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Tailoring the shape of amorphous nanomaterials: 
recent developments and applications
Jianwei Nai, Jianxin Kang and Lin Guo*

Nanoscale amorphous materials are very important member 
of the non-crystalline solids family and have emerged as a new 
category of advanced materials. However, morphological con-
trol of amorphous nanomaterials is very difficult because of 
the atomic isotropy of their internal structures. In this review, 
we introduce some emerging innovative methods to fabricate 
well-defined, regular-shaped amorphous nanomaterials. We 
then highlight some examples to evaluate the use of these amor-
phous materials in electrodes, and their optical response. There 
is still plenty of room to explore the amorphous world. As re-
searchers continue to advance the scientific tools that underpin 
the concepts related to “amorphous”, additional applications of 
these materials will emerge. Their controlled synthesis will un-
doubtedly attain new heights in the discipline of nanomaterials, 
and allow nanoscale amorphous materials to become more so-
phisticated, diverse, and mainstream.

INTRODUCTION
According to their atomic ordering and arrangement, sol-
ids can be divided into crystalline/quasicrystalline and 
amorphous. Compared with crystalline solids, amorphous 
ones do not possess long-range atomic order, but only 
short-range order over a few atoms. Amorphous materi-
als (also called non-crystalline or vitreous materials) are 
common in the natural world and are familiar to us as a 
wide range of materials including rubber, glass, plastic and 
asphalt. Amorphous materials are characterized by the fol-
lowing four points: (i) long-range atomic disorder; (ii) iso-
tropic physical and chemical properties; (iii) are metasta-
ble, but could undergo relaxation towards crystallinity with 
heat or pressure; (iv) without a specific melting point, but 
have a glass transition temperature [1]. In contrast, crys-
talline materials are only a particular state of condensed 
matter. Conventional characterization techniques for ma-
terials, such as powder X-ray diffraction (XRD), select-
ed-area electron diffraction (SAED), and high-resolution 
transmission electron microscopy (HRTEM), can identify 
amorphous states but cannot analyze them. Spectroscopic 
measurements like X-ray photoelectron spectroscopy and 
X-ray absorption spectroscopy are usually used to analyze 
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amorphous structures. Unfortunately, at present we still 
know less about amorphous materials than crystalline ones 
from a scientific viewpoint. This is because the internal 
structure of amorphous materials is so complicated that 
almost no success has been achieved in building a com-
plete model or systematic theory to represent or describe 
them. Nevertheless, the less explored amorphous materials 
are, the more fascinating they are to researchers. Some im-
portant findings related to the internal structure of metal-
lic glass,  e.g., short-range order [2,3], medium-range order 
[4,5], polymorphism [6], and long-range topological order 
[7], have been reported recently. Effort has also been de-
voted to the study of local atomic environment [8,9] and 
lithium transport [10] in other kinds of amorphous ma-
terials. Furthermore, their specific atomic arrangement 
enables amorphous materials to exhibit high performance 
in mechanics and catalysis [11–14], as well as interesting 
magnetic properties [15–17]. However, the low specific 
surface area of bulk amorphous materials severely restricts 
their applications.

Nanoscale amorphous materials are important non- 
crystalline solids and are new type of advanced materials 
[18–30]. They have larger specific surface area than their 
bulk counterparts and therefore can show better perfor-
mance and be applicable in more fields. For example, Ma 
and co-workers [22] examined submicron-sized metallic 
glass samples by an in situ transmission electron micro-
scope (TEM) tensile deformation technique. They found 
that the elastic strain limit and corresponding strength of 
the submicron-sized samples were about twice those of the 
already impressive elastic limit of bulk metallic glass sam-
ples, approaching the ideal elastic limit of metallic glasses. 
Because they have smaller size and better transport prop-
erties than bulk amorphous materials, amorphous nano-
materials can also be used in transistor devices [18,20] and 
lithium-ion batteries as electrode materials [25–27,30], 
while the bulk materials cannot. 

The properties of nanomaterials strongly depend on 
their structure [31,32]. This “structure” can generally be 
divided into four categories: size [33,34], shape [35–38], 
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composition [39,40] and assembly [41,42]. Therefore, 
tailoring these structural factors to tune the properties 
of nanomaterials is regarded as a challenge that must be 
overcome to realize applications in nanotechnology. How-
ever, structure tuning, especially morphological control 
of amorphous nanomaterials is very difficult. Because of 
their complex internal structure, the growth of amorphous 

nanomaterial is usually ruleless, resulting in irregular par-
ticles using solution approaches or thin films using depo-
sition techniques as their conventional shape. Over the 
last decade, inorganic amorphous nanomaterials with a 
variety of novel shapes, with notable examples including 
spheres, wires, tubes, fibers, cubes, octahedra, polyhedra, 
flower-like spheres and arrays, which are summarized in 

Table 1  Different shapes of amorphous nanomaterials with various compositions synthesized by different methods

Category Product shape Composition Method Ref.

Spheres 
(0D)

spheres (hollow) CaCO3 gas-diffusion solution method [43]
spheres CaCO3 solution method [44]
spheres CaCO3 solution method [45]
spheres CaCO3 solution method [46]
spheres CaCO3 solution method [47]
spheres Si thermal decomposition [48]
spheres Si solution method [49]
spheres Si/Ti solution method [50]
spheres Si:H thermal decomposition [51]
spheres Si:H thermal decomposition [52]
spheres Se solution method [53]
spheres TiO2 solution method [54–56]

spheres (hollow) PbO-TiO2 sol-gel method [57]
spheres Co-B alloy solution method [58]
spheres FexNiyOz aerosol-spray method [59]
spheres FePO4 solution method [60]
spheres zinc citrate solution method [61]

1D

nanotubes carbon solution method [62]
nanofibers Zn2SnO4 electrospinning [63]

nanowires (NWs) SiOxNy thermal treat growth [64]
NWs SiOx laser vapor deposition [65]

NWs (shell of a core/shell structure) Si chemical vapor deposition (CVD) [66]
NWs (shell of the core/shell structure) Si plasma-enhanced CVD [67]

2D
nanosheets H2Ti2O5 solid-state annealing [68]
nanosheets FeOOH surfactant-assisted oxidation [69]

3D

nanocolumn arrays TiO2 pulsed-laser deposition [70]
nanotube arrays TiO2 electrochemical oxidation [71]
nanotube arrays TiO2 electrochemical oxidation [72]

nanowire and nanocone arrays Si:H reactive ion etching [73]
microlens arrays CaCO3 solution method [74]

nanoneedle arrays 
  (shell of a core/shell structure) Ge CVD [75]

Unique 
shapes 
(0D)

flower-like nanospheres Ni(OH)2 electrochemical deposition [76]
flower-like nanospheres Ni(OH)2 electrochemical deposition [77]
flower-like nanospheres Co(OH)2 electrochemical deposition [78]

nanoboxes CoSnO3@C solution method and annealing [79]

nanocages (octahedral) Mn(OH)2/MnO(OH), Fe(OH)3, 
Co(OH)2, Ni(OH)2, Zn(OH)2,  Pb(OH)2

solution method [80]

nanoboxes Ni(OH)2 solution method [81]
nanocubes (hollow) Co(OH)2 solution method [82]

nanopolyhedra (hollow) CoS solution method [83]
mesopores nanocubes ZnSnO3 solution method and annealing [84]
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Table 1, have been synthesized. In this review, we explain 
how these exquisite nanostructures can be obtained by a 
number of innovative methods. Next, we highlight some 
examples to demonstrate how these amorphous materials 
can be used as electrode materials, and discuss their optical 
response. Finally, we summarize the approaches that can be 
used to tailor the shape of amorphous nanomaterials. We 
focus on the scientific challenges currently and may face 
in the study of the preparation, formation mechanism, in-
ternal structure, and potential applications of amorphous 
nanomaterials.

MORPHOLOGIES OF AMORPHOUS 
NANOMATERIALS

Spheres
Spheres are highly symmetric and thus often regarded as 
beautiful. “Spherical” can also be understood as “isotropic” 
from a scientific viewpoint. This indicates that tuning the 
morphology of amorphous nanomaterials to obtain spheres 
is not difficult because it is promoted by the intrinsic iso-
tropic nature of amorphous materials. Spherical structure 
is also favorable in terms of surface energy. Nanospheres 
are the most reported shape of amorphous materials in 
the last decade (see Table 1), and they can be composed of 
calcium carbonate (CaCO3) [43–47], silicon (Si) [48–52], 
metals or their compounds [53–61]. 

CaCO3 is abundant in the natural world, and a typical 
model system used to mimic the mineralization process 
of biominerals [43]. A facile method to prepare CaCO3 is 
to mix aqueous solutions of calcium chloride and sodium 
carbonate to form metastable amorphous calcium carbon-
ate (ACC) initially, which then transforms to crystalline 
CaCO3 within a few minutes in solution. This rapid pro-
cess makes it difficult to study the properties of ACC and 
the mechanism of the mineralization process. Some specif-
ic additives, such as organic macromolecules and magne-
sium ions, have been used to stabilize ACC nanospheres by 
forming complexes with metal ions [44,46,47]. Huang et al. 
[47] reported a poly(acrylic acid) (PAA)-assisted method 
to synthesize highly stable, size-controlled monodisperse 
ACC nanospheres. They suggested that the amorphous 
state was induced and stabilized more with higher atom-
ic structure disorder using a shorter complexation time as 
well as PAA with an medium molar mass rather than PAA 
with lower or higher molar mass. This is because a variety of 
intermediates of the PAA-Ca2+-H2O complex coexist in the 
earlier stage of complexation; that is, the coordination of 
Ca2+ ions with PAA is more random earlier in the reaction. 
Phytic acid is another effective inhibitor of the crystalliza-
tion of ACC nanospheres fabricated using a gas-diffusion 
method, as described by Xu et al. [43]. They also found that 

hydrated ACC can form on the exterior of anhydrous ACC 
and then grow at the expense of the dissolving internal an-
hydrous ACC particles, producing a hollow nanostructure. 

Layers of amorphous silicon (a-Si) are useful in various 
fields and are usually vapor-deposited on substrates [52], 
which confines their use to applications that require the 
availability of large quantities of particles, like fuel cells. 
Nanospheres of a-Si have high surface area-to-volume ra-
tios and bond hydrogen more strongly than bulk a-Si. A 
general approach to fabricate a-Si nanospheres is decom-
position of trisilane in organic solvent [48,51,52]. In Kor-
gel’s report [52], spherical hydrogenated amorphous silicon 
(a-Si:H) colloids were synthesized by decomposition of tris-
ilane in supercritical hexane. The a-Si:H colloids exhibited 
fairly wide ranges of size, hydrogen content, and Si bond 
order, depending on the synthesis temperature, pressure, 
and reactant concentration. Scanning electron microscope 
(SEM) images of the a-Si nanospheres are presented in Fig. 
1. Raman results suggested the a-Si nanospheres with least 
structural order yielded using the lowest reaction tempera-
ture would load most hydrogen.

Apart from the common amorphous nanospheres com-
posed of CaCO3 and Si, and amorphous nanospheres of 
some other compounds, such as Se [53], TiO2 [54–57], 
Co-B alloy [58], FePO4 [60] and zinc citrate [61], have also 
been prepared, generally by facile solution routes. Recently, 
Kuai et al. [59] reported an interesting aerosol-spray-as-
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Figure 1  SEM images of a-Si:H particles synthesized in supercritical 
hexane at 420°C and 34.5 MPa (5000 psi) with different amounts of tris-
ilane: (a) 20, (b) 60, (c) 100 and (d) 300 μL. Inset are particle size distri-
butions determined from SEM images. Reprinted with permission from 
Ref. [52]. Copyright 2010, American Chemical Society.
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sisted approach (ASAA) combined with evaporation-in-
duced self-assembly (EISA) as a precisely controllable and 
continuous method to prepare mixed-metal oxide amor-
phous microspheres, as illustrated in Fig. 2. Taking Fe-
Ni oxides as an example, precursor solutions containing 
Pluronic P123, Fe(NO3)3 and/or Ni(NO3)2 salts were first 
sprayed into droplets by an ultrasonic humidifier. The mist 
(the right-hand side, Fig. 2a) was then driven into a tube 
furnace by a pump and preheated to 480°C. During this 
process, inorganic precursors solidified, decomposed into 
metal oxides, and then assembled to form microspheres 
with the assistance of P123 (the left-hand side, Fig. 2a). 
Because of the short reaction time (several seconds), the 
metal oxides did not have sufficient time to crystallize and 
the final products were therefore amorphous. Fig. 2b sug-
gests the metal elements that could be used in this method 
to fabricate amorphous oxide nanospheres with single or 
multiple components. Importantly, they also claimed that 
the ASAA was suitable for large-scale industrial produc-
tion because the product can be successively obtained at a 
rate of about 0.1 g h−1.

Nanotubes, nanowires, and nanofibers
One-dimensional (1D) nanomaterials have attracted con-
siderable research interest because of their numerous appli-
cations including gas sensors, nanoelectronics, and energy 
storage [85–88]. The long-range disorder of amorphous 
materials generally makes them unable to form 1D nano-
structures, which have obvious anisotropy, without any at-
tached host [62] or particular guiding technique [63–67]. 
Nanotubes, NWs, and nanofibers are three typical types 
of 1D nanomaterials. Zhu’s group [62] synthesized amor-
phous carbon nanotubes (a-CNTs), an important porous 
carbon nanostructure, on a large scale from a self-seeded 
solution-base reaction. Each a-CNT was 3–5 μm in length 
and ~300/200 nm in (outer/inner) diameter, and had a 
Brunauer-Emmett-Teller (BET) specific surface area of 
431 m2 g−1 with a narrow pore distribution of about 4.03 
nm. The time-dependent morphology evolution of the 
nanotubes was examined to investigate their growth mech-
anism. They found that a bunch of short nanotubes with 
closed ends can develop from the tips at the surface of the 
initially generated carbon microparticles. Over time, these 
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Figure 2  (a) Illustration of the setup to fabricate amorphous metal oxide microspheres by the ASAA; (b) possible amorphous metal oxides that could 
be obtained using the ASAA with inorganic salts. Adapted with permission from Ref. [59]. Copyright 2014, Wiley-VCH Publishers, Inc.



48     January 2015 | Vol.58 No.1          
© Science China Press and Springer-Verlag Berlin Heidelberg 2015

REVIEWS SCIENCE CHINA Materials

CNTs elongate, keeping their diameter and wall thickness 
almost unchanged. This process is similar to the laser va-
porization-assisted approach used to grow amorphous 
SiOx NWs [65]. 

Amorphous NWs can also be prepared by the ways 
of CVD and plasma techniques [64,66,67]. For example, 
Zheng et al. [64] demonstrated that the combination of 
Ni-catalyzed transformation with NH3 plasma could be 
an effective and facile method to form amorphous silicon 
oxynitride, as shown in Fig. 3. They claimed that both the 
nitrogen species and active hydrogen generated in the NH3 
plasma were required for NW formation: the former en-
sured the incorporations of nitrogen, while the latter main-
tained the activity of the catalyst. The catalytic function of 
Ni nanoparticles (NPs) and a sufficient amount of reactive 
species are also important in the growth of NWs. 

Fiber-like Zn2SnO4 amorphous structures have been 
fabricated by an electrospinning method [63]. Figs 4a–d 
show the microstructures of Zn2SnO4 fibers obtained after 
heating from 450 to 700°C. Well-interconnected fused Zn-
Sn precursor/poly(vinyl acetate) (PVAc) composite fibers 
are depicted in Fig. 4e. Subsequent calcination at 450°C for 
1 h in air resulted in a highly porous network structure (see 
Fig. 4f) with a high specific surface area of 124 m2 g−1. The 
inset image in Fig. 4f suggests that the Zn2SnO4 fibers are 
composed of NPs with a diameter of less than 5 nm. Figs 
4h and i indicate that the surface of the fibers is relatively 
smooth and porous. The inset image in Fig. 4j shows that 
the fibers exhibited a ring diffraction pattern consistent 
with amorphous structure. An HRTEM image of the fibers 
(Fig. 4j) does not contain a crystalline lattice fringe, con-

firming the fibers are amorphous, as in their XRD pattern 
(Fig. 4k). 

Nanosheets
The large surface area of two-dimensional (2D) nanoma-
terials, including sheets and plates, makes them promis-
ing for applications in electrochemical and optical fields 
[89,90]. However, few 2D amorphous nanomaterials have 
been reported [68,69], which might be because of their 
limited synthetic methodology. 

Xu et al. [69] presented a facile approach to synthesize 
amorphous iron oxyhydroxide nanosheets by the surfac-
tant-assisted oxidation of iron sulfide nanosheet. An SEM 
image (Fig. 5a) and low-magnification TEM image (Fig. 
5b) of the product reveal its loose, corrugated graphene-
like 2D nanosheet structure. An HRTEM image of an in-
dividual nanosheet (Fig. 5c) shows that it consists of NPs 
aggregated to form a porous structure. The diameters of 
these NPs are less than 5 nm. Another HRTEM image (Fig. 

a b

c d

1 μm

1 μm1 μm

10 μm

50 nm

a b

c d

1 μm

1 μm1 μm

10 μm

50 nm

Figure 3  SEM images of NWs grown by plasma treatment in (a) and 
(b) NH3/Ar = 5/50, (c) NH3/Ar = 1/50, and (d) by thermal treatment in 
NH3/Ar = 1/50. The inset shows a magnified image of a helical NW. The 
Ni film thickness was 20 nm. Reprinted with permission from Ref. [64]. 
Copyright 2008, American Chemical Society.
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Figure 4  SEM images of (a) as-spun Zn(OAc)2-Sn(OAc)4/PVAc com-
posite fibers, (b) Zn2SnO4 fibers calcined at 500°C, (c) cross-sectional 
view of Zn2SnO4 fibers calcined at 500°C, (d) Zn2SnO4 fibers calcined at 
700°C, (e) hot-pressed Zn(OAc)2-Sn(OAc)4/PVAc composite fibers, (f) 
Zn2SnO4 fibers calcined at 450°C after hot pressing, (g) cross-sectional 
view of Zn2SnO4 fibers calcined at 450°C after hot pressing, (h) TEM im-
age of Zn2SnO4 fibers calcined at 450°C after hot pressing, (i) magnified 
view of the TEM image in (h), (j) magnified view of the TEM image in 
(i) and the inset shows a SAED pattern, and (k) XRD pattern of Zn2SnO4 
fibers calcined at temperatures of 450, 600, and 700°C. Reprinted with 
permission from Ref. [63]. Copyright 2013, Wiley-VCH Publishers, Inc.
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5d) suggests that the atomic lattice on the surface of the 
nanosheets lacked regular periodicity, which further con-
firms the amorphous nature of the nanosheets. The BET 
surface area of the porous nanosheets determined by ni-
trogen absorption/desorption measurements is 233 m2 g−1.

Arrays
Fabricating three-dimensional (3D) ordered arrays is a goal 
of researchers because these arrays can show enhanced 
performance over an individual unit [91]. Some pioneering 
methods have been demonstrated that can be used to con-
struct arrays based on amorphous nanomaterials, such as 
pulsed laser deposition (PLD) [70], electrochemical oxida-
tion [71,72], reactive ion etching (RIE) [73], solution-based 
self-assembly [74] and CVD [75].

Li et al. [70] fabricated a hexagonal-close-packed (hcp), 
hierarchical amorphous TiO2 nanocolumn array by PLD 
using a polystyrene (PS) colloidal monolayer as a template. 
A top-view SEM image of the array (Fig. 6a) reveals an ob-
vious hcp arrangement. Each nanocolumn is composed of 
a PS sphere at the bottom with a vertical nanocolumn on 
top, as shown in Fig. 6b. The nanocolumns and PS spheres 
have almost the same diameter, and the height of each col-
umn is about 870 nm. The surface of each nanocolumn is 
very rough and high-resolution images of their sides show 
that they are composed of many nanobranches (Figs 6c and 
d). The formation of nanocolumns is caused by the shad-
ow effect during the deposition between neighboring PS 
spheres: if one sphere in the template monolayer is com-

pletely surrounded by six other spheres, as in the case of 
hcp alignment, a nanocolumn will form on the top rath-
er than the sides of this sphere. Thus an hcp nanocolumn 
array can be fabricated using a monolayer of colloidal PS 
spheres as a template. 

A process to fabricate a-Si:H nanostructures is illus-
trated in Fig. 7 [73]. A 1 μm-thick a-Si:H film (Fig. 7a) 
was prepared by hot-wire CVD on an indium-tin-oxide 
(ITO)-coated glass substrate. The researchers used the 
Langmuir-Blodgett technique to assemble silica NPs into 
a close-packed monolayer on top of the a-Si:H thin film. 
These silica NPs (Fig. 7b) were then used as an etch mask 
during a chlorine-based RIE process, because the etching 
rate of silica was much lower than that of a-Si:H. NW (Fig. 
7c) and nanocone (NC) (Fig. 7d) arrays can be fabricated 
using different RIE conditions. Figs 8a and b show SEM  
images of the silica NPs with a uniform size of ~500 nm as-
sembled as a close-packed monolayer on a-Si:H thin film. 
The a-Si:H  NW arrays after RIE are depicted in Figs 8e and 
f. The length and diameter of each NW were ∼600 and ∼300 nm, respectively. The silica NPs can still be clearly 
seen on the top of each NW. Figs 8c and d present SEM im-
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Figure 5  (a) SEM image, (b) TEM image, and (c, d) HRTEM images of 
an amorphous iron oxyhydroxide nanosheet. Reprinted with permission 
from Ref. [69]. Copyright 2013, American Chemical Society.
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Ref. [70]. Copy  right 2008, American Chemical Society.
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Figure 7  (a)−(d) Schematic illustrations of 1 μm-thick a-Si:H on an ITO-
coated glass substrate with a monolayer of silica NPs on top of a-Si:H thin 
film, NW array, and NC array. Reprinted with permission from Ref. [73]. 
Copyright 2009, American Chemical Society.
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ages of a-Si:H NC arrays, where each NC is ~600 nm long. 
The tip diameter of these NCs is ∼20 nm, while their base 
diameter is ∼300 nm. It is believed that the conical shape 
of the NCs is caused by the gradual shrinkage of the silica 
NPs. After RIE, the silica NPs were so small that they are no 
longer observable on the top of the NCs. 

Other unique shapes 
Polyhedra with high anisotropy are a common nanocrys-
tal morphology, and have been widely synthesized during 
the past decade [92,93]. Because of their long-range atomic 
order and arrangement, facet control in nanocrystals can 
be realized. In this regard, it seems very difficult for amor-
phous nanomaterials to present as polyhedra. Nevertheless, 
a small number of notable examples demonstrate the very 
recent progress in the fabrication of polyhedral amorphous 
nanostructures by some innovative methods [79–84].

Inspired by Pearson’s hard/soft acid/base (HSAB) prin-
ciple, our group explored a general strategy to fabricate 
uniform polyhedral amorphous nanocages of metal hy-
droxides (MHs) [80], which is outlined in Fig. 9. Cu2O 
nanocrystals were first prepared and used as a sacrifi-
cial template. We employed Na2S2O3 as the coordinating 
etchant. S2O3

2−, which dissociated from Na2S2O3, was a typical 
soft base in terms of the HSAB principle, while Cu+ with-
in the Cu2O template acted as a soft acid. [Cu2(S2O3)x]2−2x, 
as a more stable and soluble complex ion, forms as a re-

sult of the interaction between Na2S2O3 and Cu2O at the 
expense of Cu2O. The exhaustion of OH− in the formation 
of M(OH)2 provides a strong driving force for further dis-
solution of Cu2O and hydrolysis of S2O3

2−. As a result, when 
the etching process occurs, M(OH)2 starts precipitating 
synchronously and a shell structure forms preferentially 
around the etching interface where the local concentration 
of OH− is the highest. 

The above process is defined as “coordinating etching 
and precipitating”, which is shown as step 1 in Fig. 9. We 
believe that these two synchronous chemical reactions 
guarantee that the exterior M(OH)2 shell perfectly imitates 
the geometry of the Cu2O template. The shell structure can 
be preserved in the following coordinating etching proce-
dure (step 2), even though in some cases (using Mn and Fe) 
M(OH)2 might be oxidized to M(OH)x. The strong affinity 
between the etchant and template makes fabrication at low 
temperature possible. In addition, the reaction is complet-
ed rapidly without requiring any additional oxidizing or 
acid agents. The as-prepared MH amorphous nanocages 
are ideal precursor to synthesize metal oxide polycrystal-
line nanocages by conventional thermal treatment, which 
is illustrated as step 3 in Fig. 9. 

This unique route shows potential to produce well-de-
fined, high-quality MH nanocages with various compo-
nents including manganese hydroxide, iron hydroxide, co-
balt hydroxide, nickel hydroxide, zinc hydroxide (as shown 
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in Fig. 10) and lead hydroxide. Figs 10x1 (x = a–e) reveal 
the MH nanocages have an octahedral structure with an 
edge length of ∼500 nm, so they inherit the geometry and 
dimensions of the Cu2O template well. Figs 10x2 show that 
the shell structure is composed of small particles. The inner 
cavity is clearly revealed by the contrast between the shells 
and hollow interiors (Figs 10x3). The highly symmetric oc-
tahedral shell framework can be observed more distinctly 
in these perspective views. The shell of the nanocages is as 
thin as ∼40 nm. The SAED patterns in Figs 10x4 also sug-
gest that the MH nanocages are amorphous.

We also used this strategy to fabricate amorphous nickel 
hydroxide (Ni(OH)2) nanocages of different size [80], shell 
thickness [80] and shape (spheres and boxes) [80,81]. Hol-
low amorphous cobalt hydroxide nanocubes can also be 
obtained by modifying this route [82]. On the basis of these 
results, we believe that more interesting and important new 
types of amorphous nanocages can be obtained by properly 
tuning the chemical reactions in this fabrication process.

Wang et al. [79] developed a strategy to synthesize 
amorphous CoSnO3 nanoboxes. They first synthesized 
porous CoSn(OH)6 nanoboxes in aqueous solution by rap-
id stoichiometric co-precipitation of Sn4+ and Co2+ in the 
presence of hydroxyl ions, followed by alkaline etching un-
der ambient conditions. After annealing in N2, CoSnO3 na-
noboxes with a homogenous amorphous texture and high 
porosity were obtained by thermally induced dehydration 
of CoSn(OH)6. The robust structure of these CoSnO3 na-
noboxes meant they could be coated with amorphous car-
bon by controlled hydrothermal carbonization of glucose. 
After hydrothermal treatment, the amorphous texture 
of the CoSnO3 nanoboxes remained the same because of 
the relatively low temperature used for carbon coating, as 
shown in Fig. 11. Following a similar route, Lu’s group [84] 
prepared mesoporous and amorphous ZnSnO3 nanocubes 
with a size of ~37 nm coated with a thin porous carbon 
layer using ZnSn(OH)6 as the active precursor and poly-
dopamine as the carbon precursor. They found that these 
small single nanocubes would crosslink with each other to 
form a continuous conductive framework containing in-
terconnected channels with macropores with a width of 74 
nm. Recently, zeolitic imidazolate framework-67 (ZIF-67), 
a classic example of a metal-organic framework, was found 
to be an interesting precursor to prepare amorphous CoS 
polyhedral nanocages [83]. The as-obtained rhombic do-
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Figure 10  SEM, TEM, and SAED images of the (a) manganese, (b) 
iron, (c) cobalt, (d) nickel, and (e) zinc hydroxide nanocages. Parts x1 
(x = a–e) and x3 show typical SEM and TEM images of MH nanocages, 
respectively; part x2 shows high-magnification images of the surface of 
the corresponding cage in part x1; part x4 is the SAED patterns obtained 
for the whole cages in part x3. The scale bars in parts x1, x2, and x3 are 100, 
20, and 100 nm, respectively. Reprinted with permission from Ref. [80]. 
Copyright 2013, American Chemical Society.
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Figure 11  SEM (a and b) and TEM (c and d) images of CoSnO3@C 
nanoboxes, the SAED pattern of which is shown in the inset of (d); (e) a 
free-standing CoSnO3@C nanobox; (f) a uniform carbon coating on the 
surface of a CoSnO3 nanobox. Reprinted with permission from Ref. [79]. 
Copyright 2013, Royal Society of Chemistry.
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decahedral ZIF-67 was treated as both template and cobalt 
precursor, and thioacetamide was used as a sulfur source. 
The reaction process was facile and efficient, simply involv-
ing heating the reactants under reflux in ethylene glycol for 
1 h. Yang and colleagues [76–78] have also contributed to 
the synthesis of amorphous hydroxide materials by pre-
paring flower-like spherical nanostructures using a unique 
electrochemical technique that is simple, green and inex-
pensive. These spheres and hollow structures are interest-
ing candidates for use in energy storage [94].

APPLICATIONS

Electrochemical electrode materials
It is well known that nanomaterials can be a better alterna-
tive to the bulk materials for electrodes in electrochemical 
applications. However, highly crystalline nanoscale elec-
trode materials still face several challenges. Taking Si elec-
trodes as an example, the volume of crystalline Si anodes 
expands by 400% during the lithiation process. As a result, 
large irreversible capacity losses are typically observed 
during lithiation/delithiation because anisotropic volume 
swelling and contraction cause pulverization of the Si and 
loss of electrical contact with the current collector. Amor-
phous materials are expected to have smaller and more ho-
mogeneous volume expansion than crystalline ones, as well 
as being effective at releasing volume strain because of their 
intrinsically isotropic nature [51,84]. Therefore, nanosized 
amorphous materials should have better cycling perfor-
mance during the discharge/charge process than bulk crys-
talline ones. In addition, the high level of disorder in amor-
phous materials decreases charge transport resistance [10] 
and enhances the ability to host charge carrier ions [95], 
the latter of which is illustrated in Fig. 12. The large num-
ber of under-coordinated atoms (good electron acceptors) 
and reactive sites at the surface means that amorphous ma-
terials also have the advantage over crystalline ones in their 
contact with the electrolyte and active substances (electron 
donors), which favors electrochemical processes. In regard 
to the merits discussed above, amorphous nanomaterials 
have already demonstrated their superior performance 
over bulk crystalline materials in various electrochemical 
applications, including lithium- and/or sodium-ion batter-
ies [51,62,66,71,79,84,96–100], super- or pseudo-capaci-
tors [77,78,83], electrochemical water splitting [59] and 
sensors [72,81]. 

The amorphous CoSnO3@C   nanoboxes reported by 
Wang et al. [79] showed high initial discharge and charge 
capacities of around 1,410 and 480 mA h g−1, respectively, 
as revealed in Fig. 13a. Although a large capacity loss was 
observed in the first cycle, the CoSnO3@C nanoboxes ex-
hibited a stable capacity retention of nearly 100% after 200 

cycles with a high capacity of over 450 mA h g−1 from the 
second cycle onwards. Encouragingly, their lifetime can be 
extended to as long as 400 cycles with a high capacity of 
over 450 mA h g−1 (Fig. 13c). The original structural prop-
erties of the CoSnO3@C nanoboxes, including shape, size 
and structural integrity, were well retained after numerous 
cycles, indicating the good structural stability of this ma-
terial. Remarkably, while cycling at high rates of 400–1000 
mA g−1, capacities of 310–450 mA h g−1 were still retained, 
as shown in Fig. 13d. Fig. 13b compares the cycling perfor-
mance of amorphous CoSnO3 nanoboxes with and without 
carbon coating, CoSnO3 nanocubes, crystalline Co-Sn-O 
nanoboxes and commercial SnO2 particles. Both amor-
phous CoSnO3 and CoSnO3@C nanoboxes exhibit much 
better cycling performance compared with those of the 
crystalline materials. The authors believed the atomically 
mixed, homogeneously amorphous structure of CoSnO3 
may contribute to their lithium storage performance be-
cause the volume change upon cycling can be partly mit-
igated in an isotropic, loose/dense structure with high 
atomic/ionic mobility.

Among the numerous active electrode materials used 
in electrochemical capacitors, Ni(OH)2 is a promising one. 
Research on Ni(OH)2 has thus far focused on the crystalline 
rather than the amorphous phase, despite the impressive 
electrochemical properties of the latter, which shows im-
proved electrochemical efficiency over its crystalline coun-
terpart because of increased disorder. Li et al. [77] found 
that electrochemically deposited amorphous Ni(OH)2 
nanospheres exhibited high capacitance (2,188 F g−1 at a 
scan rate of 1 mV s−1). Asymmetric pseudocapacitors of 
amorphous Ni(OH)2 also showed high capacitance (153 
F g−1), high energy density (35.7 W h kg−1 at a power den-
sity of 490 W kg−1), and extremely long cycle life (charge 
retention of 97% and 81% after 5,000 and 10,000 cycles, re-
spectively). The integrated electrochemical performance of 
the amorphou  s Ni(OH)2 nanospheres is comparable with 
that of crystalline Ni(OH)2 materials in supercapacitors. 
The same group also synthesized amorphous Co(OH)2 
flower-like nanospheres by a similar method [78]. The 
as-prepared Co(OH)2 electrode exhibited an ultrahigh ca-
pacitance of 1,094 F g−1 and extremely long cycle life with 
95% charge retention after 8,000 cycles at a nominal scan 
rate of 100 mV s−1. The authors attributed the high perfor-
mance of these two hydroxide materials to their internal 
amorphous structure.

Our group [81] extended the application of amorphous 
nanomaterials to electrochemical sensing of glucose. We 
fabricated a sensor to detect glucose by depositing an ink 
containing amorphous Ni(OH)2 nanoboxes on a glassy 
carbon electrode (GCE). Fig. 14a shows the cyclic vol-
tammograms (CVs) of Ni(OH)2/GCE when reacting with 
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permission from Ref. [95]. Copyright 2014, Nature Publishing Group.
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various concentrations of glucose in 0.1 M NaOH solu-
tion. The relationship between peak current and glucose 
concentration is linear over a wide range from 0.5 μM to 
5 mM, which covers the normal physiological concentra-
tion of glucose in the human body and should be suitable 
for quantitative analysis. The sensitivity of the sensor was 
487.3 μA mM−1 cm−2 and the limit of detection was as low 
as 70 nM (S/N = 3), indicating enhanced sensitivity com-
pared to that of most other nickel-based and some com-
posite materials [81]. Interference effects were investigated 
by introducing dopamine (DA) and ascorbic acid (AA) to 
the glucose solutions; the results obtained by differential 
pulse voltammetry (DPV) are presented in Fig. 14b. It is 
easy to distinguish glucose from the interferent by consid-
ering peak position. In addition, the magnitude of the cur-
rent from glucose varied little in the presence of interferent, 
suggesting excellent selectivity of this sensor for glucose. 
The storage stability of this sensor was examined daily at 
the same modified electrode over 30 consecutive days. The 
response to the same concentration of glucose was main-
tained at 95% of the initial value after 30 d, so the sensor 
exhibited good long-term stability.

Kuai et al. [59] evaluated the electrocatalytic water split-
ting performance of amorphous Fe-Ni-Ox nanospheres 

with different Fe/Ni ratios in 1.0 M KOH at room tem-
perature. Fe6Ni10Ox was found to be the best catalyst among 
the investigated Fe-Ni-Ox series, with an overpotential of 
as low as 0.286 V (10 mA cm−2) and Tafel slope of 48 mV 
decade−1 for the electrochemical oxygen evolution reaction. 
They also compared the catalytic activity of amorphous Fe-
Ni oxide materials and their crystalline counterparts ob-
tained after annealing. About 150 mV more overpotential 
for both Fe6Ni10 (400°C) and Fe6Ni10 (500°C) was needed 
to achieve a current density of 10 mA cm−2 compared with 
that of the original amorphous Fe6Ni10 sample.

Optical response
The photocatalytic activity of an amorphous hcp TiO2 
nanocolumn array was estimated by Li et al. [70] based on 
the decomposition of stearic acid under ultraviolet (UV) 
illumination by monitoring Fourier transform infrared 
spectra. The bands at 2,919 and 2,849 cm−1 are re  lated to the 
asymmetric (νasymmCH2) and symmetric (νsymmCH2) stretching 
modes of the methylene group of stearic acid, respectively. 
These values for the methylene group stretching modes are 
generally regarded as evidence of the formation of a dense, 
well-ordered, self-assembled monolayer of stearic acid on 
the oxide surface. With increasing UV irradiation time, the 
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intensity of the vibrational bands of the methylene group 
gradually decreases and almost completely disappeares af-
ter 25 min, as shown in Fig. 15a. The decrease in intensi-
ty of the C–H vibrational bands suggests that the stearic 
acid is gradually photodegraded by the TiO2 films under 
UV irradiation. Fig. 15b presents the degradation curves 
of a stearic acid film on a Si wafer, an amorphous TiO2 film 
formed by PLD without using a colloidal monolayer, an hcp 
amorphous TiO2 nanocolumn array on a colloidal mono-
layer and an anatase TiO2 nanocolumn array. TiO2 exhibit-
ed degraded stearic acid efficiently and the hcp amorphous 
TiO2 nanocolumn array on a colloidal monolayer demon-
strated better performance than the amorphous film and 
anatase nanocolumn array.

Choi et al. [63] incorporated amorphous Zn2SnO4 nano-
fibers in dye-sensitized solar cells (DSSCs). Three different 
sensitizers, two organic dyes with donor-conjugate-accep-
tor structure and a ruthenium complex (N719) dye were 

used to fabricate Zn2SnO4 nanofiber-based DSSCs and 
then their performance was investigated. Remarkably, 
the organic dye-sensitized DSSCs displayed markedly im-
proved performance (~2.5 times higher) than that of the 
N719-sensitized DSSCs. These devices based on a 3 μm-
thick Zn2SnO4 electrode using the new sensitizer in con-
junction with a liquid electrolyte show promising photo-
voltaic conversion of up to 3.7% under standard AM 1.5G 
sunlight (100 mW cm−2). This work highlights the poten-
tial of amorphous Zn2SnO4 electrodes for the development 
of efficient organic-sensitized DSSCs and offers a future 
perspective for the development of solid-state DSSCs. 

Cui’s group [73] compared the optical absorption prop-
erties of a-Si:H thin films, NW arrays and NC arrays. At 
488 nm, the absorption of the NC sample is 98.4% around 
normal incidence, which is considerably higher than that 
of the NW arrays (85%) and thin films (75%). At incident 
angles of up to 60°, the total absorption is maintained above 
90% for the NCs, which compares favorably with 70% for 
the NWs and 45% for the thin films. These absorption 
measurements were also carried out over a broad range of 
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wavelengths (400–800 nm) that covered most of the useful 
spectrum for a-Si:H solar cells. Between 400 and 650 nm, 
the measured absorption of the NC arrays was maintained 
above 93%, which was much higher than that of the NW 
arrays of 75% and thin films of 64%. The total absorption of 
the NCs decreased to 88% at 700 nm, which corresponded 
to the a-Si : H band gap (1.75 eV), but was still better than 
that of the NWs (70%) and thin films (53%). These results 
indicate that the novel a-Si:H NCs may be suitable for low-
cost, large-area solar cells.

SUMMARY AND OUTLOOK
Applications and fundamental scientific studies that re-
quire high-quality multifunctional nanostructures con-
tinue to expand. These areas demand rigorous control of 
the structure of nanoscale materials, including their size, 
shape, composition and assembly, in a manner that facil-
itates synergistic interactions, and thus establishes guide-
lines for further exploration. Compared with the structure 
control of nanocrystals achieved to date, that of amorphous 
nanomaterials, shape manipulation in particular, is far be-
hind. Nevertheless, some innovative approaches to tailor 
the morphology of amorphous nanomaterials have been 
realized, and were presented in this review. Basically, these 
approaches can be divided into the following four catego-
ries: (1) employing surfactants to adsorb on the surface 
of NPs to affect their growth (for nanospheres); (2) using 
specific techniques, such as electrospinning or laser vapor 
deposition, to guide the materials to grow in one direction 
(for NWs and nanofibers); (3) using substrates for oxida-
tion, etching, or deposition (for arrays); (4) introducing 
hard templates into solution-based systems (for nanop-
olyhedra). The compositions of these amorphous nano-
materials are mainly 3d transition-metal compounds and 
elementary substances of the main group IV. The primary 
morphologies of amorphous nanomaterials reported so far 
are 0D, 1D and 3D; few 2D structures have been fabricated. 
The properties of amorphous nanomaterials have also been 
investigated, especially their electrochemical and optical 
parameters. These well-defined and regular-shaped amor-
phous nanomaterials demonstrate comparable and some-
times even better performance than other conventional 
amorphous materials (films and particles) and crystalline 
nanomaterials, showing their potential value for applica-
tions. 

We should be aware that most of the strategies used to 
prepare amorphous nanomaterials presented in this re-
view can only be regarded as loose tailoring, and are still 
far from finely controlling the shape of nanostructures. 
Each route is normally suitable for just one kind of shape 
or composition, which does not satisfy the requirements 
of nanoscience and nanotechnology. Developing a general 

method to fabricate diverse morphologies or compositions 
is still a challenge. Only now are we beginning to investi-
gate the largely uncharted atomic structure of amorphous 
materials. As an emerging discipline, many concepts about 
the structures, dynamics, and thermodynamics of amor-
phous nanomaterials have yet to be established. Further 
effort needs to be devoted to surpassing the convention-
al ideological framework of crystalline solids. Theoretical 
simulations or calculations will be indispensable for pro-
viding clues to describe the complicated internal structure 
of amorphous materials, as well as to understand the rela-
tionship between their properties and structure. Therefore, 
it is of urgency to develop proper computational methods 
for amorphous materials. With regard to applications, how 
to effectively improve the stability and electronic conduc-
tivity of amorphous nanomaterials are two essential prob-
lems that we need to solve. 

Fortunately, opportunities always stand beside challeng-
es. There is still plenty of room to explore the amorphous 
world. In this paper, we reviewed some recent achieve-
ments in tailoring the nanostructures of amorphous mate-
rials and their applications. This is just the tip of the iceberg 
in the study of amorphous nanomaterials. As researchers 
continue to develop scientific tools to understand con-
cepts related to amorphous structure, additional applica-
tions will emerge. The controllable synthesis of amorphous 
nanostructures will undoubtedly advance the discipline of 
nanomaterials, and make these materials become much 
more sophisticated, diverse, and mainstream. 
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中文摘要    非晶纳米材料是非晶态物质中十分重要的成员, 并已成为先进材料研究领域的一个崭新分支. 然而, 实现对非晶纳米材料的
形貌控制却是十分困难的, 这是由材料原子排列的长程无序性所致. 本综述首先介绍了一些最近出现的新颖和独特的非晶纳米材料的

制备方法. 由以上方法所得到的非晶纳米材料具有轮廓分明、形貌规则等特点, 摆脱了传统非晶材料呈现的无规则状颗粒或者薄膜的

局限. 本文选取了一些有特色的新颖的非晶纳米材料, 来说明现阶段它们在电化学电极材料以及光响应方面的应用原理以及方式. 如

今, 国内外对于非晶纳米材料的研究刚刚起步, 仍然有很大的探索空间. 研究者不断开发和创造出来的科学方法和技术将有利于非晶

研究的快速发展, 进而开发新的应用. 非晶纳米材料的可控制备必将掀起纳米领域研究的新高潮. 
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