However, precise con-
trol of the thickness of the neighboring layers is difficult. In
addition, because the actual thickness of a device is greater
than zero, some parts of the device layers slip slightly from

Figure 2    Transmittance at 550 nm (T550) is plotted against sheet
resistance (Rs) for ITO [72–75], PEDOT [70,74,82–89,96,97], Ag-based
NWs/grid/film [72,114–120,123,124], CNTs [73,101,102,106–109],
graphene [73,75,101–109] and ionic hydrogels [127].
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the neutral-strain position, inevitably causing perfor-
mance changes under strain. Therefore, this neutral-plane
method is generally used as a complement to the design of
the ultrathin device configuration [142,152].

ULTRAFLEXILBE ORGANIC
SEMICONDUCTOR DEVICES

Ultraflexible organic field effect transistors
OFETs are basic building blocks for organic logic circuits
and are essential for the development of printable and
flexible electronic technologies [153,154]. For flexible
OFETs, high performance includes high mobility, high
on/off ratio, low operating voltage, fast response time and
high yield in matrix arrays [37,40,155–158]. However,
ultraflexible OFETs with minimum Rb less than 1 mm are
rarely reported. To achieve ultraflexible OFETs, ultrathin
substrates or dielectric layers are generally used. In 2005,
Someya’s group [142,152] fabricated an ultraflexible pen-
tacene-based OFET with a mobility of 0.5 cm2 V−1 s−1 and
an on/off ratio of 105, which remains functional at Rb of
0.5 mm. The key to realize the ultra-flexibility is to utilize
the ultrathin substrate and encapsulation layers (both of 13
μm-thickness), with the transistors embedded at a neutral
position. The sandwiched structure can drastically sup-
press strain-induced changes in transistor characteristics.
No significant change was observed after 60,000 bending
inward and outward cycles with Rb = 2 mm. When Rb

decreases up to 0.5 mm, the mobility increases by 20% on
inward bending stress, and decreases by 30% on outward
bending stress.

Further efforts were put in developing bending-resistant
OFETs at extreme bending states [159]. Someya [143]
further improved the device structure to avoid this bend-
ing-induced damage in device performance. By using a
500-nm-thick atomically smooth planarization coating
on ultrathin PI substrate, the surface root-mean-square
(RMS) roughness decreases from 2.5 nm to 0.3 nm. Cor-
respondingly, the resulting device can operate without
degradation even being folded into a very small radius of
100 μm (Fig. 3). They developed imperceptible and ul-
traflexible OFETs with an ultra-dense oxide gate dielectric
a few nanometers thick, which was fabricated directly on
ultrathin (1.2 μm) PEN polymer foils (Fig. 4) [160]. These
OFETs formed at room temperature enable sophisticated
large-area electronic foils with unprecedented mechanical
and environmental stability. They can withstand repeated
Rb of 5 μm and less, can be crumpled like paper, accommo-
date stretching up to 230% on pre-strained elastomers, and

can be operated at high temperatures and in aqueous envi-
ronments. Based on OFET matrixes, applications include
tactile sensor, thin-film heaters, temperature and infrared
sensors and amplifiers have been demonstrated [160–162].
Another extremely flexible short-channel (channel length
of 2 μm) OFET in a bottom-contact architecture has also
been reported, which demonstrated excellent mechanical
stability under systematic bending cycles at a Rb as small as
600 μm, and was durable against severe device crumpling
[144]. Our group developed low voltage, air-stable, and
ultraflexible pentacene-based OFETs using two layers of
cross-linked PVP as the dielectric layer on a plastic PI
substrate [163]. During a severe mechanical bending test
(104 bending cycles with Rb = 0.75 mm) under ambient
conditions, the OFETs still show excellent device perfor-
mance at a low operational voltage. The variations of the
electrical characteristics during the mechanical bending
process were closely related to the distance effect of the
spacing between stretched pentacene molecules as well as
the doping effect of H2O and O2 induced by the mechanical
bending strains.

Solution-processed suspended gate OFETs with mini-
mum Rb of 250 μm which can be applied for ultra-sensitive
pressure detection, has been reported by Zang et al.
[164]. Fukuda’s group [145] further developed a fully
solution-processed highly flexible (with minimum Rb =
140 μm), extremely lightweight (2 g m−2) and high per-
formance OFET on 1-μm-ultrathick parylene-C films
with high mobility (1.0 cm2 V−1 s−1), high on/off ratio
(106), and fast operating speeds (~1 ms) at low operating
voltages (10 V). The devices remained operational without
significant changes in their performance, when tightly
wrapped around a copper wire with Rb of 140 μm or even
under 50% compressive strain. Without using substrates, a
free-standing solution-processed OFETs, with 2 μm-thick
Mylar layer serving as substrate-like insulation/dielectric
layer, can tolerate multiple bending cycles without obvious
degradation at a small Rb of 200 μm [150]. Moreover,
highly crystalline solution-processed organic semiconduc-
tor films on thin plastic sheets result in high-performance
with mobility up to 0.1–0.4 cm2 V−1 s−1. This free-standing
dielectric layer strategy was also used to fabricate sub-
strate-free OFETs via modified water-floatation method by
Liu’s group [165], which can be wrapped in close contact
with the blade with the Rb of only 5 μm [151]. Moreover,
sacrificial layers can be used to obtain ultraflexible OFETs
[166]. The performance of these ultraflexible OFETs is
summarized in Table 1.

By constructing the device on planar shape-memory sub-
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Figure 3    Bending tests on ultraflexible OFETs. (a) Photographs of an OFET in which the drain current flows parallel to the bending-induced strain,
an OFET in which the current flows perpendicularly to the strain and an Al=AlOx=SAM=Au capacitor that allows measurement of the gate dielectric
capacitance during bending. The thin film transistors (TFTs) have a channel length of 50 μm and a channel width of 500 μm. The capacitor has an area
of 700×100 μm2. Bending was carried out using a custom-built precision bending apparatus. (b) Schematic illustration of the OFET configuration. (c)
Left: measured drain currents of two pentacene OFETs (red: strain parallel to the drain current; blue: strain perpendicular to the drain current) as a
function of Rb during inward bending, normalized to the initial drain current measured in the flat state. Right: gate currents of the same TFTs measured
during inward bending. Drain-source voltage: –2 V; gate-source voltage: –2.5 V. Reprinted with permission from Ref. [143], Copyright 2010, Nature
Publishing Group.

strates, a mechanically adaptive OFET can softly conform
or deploy into 3D shapes after exposure to a stimulus with a
small temperature change, which may find applications in
implanted electronics [62]. Highly bendable OFET matrix

was demonstrated on ultrathin parylene-C substrates using
printed silver (Ag) nanoparticle interconnectors [145], on
paper substrates assisted by a lithographic method [38,57],
on mesh-like substrates  [167]  and even by  substrate-free
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Figure 4    (a) Schematic ultrathin OFET on 1.2 μm PEN foils; (b) image of the stretch-compatible ultraflexible transistors; (c) imperceptible electronic
foil of a thin large-area active-matrix sensor with 12×12 tactile pixels. (d) Thin-film infrared sensor with heat management-metallic conductors (100
nm Au) on a 1.2 μm PEN foil is placed on a Teflon support with low thermal conductivity which is then put on a copper block serving as heat sink. (e).
Active-matrix tactile sensing foil sheet tightly conforming to a model of the human upper jaw. Reprinted with permission from Ref. [160], Copyright
2013, Nature Publishing Group.

Table 1 The device performance of ultraflexible OFETs; μ: field-effect mobility; on/off: on/off ratio; Von: Operating voltage; Rb,m: minimum Rb

Active material/substrate (thickness) μ (cm2 V−1 s−1) on/off Von (V) Rb,m (μm) Ref.
Pentacene/PI (70 μm) 0.46 105 −4 750 [163]
Pentacene/PI (13 μm) 0.5 105 40 500 [142]
PDPP3Ta/PET (25 μm) 0.34 104 - b 250 [164]
TIPS-pentacene/Mylar (2.5 μm)c 0.1–0.4 - b - b 200 [150]
Fluoropolymerc/parylene-C(1μm) 1.0 106 10 140 [145]
Pentacene/PI (12.5 μm) 0.5 - b 2 100 [143]
PDI-C8/PAN&PS (320nm)c 0.23 - b 8.5 5 [151]
DNTT/parylene (60 nm)d 0.34 105 −1.72 2 [166]
DNTT/PEN (1.2 μm) 1.6 108 3 5~crumpling [160]
DNTT/parylenediX-SR (1μm) 0.2 106 1 crumpling [144]

a) Solution-processable; b) not available; c) with a freestanding gate insulator/dielectric layer; d) with an encapsulation layer

freestanding method [70]. Foldable OFET arrays applica-
ble on both plastics and glass can be realized by using engi-
neered substrates with nonuniform thickness, with thin ar-
eas for easy folding and thick areas for easy handling [168].

Ultraflexible organic solar cells
With fast development of renewable energy sources, the
power efficiencies of OSCs have achieved as high as >10%
[10,11]. With TFC electrodes, flexible OSCs can be ob-
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tained by fabricating the devices on plastic substrates. In-
troducing nanostructures or nanoscattered particles into
the devices may further enhance the light scattering and/or
light trapping, and eventually improve the OSC efficiencies
[136–140]. Based on the printed single wall carbon nan-
otube (SWCNT) film electrode on 125 μm-thick PET sub-
strate with a T550 of 85% and a Rs of 200 Ω/sq, Rowell et al.
[101] fabricated efficient, flexible polymer-fullerene bulk-
heterojunction solar cells with comparable PCE~2.5%with
the ITO/glass-based counterparts (PCE = 3%). These de-
vices could be bended to radius of 1 mm with a 20% ~ 25%
loss in efficiency, and radius of 5 mm with no degradation
in PCE.

By further reducing the thickness of the plastic substrate,
devices with higher flexibility but reduced efficiency at
bending state can be obtained. An ultraflexible poly-
mer-based OSC on a very thin (1.4 μm-thick) and buckled
plastic PET foil substrate was first demonstrated by
Kaltenbrunner et al. [96]. The total thickness of the device
is only 1.9 μm, which is even thinner than a typical thread
of spider silk, resulting in an unprecedented lightweight (4
g m−2). In addition to good stretchability due to buckled
device configuration, the device can withstand extreme
mechanical deformation, which can be demonstrated by
wrapping around a human hair with a radius of 35 μm
and deforming the cell on an elastomeric substrate with
a plastic tube of 1.5 mm tip diameter (Fig. 5). More im-

portantly, the device exhibits nearly identical PCE (4.2%)
to their glass-based counterparts. Further by employing
the organolead halide perovskites as the photoactive layer,
they improved the PCE up to 12% [97].

Jung et al. [124] reported a flexible OSC exhibiting al-
most no degradation in device performance even after be-
ing folded with a radius of 200 μm, applying extremely
bendable TFC electrode consisting of a Ag-grid-embedded
ultrathin plastic substrate coated with ultrathin transpar-
ent ITO (T550 = 93%, Rs = 13 Ω/sq, Rb = 200 μm). The de-
vice showed a very small decrease of PCE (< 2.7%) at Rb

= 200 μm, and excellent durability under repeated bend-
ing, exhibiting almost no change in its J–V characteristics
even after 1000 bending cycles with Rb of 1.0 mm (Fig. 6).
Based on consecutively stacked layers of conductive poly-
mer (CP)-silver nanowires (AgNWs) composite belts fully
embedded in a 20 μm-thick colorless PI (cPI) matrix, Kim
et al. [123] fabricated a highly conductive (Rs = 7.7 Ω/sq)
and transparent (T > 92% at wavelengths of 450–700 nm)
electrode demonstrating a high flexibility and good me-
chanical durability with change of Rs less than 5% at out-
ward bending and 10% at inward bending with Rb of 40
μm. Using this electrode, ultraflexible OSC that exhibits
small PCE reduction of 5% when extremely bent at Rb = 40
μm can be fabricated. Moreover, the OSC achieves a much
higher PCE (7.42%) than those based on electrodes simply
embedding  AgNWs without CP in cPI,  possibly  due to a

Figure 5    Stretchable and compressible 2 μm-thick OSC on ultrathin PET substrate: (a) scheme of the ultra-light and flexible organic solar cell; (b)
extreme bending flexibility demonstrated by wrapping a solar cell around a 35 μm-radius human hair; (c) the device attached to the elastomeric support,
under three-dimensional deformation by pressure from a 1.5 mm-diameter plastic tube. Reprinted with permission from Ref. [96], Copyright 2012,
Nature Publishing Group.
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Figure 6    (a) Normalized PCE, Voc, Jsc, and FF values of the flexible OSCs as a function of the Rb during compressive bending. The top left inset shows
a photograph of a flexible OSC wrapped around a cylinder with a radius of ≈1 mm. The top right and bottom right insets show the device structure
and the bending process of OSCs, respectively. (b) The current density-voltage characteristics measured in the flat and bend (with Rb of ≈200 μm)
state, respectively. The measured PCE values as a function of the folding cycles at Rb ≈ 200 μm are shown in the inset. (c) The current density-voltage
characteristics of the OSCs after being bent 1000 times with a Rb of ≈1 mm. Reprinted with permission from Ref. [124], Copyright 2014, WILEY-VCH.

Table 2 The electrode and device performance of ultraflexible and/or stretchable OSCs. Rs: sheet resistance; T550: transmittance at 550 nm; Rb (ΔRs):
minimum bending radius (change of Rs at this Rb); PCE: power conversion efficiency; CP: conductive polymer, CPI: colorless polyimide; a-ITO: amor-
phous ITO

Electrode OSC

Electrode/substratea Rs (Ω/sq) T550 (%) Rb (μm) /ΔRs Active layer PCE (%) Rb (μm) /ΔPCE
Ref

SWCNTs/PET(125 μm) 200 85 1000/<25% P3HT:PCBM 2.5 1000/20–25% [101]

a-ITO(20 nm)/Ag-grid in PI (40 μm) 13 93 200/<10% PBDTTTC:PCBM 4 200/<2.7%) [124]

CP-AgNWs in cPI (20 μm) 7.7 92 40/<5%out,<10%in P2:PC71BM 7.42 40/5% [123]

PEDOTb (150 nm)/PET(1.4 μm) 100 96c 35/-d P3HT:PCBM 4.2 35/-d [96]

PEDOTb (130 nm)/PET(1.4 μm) 105 96c 10/-d Perovskite MADI 12 10/-d [97]

a) Thickness, if available, is indicated in the brackets; b) PEDOT:PSS electrodes:PH1000:5v.%DMSO:0.5. v.% Zonyl; c) fromRef [86]; d) not available

reduction in bimolecular recombination and an increased
charge collection efficiency. In addtion, using organic ac-
ceptors instead of the traditional but brittle PCBM has been
demonstrated as an effective way to enhance the mechan-
ical robustness [169]. Kim’s group demonstrated the me-

chanically robust all-polymer solar cells that were based
on the PBDTTTPD:P(NDI2HD-T) donor-acceptor poly-
mer system, with high PCE of 6.64%. The performances
concerning the electrodes (T550, Rs, Rb) and devices (PCE
and Rb) are summarized in Table 2.
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Ultraflexible organic light-emitting diodes

Ultraflexible OLEDs
Since Heeger and Forrest reported the first polymer-
[31] and small molecule- [170] based flexible organic
light-emitting OLED, respectively, high efficiency is always
pursued in this field [135,171]. Based on this, flexible
displays of OLED arrays are demonstrated [33,172]. To
fabricate ultraflexible OLEDs, transparent TFC electrodes
are required. The reported electrodes utilized in flexible
OLEDs are mainly based on PEDOT [173], CNT [44,174],
Ag NWs/grids [175–179], graphene [45,180], ITO [76],
and metal oxide [181]. For achieving higher efficiency,
top-emitting architectures [182–185] and nanostruc-
tured/scattered electrodes or substrates [47,130–135] can
be adopted, to enhance output coupling or light extraction
of the devices.

However, to achieve high flexibility, extremely bend-
able TFC electrodes firstly need to be developed
[88,120,124,146,147,177,186]. Yu et al. [120] developed an
AgNWs/shape-memory-polymer composite electrode de-
posited on PET substrate on which a flexible yellow OLED
with minimum Rb of 2.5 mm has been constructed. The Rs

of the electrode is almost the same under inward bending
with compressive strain of 16%, but exhibits a significant
increase of 290% under outward bending with tensile
strain of 16%. For the OLED device, a slight change in
the I-V-L responses was observed after 10 bending cycles
with inward and outward Rb of 2.5 mm, and the maximum
current efficiency (CE) remains constant at around 14
cd A−1. Using such electrodes, they further fabricated a
flexible blue bis(3,5-difluoro-2-(2-pyridyl)-phenyl-(2-car-
boxypyridyl) iridium(III) (FIrpic) based phosphorescent
OLED reaching a maximum CE of 25 cd A−1, which de-
creases to 18.3 cd A−1 after 100 bending-recovery cycles
with Rb = 1.5 mm [187]. However, the use of shape mem-
ory polymers requires heat treatment for deformation,
which limits their practical applications. Further, with no
requirement of thermal treatment, they applied a com-
posite electrode based on a thin AgNW network inlaid
in thesurface layer of a rubbery poly(urethane acrylate)
(PUA) matrix, and fabricated a bendable and collapsible
polymer light-emitting diode (PLED) [147]. The device
emitted light brightly and uniformly even, when wrapped
around the edge of 400 μm thick cardboard. Bending or
folding causes no mechanical or electrical damage to the
device because of the high flexibility and conductivity of
the AgNW–PUA composite electrodes.

Using the ultraflexible AgNW networks welded by the

sputtered transparent conductive oxide, an ultraflexible
OLED which can be bent to a radius of 1 mm has been
demonstrated [128]. Jung et al. [124] reported an ul-
traflexible electrode by coating 20 nm α-ITO on a metal
embedding flexible substrate, with the change in Rs be-
ing small (≈10%) even after bending with a Rb of ~200
μm (corresponding to a bending strain ε of 10%). The
phosphorescent OLED (PhOLED) fabricated with this
electrode also showed excellent mechanical flexibility,
with the light-emitting intensity retaining ~94% of the
original value even after the device was bent with Rb of
~200 μm (Fig. 7). Ultrathin (total thickness of 2 μm)
buckled red and orange PLEDs fabricated on pre-strained
1.4 μm-thick PET foil with unprecedented flexibility with
radius of curvature under 10 μm have been demonstrated
by White et al. [146]. This foil-based electronics are to
reversibly undergo folding, wrinkling, crumpling and
twisting deformations, without catastrophic failure, and
can be applied in surface-conforming thin-film electronics
(Fig. 8). In addition, these buckled PLEDs exhibit favor-
able stretchability and compressibility, which can tolerate
100% tensile strain and 50% compress, respectively. Nagata
et al. [88] developed a smooth, ultraflexible, and trans-
parent electrode with AgNWs embedded in ultrathin (10
μm-thickness) cPI. This electrode film exhibits mechanical
durability, for both outward and inward bending tests, up
to a minimum Rb of 30 μm, while maintaining its electrical
performance after 100,000 bending cycles at Rb = 500 μm.
Blue PhOLEDs using these composites as bottom anodes
show only slight performance reduction of 3% even after
repeated folding with Rb of 30 μm. Yokota [188] recently
reported an ultraflexible and conformable three-color,
highly efficient PLEDs and organic photodetectors (OPDs)
to realize optoelectronic skins that introduce multiple
electronic functionalities such as sensing and displays. The
performance of these ultraflexible electrodes and devices
are summarized in Table 3.

Foldable OLED displays
Yun et al. [190] demonstrated a mean of providing sta-
ble and homogenous interfacial adhesion by using two-di-
mensional arrays of OLED posts, which tolerate the etch-
ing process and undergo cohesive fracture during trans-
fer printing, to directly anchor the flexible substrate. Lee’s
group [191] reported a mechanically and optically robust
folding structure composed of two individual OLED panels
and a hyper elastic silicone rubber to realize a foldable and
seamless active matrix OLED (AMOLED) display without
a visible crease at the junction. The folding-unfolding test
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Figure 7    (a) Current density-voltage characteristics of the OLEDs fabricated using different transparent conducting electrodes. (b) Current efficiency-
luminance characteristics of the OLEDs. The inset shows a schematic of the flexible OLEDs. (c) Power efficiency-luminance characteristics of the
OLEDs. The inset shows photographs of the large-area bendable OLEDs (5 × 5 cm2). (d) Measured intensity of the light emitted by the flexible OLEDs
as a function of the Rb during compressive bending, normalized to the initial value. The inset shows the normalized light-emitting intensities measured
after 1000 times of bending the OLEDs with a Rb of ~1 mm. Reprinted with permission from Ref. [124], Copyright 2014, WILEY-VCH.

Figure 8    (a) Schematic of the ultraflexible PLEDs with each layer thickness drawn to scale. The schematic shows periodic bending with a radius of
curvature of 5 μm for reference. The chemical structure of AnE-PVstat is shown at the right side. (b) Demonstrations of extreme deformation attainable
with ultrathin PLEDs, with images of a free-standing ultrathin PLED operating during crumpling. The device is suspended between two pieces of glass
that are moved closer together and simultaneously twisted by 90°. Each pixel is ~ 3 mm × 6 mm. Reprinted with permission from Ref. [146], Copyright
2013, Nature Publishing Group.
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Table 3 The performance of the electrodes and devices for ultraflexible OLEDs (Rm: minimum bending ratio; CE: current efficiency; PE: power effi-
ciency)

Electrode OLED

Anode/substratea Rs (Ω/sq)
T550

(%) Rm (μm) /ΔRs Active layer CE(cd A−1) PE (lm W−1) Rm (μm)
Ref.

a-ITO (20 nm)/Ag-grid
in PI (40 μm)

13 93 200 /<10% Ir(ppy)2(acac):CBPb 59 38 200 [124]

AgNW/PUA (150 μm) 15 83% - c SuperYellow:ETPTA:
PEO: LiTf

1.0d - c 200 [147]

AgNW/cPI (10μm) 8 80 30 /<3% FIrpic: mcPb 21 7.4 30 [88]

AnE-PVstat 0.026d - c

PEDOT:PSSe /PET (1.4 μm) 135 95% - c

MDMO-PPV 0.17d - c
10 [146]

a) Thickness, if available, is indicated in the brackets; b) emitter: host; c) not available; d) the device is also stretchable; e) PH1000:5 v.% DMSO: 0.5
v.% Zonyl

on the structure exhibited negligible deterioration of the
relative brightness at the junction of the individual panels
up to 105 cycles at a folding radius of 1 mm. They further
adopted a top emission structure into the flexible OLED
display device, composed of an OLED microcavity covered
with thin film encapsulation, a low temperature color filter
(LTCF), and an ultrathin (500 nm-thickness) PI substrate.
This display demonstrates low power consumption, high
outdoor readability, and resistance to moisture and oxygen
in ambient atmosphere (Fig. 9) [189]. The variation of rel-
ative brightness is within 6% of the original brightness after
folding 10,000 times with Rb = 1 mm. Moreover, even after
soaking the panel in water for one hour, no variation in the
OLED brightness is observed. Such ultrathin and flexible
displays, by integrating with a touch sensor, may find good
applications in touch screen in electronic devices [192], and
visible pressure sensing in artificial skins [193,194].

Ultraflexible organic memory devices
High performance flexible OMDs, including organic re-
sistors [195–200], OFET memories [16,39,201–208] and
other complex-structured memories [209,210], are vastly
investigated concerning high switching speed, high on/off
ratios, long retention time, and even multi-level states
or multi-functionalities [211]. They show tremendous
applications in sensor arrays [212–214], braille displays
[39], integrated circuits [215] and RFIDs [48]. However,
the flexibility of most reported OMDs has been limited,
with Rb mostly in millimeter range, due to the difficulty
in maintaining memory characteristics while bending.
Among various kinds of OMDs, the OFET memory is the
most striking and has been widely investigated recently due
to its nondestructive read-out property, single-transistor
realization, and good compatibility with the complemen-

tary metaloxide semiconductor devices [216,217]. Kim et
al. [218] demonstrated solution-processed non-volatile
ferroelectric OFET memories operating in p- and n-type
dual mode, which exhibit excellent mechanical flexibilities.
They used ferroelectric poly(vinylidene fluoride-cotrifluo-
roethylene) (PVDF) as thin insulator layer and a quinoidal
oligothiophene derivative (QQT(CN)4) as organic semi-
conductor (Fig. 10). These dual-mode field-effect devices
are highly reliable with data retention of 46,000 s and
endurance of 100 cycles, respectively, even after 1,000
bending cycles with Rb of 4 mm. No significant decay in
performance was observed after tens of multiple bending
cycles with extreme Rb of 500 μm by hand, with sharp fold-
ing or even crumpling. The plasticity of QQT(CN)4 and
its firm interface with PVDF-TrFE plays a crucial role in
resisting such extreme mechanical deformations. A highly
bendable OFET memory on ultrathin PI substrate (13
μm-thickness) was reported by Cosseddu et al. [148,219],
with negligible variation of the threshold voltage and trans-
fer characteristics even after 200 cycles of bending at a Rb

of 150 μm. Other device architectures including resistive
memory diodes and some complicated structures have also
been demonstrated in ultraflexible OMDs. Nagashima et
al. [60] proposed ultraflexible resistive nonvolatile mem-
ories on ultrathin Al foil using Ag-decorated cellulose
nanofiber paper as active layer, exhibiting high on/off
resistance ratio of 106 and small standard deviation of
switching voltage distribution. The memory performance
can be maintained without any degradation when being
bent down to the Rb of 350 μm. A twistable 8 × 8 cross-bar
array-type organic nonvolatile resistive memory device on
PET substrate, which well retains the device performance
under the twisted condition with a twist angle up to 30°,
has been reported [220].  Jeong et al.  [209]  demonstrated
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Figure 9    (a) Schematic view of a new optical system for a flexible display device composed of a LTCF, TFE, and a RGB OLED microcavity. Inset: the
structure of the RGB microcavity: The different thicknesses of the RGB OLED layer are primarily designed to the optical length (L) of the RGB cavity
to form a standing wave inside the optical resonator. To undergo fully destructive interference of reflective lights between the semi-transparent cathode
and reflective anode, L of the OLED should be equal to an integer multiple of primary color (λn). (b) Optical measurement of a flexible OLED device
after folding a 1 mm radius window module. Relative brightness is monitored in steps of 1000 folds for a total 10,000 folds. Inset: experimental setup for
mechanical folding test. (c) Up: a schematic view of a neutral plane used to eliminate strain applied at a backplane and OLED device; bottom: a foldable
and seamless OLED display fabricated by arranging two OLED panels and one transparent plane. The left OLED panel is slimmed down to 50 μm and
assembled on the transparent plane. Reprinted with permission from Ref. [189], Copyright 2011, WILEY-VCH.

a flexible all-organic 64-bit memory cell array possessing
one diode–one resistor architectures, which exhibits excel-
lent rewritable switching characteristics, even during and
after harsh physical stresses including bending, twisting
and rolling. The write-read-erase-read output sequence of
the cells perfectly corresponds to the external pulse sig-
nal regardless of substrate deformation, suggesting poten-
tials of such device for applications in high-density flexible
OMDs. The device performance, bending durability as well
as device architectures are summarized in Table 4.

SUMMARY AND OUTLOOK
In general, the organic devices exhibit relatively poor device
performance and durability in ambient atmosphere when
compared to their inorganic counterparts. However, they
have many advantages over the inorganic devices such as

intrinsic flexibility, low cost of organic materials, the re-
laxed requirements of purity, theminute thicknesses of ma-
terial required (≤100 nm), and relatively facile solution pro-
cessability. To date, ultrathin flexible full-color AMOLED
display with total thickness of 10 μm and minimum Rb of
less than 1 mm has been demonstrated [221]. For further
development, on the one hand, current efforts are aimed at
improving the device efficiency and environmental stability
to approach or even surpass their inorganic counterparts,
so as to enable these organic devices to be widely adopted
for practical and robust applications. On the other hand,
integration of multifunctionalities in ultraflexible organic
semiconductor devices is another research goal in scien-
tific communities. This can be realized either by integrat-
ing with other individual functional devices or by integrat-
ing multiple functionalities by molecular design of organic
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Figure 10    (a) Schematic representation of the p-type QQT(CN)4Fe-based OFET memory devices. (b–f) Bending tests on ultraflexible organic Fe-FET
memories: (b) on/off current ratio measured at VDS = –5 V as a function of the Rb. The data were averaged with 10 devices examined for each Rb. Inset
is a photograph of super-flexible devices rolled on a commercially available coffee stirrer with Rb of ~500 μm. (c, d) on/off current ratio measured at VDS

= –5 V as a function of the number of bending cycles in outward (c) and inward (d) directions with a Rb of 4 mm, respectively. Insets are the diagrams of
inward and outward-bending devices, respectively. (e) Data retention characteristics measured after programming the device with single voltage pulses
for the ON and OFF current after 1000 inward bending cycles at a Rb of 4 mm. (f) Write/erase endurance cycle test as a function of the number of
programming cycles after 1000 outward bending cycles at a Rb of 4 mm. For clarity, one cycle out of every four is represented. The programming voltage
pulses for switching ON and OFF states were –50 and +50 V, respectively. The read voltages for both ON and OFF states were VG = –10 V and VDS = –5
V. Reprinted with permission from Ref. [218], Copyright 2014, Nature Publishing Group.

Table 4 Device architectures and device performance of ultraflexible OMDs

Device architecture/substrate (thickness) on/off tR (s) Rb, m (μm) Ref.

1D–1R memory arraya/PEN (125 μm) 103 104 1000b [209]

FET memory/PI (100 um) 5×103 >6×103 500~crumpling

FET memory/Al paperb (200 um) 5×103 >6×103 ~sharp folding
[218]

Resistive memory/Al foil (12 μm) 106 105 350 [60]

FET memory/PI (13 μm) 102 3×105 150 [219]

a) 1D–1R: one diode–one resistor; b) Al coated PI substrate
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超柔性薄膜有机半导体器件: 从柔性到超柔性
钱妍1, 张新稳1, 齐殿鹏2, 解令海1, Bevita K. Chandran2, 陈晓东2*, 黄维1,3*

摘要   柔性薄膜有机半导体器件由于其轻便、柔性、有机半导体的可重复制备及易于进行功能性调节、以及低成本、大面积溶液加工等
特性而受到广泛关注. 其中,弯曲半径不超过1 mm的超柔性电子对可折叠/便携设备、可穿戴设备、表皮及植入式电子设备、三维表面贴
合型器件以及仿生学等领域的发展至关重要. 本综述首先简要介绍了从柔性到超柔性电子的发展史以及超柔性有机器件的设计. 接着,聚
焦于超柔性的有机场效应管、有机发光二极管、有机太阳能电池以及有机存储器等有机半导体功能器件领域的最新进展进行了总结评述.
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