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Abstract
In this paper, we study the radial epiderivative notion for nonconvex functions, which
extends the (classical) directional derivative concept. The paper presents new defi-
nition and new properties for this notion and establishes relationships between the
radial epiderivative, the Clarke’s directional derivative, the Rockafellar’s subderiva-
tive and the directional derivative. The radial epiderivative notion is used to establish
new regularity conditions without convexity conditions. The paper presents explicit
formulations for computing the radial epiderivatives in terms of weak subgradients
and vice versa. We also present an iterative algorithm for approximate computing of
radial epiderivatives and show that the algorithm terminates in a finite number of iter-
ations. The paper analyzes necessary and sufficient conditions for global optimums in
nonconvex optimization via the radial epiderivatives. We formulate a necessary and
sufficient condition for a global descent direction for radially epidifferentiable noncon-
vex functions. All the properties and theorems presented in this paper are illustrated
and interpreted on examples.
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1 Introduction

Historically, the derivativewas and remains to be a powerful tool in analyzingoptimiza-
tion problems and plays an important role in developing methods for characterizing
and computing optimal solutions. If the function f : Rn → R is convex and differ-
entiable at x with the gradient vector ∇ f (x), then the graph of the affine function
a(x) = f (x)+〈∇ f (x), x− x〉 becomes a supporting hyperplane to epi f at (x, f (x))
and for every x ∈ dom f one has

f (x) − f (x) ≥ 〈∇ f (x), x − x〉, (1)

or epi f ⊂ epia and f (x) = a(x).
For a variety of reasons, the differentiability condition may be considered as too

restrictive in applications. This situation has led to the development of the theory of
generalized differentiation and hence the development of the theory of nonsmooth
analysis (see e.g. [1, 3, 9, 11, 17, 19, 23, 25, 30–34, 40]).

At the first step of such a generalization, the limit t → 0 was relaxed by changing it
to the one-sided form t ↓ 0, which will be called in this paper, a directional derivative
f ′(x; h) of f at x in a direction h ∈ R

n and defined as

f ′(x; h) = lim
t↓0

f (x + th) − f (x)

t
, (2)

if the limit exists.
The relation (1) was extended to a nondifferentiable case by T. Rockafellar in [36],

where the subdifferential ∂ f (x) was defined as a set of subgradient vectors v ∈ R
n :

∂ f (x) = {v ∈ R
n : f (x) − f (x) ≥ 〈v, x − x〉,∀x ∈ R

n}. (3)

This notion successfully extends the affine support relations given above for the gra-
dient vector ∇ f (x) and the affine function a(x). The subdifferentiability of f at x
means the existence of a vector v ∈ R

n such that the hyperplane

H(v,−1) = {(x, y) : 〈(v,−1), (x − x, y − f (x))〉 = 0}

with normal vector (v,−1), is a supporting hyperplane to the epigraph of f at
(x, f (x)) :

epi f ⊂ H−(v,−1) = {(x, y) : 〈(v,−1), (x − x, y − f (x))〉 ≤ 0}. (4)

The global nature of this relation leads to the following necessary and sufficient con-
dition for unconstrained global optimality of x :

0 ∈ ∂ f (x) ⇔ f (x) ≥ f (x),∀x ∈ R
n . (5)
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For the problem of minimizing a convex function f (x) subject to x ∈ S, where
S ⊂ R

n is a convex, closed set, the following necessary and sufficient condition for
global optimality was formulated by Rockafellar [37] and Pshenichnyi [35]: x ∈ S
is a global optimal solution to this problem if and only if there exists a subgradient
v ∈ ∂ f (x) such that

〈v, x − x〉 ≥ 0,∀x ∈ S. (6)

Subgradients in the convex analysis found important applications in optimization
(see e.g. [16, 37, 41]). In the convex case, the subdifferential set ∂ f (x) can be char-
acterized with respect to the directional derivatives of f at x :

∂ f (x) = {v ∈ R
n : f ′(x; h) ≥ 〈v, h〉 for all h ∈ R

n}, (7)

f ′(x; h) = max{〈v, h〉 : v ∈ ∂ f (x)} for all h ∈ R
n . (8)

A major contribution to the nonsmooth and nonconvex analysis was made by F.H.
Clarke. In [10], Clarke introduced a generalized directional derivative concept f ◦
and showed how the definition of subdifferential ∂ f can be extended to arbitrary
lower semicontinuous, locally Lipschitz functions defined on Banach spaces. Clarke
introduced the notion of the generalized subdifferential ∂◦ f (x) as a set of subgradient
vectors v ∈ R

n with

∂◦ f (x) = {v ∈ R
n : f ◦(x; h) ≥ 〈v, h〉,∀h ∈ R

n}.

The main property of the Clarke stationary points is given in the following theorem.

Theorem 1 [12, Proposition 2.3.2, p. 38] If f attains a local minimum or maximum
at x then 0 ∈ ∂◦ f (x).

Clarke introduced the regularity notion which plays an important role in nonsmooth
analysis.

Definition 1 [12, Definition 2.3.4, p. 39] f is said to be regular at x provided that the
classical directional derivative f ′(x; h) exists and f ◦(x; h) = f ′(x; h) for all h.

The regularity property for the Clarke’s directional derivative was proved by Clarke
under the convexity condition (see [12, Proposition 2.3.6 (b), p. 40]).On the other hand,
although Clarke extended the subgradient notion to Lipschitz continuous functions,
there was nothing analogous for the case of general f . T. Rockafellar made a serious
contribution to fill this gap, by introducing a subderivative function d f (x; ·) [38, 40].
By using this notion, he established a new regularity condition for the Clarke’s direc-
tional derivative in the Lipschitzian case (see Theorem 6 in Sect. 4). The extensions of
the derivative notion given by Clarke and Rockafellar have made a huge contribution
to the nonsmooth analysis. However, even under the regularity conditions, the station-
ary points x with f ◦(x; h) ≥ f ◦(x; 0) = 0 or d f (x; h) ≥ d f (x; 0) = 0 for all h,

characterize only local extremum points of f .
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The analysis given above demonstrates that, for an optimization problem with
nonconvex and nondifferentiable functions, to formulate conditions guaranteeing the
existence of supporting surfaces similar to (1) and/or (4), conditions for global opti-
mality similar to (5) and/or (6), or characterization relations similar to (7) and/or (8),
are not easy tasks and require additional assumptions and new approaches. The charac-
terization of a global minimum by using the derivatives and/or generalized derivatives
still remains to be one of the main problems in the mathematical programming. It can
be expected that such a characterization may also help to develop solution methods
for escaping from local minima. One of the main purposes of this paper, is to study
tools, which allow to analyze these problems.

Two of such tools studied in this paper are the radial epiderivative and the weak
subdifferential concepts, both introduced earlier by R.Kasimbeyli.

R. Kasimbeyli introduced the concept of the weak subdifferential ∂w f in his dis-
sertation [20] (see also [4, 5, 13–15]), as a set of weak subgradients (v, c) ∈ R

n ×R+
with

f (x) ≥ f (x) + 〈v, x − x〉 − c‖x − x‖, ∀x ∈ R
n .

The existence of a weak subgradient at x, corresponds to the existence of a conical
supporting surface to epi f at (x, f (x)) and allows by this way to handle applications
not fitting within the domain of convexity. By using the conical supporting philosophy
developed in [20], Kasimbeyli extended the Hahn-Banach separation theorem to a
nonconvex case [26, 27] which has played an important role in analyzing nonconvex
optimization problems and developing solution methods for them [13, 14, 21, 28,
29]. With the help of the weak subgradients, the global optimality condition (5) was
extended to a nonconvex case (see [14, Remark 2.2]):

(0, 0) ∈ ∂w f (x) ⇔ f (x) ≥ f (x),∀x ∈ R
n . (9)

Recently, Dinc Yalcin and Kasimbeyli developed a new weak subgradients based
global solution method for nonconvex box-constrained optimization problems in [14],
where the approximate computingmethod for theweak subgradients via the directional
derivatives, was also suggested.

The radial epiderivative concept was first proposed by F. Flores-Bazan in [18] (see
also [19]). In this paper, we use the definition of this concept given by Kasimbeyli in
[25], in a slightly different setting, for both set-valued maps and real-valued functions.
By using the radial epiderivative f r (x; h) of a function f : Rn → R at a point x in a
direction h ∈ R

n, a necessary and sufficient conditions for the global minimum x of
a real-valued nonconvex function f is given in [18] and [25]:

f r (x; h) ≥ f r (x; 0) = 0,∀h ∈ R
n ⇔ f (x) ≥ f (x),∀x ∈ R

n . (10)

In this paper, this condition is used to establish a descent direction for a nonconvex
function.

An extension of the optimality condition (6) to a nonconvex case was established
by Kasimbeyli and Mammadov in terms of the weak subgradients [29, Theorem 4].
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Kasimbeyli and Mammadov proved under some mild conditions that the radial epi-
derivative and the directional derivative can be represented as a support function of
the weak subdifferential set, and by this way the characterization relations similar to
(7) and/or (8), in nonconvex case were established by using the directional derivatives,
radial epiderivatives and the weak subdifferentials [28, Theorems 4.5 and 4.6].

Although all the above mentioned theorems and properties were established by
using the definition of the radial epiderivative given in (11), it would be interesting to
have a definition of this concept, formulated in terms of the conventional limit relation
of the Newton quotient f (x+tu)− f (x)

t . In this paper, we give such a formulation for
the radial epiderivative and prove that f r (x; ·) is a lower semicontinuous and lower
Lipschitz function. We study the relations between the radial epiderivatives and the
Clarke’s directional derivative, the subderivatives and the directional derivatives and
establish new regularity conditions. All these relations allow to connect the contribu-
tions made by the radial epiderivative concept and the huge world of the nonsmooth
analysis due to the classical directional derivative, the Clarke directional derivative
and the Rockafellar’s subderivative.

All the above mentioned properties of the radial epiderivative concept and the con-
tributions made by this concept to the theory of nonsmooth and nonconvex analysis
make it tempting to answer the question of how the radial epiderivative can be com-
puted. In this paper, we propose two methodologies for approximate computing radial
epiderivatives. One of them is based on the computational formula proposed in terms
of the weak subgradients. Besides, we formulate an iterative algorithm to compute
the radial epiderivative and prove that this algorithm terminates in a finite number of
iterations for a certain class of functions.

The paper presents a comprehensive analysis on the proved theorems and estab-
lished properties by using illustrative examples.

The rest of the paper is organized as follows: The main definitions are given in
Sect. 2. Section3 presents a new formulation and some properties of the radial epi-
derivative. In this section, we establish a class of radially epidifferentiable functions.
The relations between the radial epiderivatives and the directional derivative, Clarke’s
directional derivative and the Rockafellar’s subderivative are presented in Sect. 4. Sec-
tion5 presents two methodologies for approximate computing radial epiderivatives.
Section6 is devoted to characterization of globalminimum for nonconvex functions. In
this section, we formulate and prove a theorem on globally descent direction. Finally,
Sect. 7 draws some conclusions from the paper.

2 Preliminaries

We begin this section by first recalling the definitions and some important properties
of the main concepts used in this paper.

Definition 2 Let S be a nonempty subset of a real normed space (X, ‖·‖) and x ∈ S be
a given element. The closed radial cone R(S; x) of S at x is the set of all w ∈ X such
that there are sequences λn > 0 and (xn)n∈N ⊂ S with limn→+∞ λn(xn − x) = w. In
other words,
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R(S; x) = cl(cone(S − x)),

where cone denotes the conic hull of a set, which is the smallest cone containing S−x .

Now, we recall the definitions of the generalized derivatives which will be investi-
gated in this paper. We begin with the Clarke’s directional derivative.

Definition 3 [12] Let X be a Banach space, let f : X → R be a locally Lipschitz
function and let x ∈ X and h ∈ X be given elements. The Clarke directional derivative
f ◦(x; h) of f at x in the direction h is defined by

f ◦(x; h) = lim sup
t↓0,y→x

f (y + th) − f (y)

t
.

It was proved that the Clarke directional derivative f ◦(x; ·) is upper semicontinu-
ous, positively homogeneous, sublinear and Lipschitz function [12, Proposition 2.1.1,
p. 25]. The convexity of f ◦(x; ·) was proved by Rockafellar [39, Theorem 1].

Now, we recall the definition of Rockafellar’s subderivative [41, Definition 8.1,
p.299] (see also [38, 40]).

Definition 4 For a function f : Rn → R and a point x ∈ R
n with f (x) finite, the

subderivative d f (x; h) of function f at x in a direction h ∈ R
n, is defined by

d f (x; h) = lim inf
t↓0,u→h

f (x + tu) − f (x)

t
.

Remark 1 The definition of the subderivative given in Definition 4 is more specifically
the lower subderivative of f given in [40],where the correspondingupper subderivative
is defined with “lim sup” in place of “lim inf”. Moreover, T. Rockafellar used the term
“the subderivative of f at x for h” for the subderivative d f (x; h) [41, Definition 8.1,
p.299].

Definition 5 The radial epiderivative f r (x; h) of a function f : Rn → R at a point
x in a direction h ∈ R

n is defined through the radial cone R(epi f ; (x, f (x))) to the
epigraph epi f of f at (x, f (x)) such that

epi f r (x; ·) = R(epi f ; (x, f (x))). (11)

In the case when the radial epiderivative f r (x; h) exists and finite for every h,we will
say that f is radially epidifferentiable at x .

The radial epiderivative is probably the first derivative concept which extends the
global affine support relations (1) and (4) to a nonconvex case by using a global
conical supporting surface to the epigraph of a function under consideration.

Remark 2 In the original definition of the radial epiderivative given in [25], the notation
Dr F(x, y)(·) was used for this notion, which was defined for a set-valued map F,
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where y ∈ F(x). Since in this paper we consider real-valued functions, we use the
notation f r (x; ·). Such a notation is similar to those used for the directional derivative,
the Clarke’s and the Rockafellar’s derivatives, and by this way we aim to use unified
notations for all the generalized derivatives considered in this paper.

Now we recall the existence condition for the radial epiderivative proved in [25].

Theorem 2 [25, Theorem 3.2] Let (X, ‖.‖X) be a real normed space, S be a non-empty
subset ofX, x ∈ S and let f : S → R∪{+∞} be a proper function. Assume that there
exist functions g1, g2 : X → R with epi(g1) ⊂ R(epi( f ); (x, f (x))) ⊂ epi(g2).
Then, the radial epiderivative f r (x; ·) is given as

f r (x; h) = inf{y ∈ R : (h, y) ∈ R(epi( f ); (x, f (x)))},∀h ∈ X. (12)

Lemma 1 [28, Lemma 3.7] Let f : X → R be a single-valued function having
radial epiderivative f r (x; ·) given by (12). Then, the radial epiderivative f r (x; ·) is
a positively homogeneous function.

The generalized derivatives given by Clarke and by Rockafellar were used to
define the corresponding generalized subgradients. These generalized subgradients
were defined as the normal vectors of supporting hyperplanes to the epigraphs of the
corresponding derivatives. In difference to these concepts, the classical subgradient of
a function in the convex analysis introduced by Rockafellar was defined as the normal
vector of the supporting hyperplane to the epigraph of the function under considera-
tion. It is remarkable that in nonconvex analysis, this property was kept probably only
in the definition of the weak subgradient, which strongly fits this property.

Remark 3 It follows from definition of the weak subgradient given in Sect. 1 that the
pair (v, c) ∈ R

n×R+ is aweak subgradient of f at x ∈ R
n, if there exists a continuous

(superlinear) concave function

g(x) = f (x) + 〈v, x − x〉 − c‖x − x‖,

such that g(x) ≤ f (x), for all x ∈ R
n and g(x) = f (x). Then clearly the set

hypo(g) = {(x, α) ∈ R
n × R : g(x) ≥ α} is a closed convex cone in R

n × R with
vertex at (x, f (x)), and

epi( f ) ⊂ epi(g), cl(epi( f )) ∩ graph(g) �= ∅.

The above analysis shows that the class of weakly subdifferentiable functions is
essentially larger than the class of subdifferentiable functions, see e.g. [4, Theorems
3.1, 3.2, Corollary 3.1], [5, Theorem 1] [28, Lemma 2.8], [13, Theorem 3], [14, Theo-
rem 2.3]. The following theorem explains some classes of theweakly subdifferentiable
functions, which will be used in the next sections.

Theorem 3 [28, Lemma 2.7] Let S be a nonempty subset of a real normed space
(X, ‖ · ‖). Let f : S → (−∞,+∞] be a given function. If f is a positively homoge-
neous function bounded from below on some neighborhood of 0Rn , then f is weakly
subdifferentiable at 0Rn .
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3 Properties of Radial Epiderivatives

This section presents new properties of the radial epiderivative and some illustrative
examples. We begin with the lower semicontinuity property for the radially epidiffer-
entiable functions.

Theorem 4 Let (X, ‖.‖X) be real normed space, S be a non-empty subset ofX, and let
f : S → R ∪ {+∞} be a proper function. If f is radially epidifferentiable at x ∈ X,
then f is lower semicontinuous at x .

Proof let f : S → R be a proper function, radially epidifferentiable at x . We need
to show that lim infx→x f (x) ≥ f (x). Assume to the contrary that this is not true:
lim infx→x f (x) < f (x). Then, radial cone R(epi( f ); (x, f (x))) must contain a
vertical line passing through the points (x, f (x)) and (x, lim infx→x f (x)) with

inf{y ∈ R : (0, y) ∈ R(epi( f ); (x, f (x)))} = −∞

which contradicts the hypothesis that f is radially epidifferentiable at x, and hence
the proof is completed. ��
Remark 4 Note that the inverse of Theorem 4 is not true. For example f (x) = −√|x |
is (lower semi) continuous at x = 0 but not radially epidifferentiable there.

The following proposition gives an equivalent representation for the radial epi-
derivative via a limit concept. Note that a similar expression was also given by F.
Flores-Bazan in terms of the lower epiderivative (see [19, Corollary 3.4]).

Proposition 1 Let (X, ‖.‖X) be a real normed space and let x ∈ X be a given element.
Assume that function f : X → R is radially epidifferentiable at x . Then, the radial
epiderivative f r (x, ·) can equivalently be defined as follows:

f r (x; h) = inf
t>0

lim inf
u→h

f (x + tu) − f (x)

t
(13)

for all h ∈ X.

Proof Let x ∈ X and y = f (x .)By the definition of the radial epiderivative, we have:

R(epi( f ); (x, y)) = epi( f r (x; ·))
= {(x, y) ∈ X × R : ∃λn > 0, (xn, yn) ∈ epi( f ), lim

n→∞ λn((xn, yn) − (x, y)) = (x, y)}
= {(x, y) ∈ X × R : ∃λn > 0, (xn, yn) ∈ epi( f ),

lim
n→∞ λn(xn − x) = x, lim

n→∞ λn(yn − y) = y}.

By Theorem 2,

f r (x; h) = inf{y : λn > 0, (xn, yn) ∈ epi( f ), h = lim
n→∞ λn(xn − x),

y = lim
n→∞ λn(yn − y)}.
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The last equality can be written in the following form:

f r (x; h) = inf{y : λn > 0, h = lim
n→∞ λn(xn − x), y = lim

n→∞ λn( f (xn) − y)}.

By setting xn = xn − x + x, we deduce:

f r (x; h) = inf
{
y : λn > 0,

h = lim
n→∞ λn(xn − x), y = lim

n→∞ λn( f (xn − x + x) − f (x))
}

or

f r (x; h) = inf
{
y : λn > 0,

h = lim
n→∞ λn(xn − x), y = lim

n→∞
f ( λn(xn−x)

λn
+ x) − f (x)

1/λn

}
.

Letting un = λn(xn − x), for every n = 1, 2, . . . , we obtain:

f r (x; h) = inf
{
y : λn > 0, for every n = 1, 2, . . . , y = lim inf

n→∞,un→h

f (x + un
λn

) − f (x)

1/λn

}
.

Now by setting tn = 1/λn, for every n = 1, 2, . . . , we can rewrite the last relation
as follows:

f r (x; h) = inf
{
y : tn > 0, for every n = 1, 2, . . . , y = lim inf

u→h

f (x + tnu) − f (x)

tn

}
,

which completes the proof. ��
Theorem 5 Let (X, ‖.‖X) be a real normed space and f : X → R be a proper function
finite at x = x. If f is lower Lipschitz at x, that is there exists a positive constant L
such that

f (x) − f (x) ≥ −L‖x − x‖ for all x ∈ X, (14)

then f is radially epidifferentiable at x . If X = R
n, then this condition is also neces-

sary.

Proof Assume that f is lower Lipschitz at x : there exists a positive constant L such
that (14) is satisfied for all x ∈ X. Take an arbitrary element h ∈ X and evaluate the
expression

inf
t>0

lim inf
u→h

f (x + tu) − f (x)

t
. (15)
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By (14) we obtain:

inf
t>0

lim inf
u→h

f (x + tu) − f (x)

t
≥ inf

t>0
lim inf
u→h

−t L‖u‖
t

= −L‖h‖,

which means that the expression (15) has a finite value, and hence we deduce by (13)
that, f has a finite radial epiderivative at x in every direction h.

Now assume that X = R
n and that f has a finite radial epiderivative at x in every

direction h ∈ R
n . Show that there exists a positive constant L such that (14) is satisfied

for every x ∈ R
n . Assume to the contrary that this is not true. Let {xn} ⊂ R

n and {Ln}
be sequences with Ln → +∞ and ‖xn − x‖ > 0 such that

f (xn) − f (x) < −Ln‖xn − x‖ for all n = 1, 2, . . . .

Let un = xn−x
‖xn−x‖ . Without loss of generality, assume that un → h with ‖h‖ = 1 and

let tn = ‖xn − x‖ > 0 for all n. Then, we obtain:

lim
n→∞

f (x + tnun) − f (x)

tn
< lim

n→∞
−tn Ln‖un‖

tn
= −∞,

which contradicts to the assumption that f is radially epidifferentiable at x . ��
Remark 5 The lower Lipschitz concept was called calmness, or calm from below in
[41, Chapter 8, Section F, p.322].

Now consider some examples and demonstrate the properties of the radial epi-
derivative.

Example 1 Let

f1(x) =
{−x + 3 if x < 1,
x if x ≥ 1.

The function f1 is defined and lower semicontinuous everywhere on R. This func-
tion is not continuous at x = 1 and does not satisfy the Lipschitz condition there. It is
just lower Lipschitz at x = 1.

It follows from Theorems 2 and 5 that f1 has a radial epiderivative f r1 (x; ·) at every
point x ∈ R. By using Proposition 1, we obtain (see also Fig. 1):

f r1 (x; h) =

⎧⎪⎪⎨
⎪⎪⎩

−h if x ≤ 1, h < 0,
(x−2)h
1−x if x < 1, h > 0,

h if x = 1, h > 0,
h if x > 1, h ∈ R.

Example 2 Let

f2(x) =
{−x + 3 if x ≤ 1,
x if x > 1.
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Fig. 1 The graph of radial epiderivative of function f1 at x = 0 (left) and x = 1 (right)

Clearly, it follows from Theorem 2 that f2 has a radial epiderivative f r2 (x; h) =
f r1 (x; h) at every point x �= 1, but at x = 1, where the function is not lower semicon-
tinuous (and not lower Lipschitz), we have (see also Theorems 4 and 5):

f r2 (1; h) =
{−h if h ≤ 0,

−∞ if h > 0.

Example 3 Let

f3(x) =
{
4|x + 1| if x ≤ 0,
|x − 1| + 3 if x > 0.

It follows from Theorem 2 that f3 has a radial epiderivative f r3 (x; ·) at every point
x ∈ R. Again by applying Proposition 1, we obtain (see Fig. 2 for illustrations):

f r3 (x; h) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−4h if x < −1, h ∈ R,

−4h if x = −1, h ≤ 0,
h if x = −1, h > 0,
h if − 1 < x < − 2

3 , h > 0,
− (1+4x)h

1−x if − 2
3 ≤ x < 0, h > 0,

4h if − 1 < x < 0, h < 0,
−h if x = 0, h > 0,
4h if x = 0, h < 0,
(4−x)h
x+1 if 0 < x < 1, h < 0,

−h if 0 < x < 1, h > 0,
h if x = 1, h > 0,
3h
2 if x = 1, h < 0,
h if x > 1, h > 0,
(2+x)h
1+x if x > 1, h < 0.

(16)
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Fig. 2 The graphs of the radial epiderivatives of function f3 at x = −2, x = −1, x = −3/4, x = −1/3,
x = 0, x = 1/2, x = 1, and x = 2 (from left to right)

4 Regularity Conditions

In this section, we investigate the relations between the radial epiderivative, the
Clarke’s derivative, the Rockafellar’s subderivative and the (classical) directional
derivative.

The following theorem quoted from [41] gives a regularity condition in a noncon-
vex case and explains a relationship between the directional derivative, the Clarke’s
directional derivative and the Rockafellar’s subderivative.

Theorem 6 [41, Theorem 9.16, p. 360] A function f that is finite on an open set
O ⊂ R

n is both strictly continuous (locally Lipschitz continuous) and regular on O
if and only if for every x ∈ O and h ∈ R

n the directional derivative f ′(x; h) exists,
is finite, and depends upper semicontinuously on x for each fixed h. Then f ′(x; h)

depends upper semicontinuously on x and h together and

f ′(x; h) = lim
t↓0,u→h

f (x + tu) − f (x)

t
= d f (x; h) = f ◦(x; h).

It follows from the definitions of the directional derivative, the Clarke’s directional
derivative, the subderivative and the radial epiderivative that

f r (x; x − x) ≤ d f (x; h) ≤ f ′(x; x − x) ≤ f ◦(x; x − x) (17)

123



Generalized Derivatives and Optimality Conditions in… Page 13 of 30 81

for all x .
The following theorem provides a condition (different from that given in Theorem

6), under which a given nonconvex function becomes regular and equality holds in
(17).

Theorem 7 Let (X, ‖ · ‖X) be a real normed space, let S be a nonempty subset of
the real normed space and let f : S → R be a proper function. Assume that f
has a finite directional derivative, a finite Clarke directional derivative and a finite
subderivative at x ∈ X in every direction x − x with arbitrary x ∈ X. Then, f is
radially epidifferentiable at x and

f r (x; x − x) = d f (x; x − x) = f ′(x; x − x) = f ◦(x; x − x) (18)

if and only if

f (x) − f (x) ≥ f ◦(x; x − x) for all x ∈ X. (19)

Proof Assume that f has a finite Clarke directional derivative at x ∈ X in every
direction x − x with arbitrary x ∈ X and that (19) is satisfied. Since f ◦(x; ·) is a
Lipschitz function by [12, Proposition 2.1.1, p. 25], it is also lower Lipschitz. Then, it
follows from (19) that f is lower Lipschitz at x ∈ X, too. Hence by Theorem 5, f is
radially epidifferentiable at x ∈ X in every direction x − x with arbitrary x ∈ X. By
using the representation (13) for the radial epiderivative, we have:

f r (x; h) = inf
t>0

lim inf
u→h

f (x + tu) − f (x)

t
≥ inf

t>0
lim inf
u→h

f ◦(x; tu)

t
= f ◦(x; h)

for all h ∈ X,where the last equality above, is obtained due to the positive homogeneity
and the Lipschitz continuity of f ◦(x; ·) [12, Proposition 2.1.1 (a),(b), p. 25]. Then,
the claim follows from (17).

Now assume that (18) is satisfied for all x ∈ X. Then, the claim follows from the
inequality

f (x) − f (x) ≥ f r (x; x − x)

for all x ∈ X, which is satisfied for the radial epiderivative due to its definition (see
(12)). ��

It follows from the definitions of the generalized derivatives mentioned in Theorem
7 that there may be cases when the directional derivative and the subderivative does
exist but the Clarke derivative does not exist. Moreover, there may be a case when the
subderivative does exist but the directional derivative does not exist. The following
corollaries, which are straightforward from Theorem 7, provide equality relations
between the existing derivatives.
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Corollary 1 Let (X, ‖.‖X) be real normed space and let f : X → R be a proper
function. Assume that f has both the finite directional derivative and the finite sub-
derivative at x ∈ X in every direction x − x with arbitrary x ∈ X. Then, f is radially
epidifferentiable at x and

f r (x; x − x) = d f (x; x − x) = f ′(x; x − x) (20)

if and only if

f (x) − f (x) ≥ f ′(x; x − x) for all x ∈ X. (21)

Proof By the hypothesis, we have:

inf
t>0

lim inf
u→h

f (x + tu) − f (x)

t
≥ inf

t>0
lim inf
u→h

f ′(x; tu)

t
= f ′(x; h).

This means by the definition (13) of the radial epiderivative that f is radially epidif-
ferentiable at x . Then, (20) follows from (17). The proof of the second part is similar
to that of Theorem 7. ��
Corollary 2 Let (X, ‖.‖X) be real normed space, let S be a nonempty subset of the real
normed space and let f : S → R be a proper function. Assume that f has the finite
subderivative at x ∈ X in every direction x − x with arbitrary x ∈ X. Then, f is
radially epidifferentiable at x and

f r (x; x − x) = d f (x; x − x)

if and only if

f (x) − f (x) ≥ d f (x; x − x) for all x ∈ X. (22)

Proof The proof is similar to the proof of Corollary 1. ��
Remark 6 The relation

f (x) − f (x) ≥ f r (x; x − x) for all x ∈ X, (23)

which easily follows from the definition of the radial epiderivative, explains its basic
property. Therefore, the conditions (19), (21) and (22), which establish equality
between the different kinds of generalized derivatives (considered in this paper), are
not surprising. Probably the first class of functions that satisfy these conditions can
be thought of as the class of convex functions. However, not only convex functions
satisfy these conditions. As a simple example, we can consider f (x) = −|x |, for
which the condition (21) is satisfied at x = 0, where f r (0; h) = f ′(0; h),∀h ∈ R.

Note also that for this function we have f r (x; h) = f (h),∀x, h ∈ R. Note also that
all DC functions f of the form f = f1− f2, where− f2 is lower Lipschitz, are radially
epidifferentiable. �
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Next we present examples of nonconvex functions which illustrate different cases
treated in the theorems presented above.

Example 4 Consider the function

f1(x) =
{−x + 3 if x < 1,
x if x ≥ 1

from Example 1, where it has been shown that f r1 (1; h) = |h|. It is easy to see that

d f1(1; h) = f ′
1(1; h) = f ◦

3 (1; h) =
{+∞ if h < 0,
h if h > 0.

Note that this example nicely illustrates the Theorems 6 and 7 for different choices of
x and h. �

The following example demonstrates the casewhen the subderivative does exist, but
both the directional derivative and the Clarke directional derivative do not exist. This
example also demonstrates the casewhen the subderivative and the radial epiderivative
are equal.

Example 5 Let

f4(x) =
{
x sin( 1x ) if x �= 0,
0 if x = 0

whose graph is depicted in Fig. 3. Then, the conditions of Corollary 2 are satisfied and

f r4 (0; h) = d f4(0; h) =
{
h if h < 0,
−h if h > 0.

It is easy to show that both the directional derivative f ′
4(0; h) and the Clarke directional

derivative f ◦
5 (0; h) fail to exist.

Example 6 Consider the following function (see also [41, Fig 6-4, p.199]):

f5(x) =
{
x sin(ln |x |) if x �= 0,
0 if x = 0

Then

f r5 (0; h) =
{
h if h < 0,
−h if h > 0.

Note that the conditions of Corollary 2 are satisfied and hence f r5 (0; h) =
d f5(0; h) = −|h|. On the other hand f ′

5(0; h) does not exist, but f ◦
5 (0; h) = |h|

(See Fig. 4).
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Fig. 3 The graph of the radial epiderivative and the subderivative of f4 at x = 0.

Fig. 4 The graph of radial epiderivative, subderivative and Clarke’s derivative of function f5 at x = 0 in
the interval x ∈ [−0.25, 0.25] (left) and x ∈ [−1, 1] (right)

Example 7 Consider the following function (see also [41, Exercise 8.8, p.304] and [12,
Example 2.2.3, p.33]):

f6(x) =
{
x2 sin( 1x ) if x �= 0,
0 if x = 0
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Fig. 5 The graph of radial epiderivativewith−α = −0.26, subderivative andClarke’s derivative of function
f6 at x = 0

For x = 0 we have f ′
6(0; h) = 0 for all h ∈ R. Since the derivative mapping

∇ f6 is discontinuous at x = 0, the conditions of Theorem 6, are not satisfied. In a
similar way, for the subderivative we obtain that d f6(0; h) = 0. On the other hand,
the condition (21) of Corollary 1 is also not satisfied. For the radial epiderivative at
x = 0, we have:

f r6 (0; h) =
{
h if h < 0,
−αh if h ≥ 0

where −1 < −α = x20 sin(
1
x0

) < 0, with 0.2 < x0 < 0.3 (see Fig. 5).
For the Clarke directional derivative of f6 at x = 0, we have f ◦

6 (0; h) = |h| for
all h (see, [12, Example 2.2.3, p.33] ). All derivatives for this example are depicted in
Fig. 5.

This function demonstrates the case, when the given function has all the generalized
derivatives considered in this paper, with

f r6 (0; h) �= d f6(0; h) = f ′
6(0; h) = 0 �= f ◦

6 (0; h) = |h|.

Example 8 Let

f7(x) =
{
x2 sin2( 1x ) if x �= 0,
0 if x = 0

whose graph is depicted in Fig. 6.

For x = 0, we have f ′
7(0; h) = 0 for all h ∈ R, but the derivative mapping ∇ f7 is

discontinuous at x = 0 and the conditions of Theorem 6 are not satisfied. On the other
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Fig. 6 The graph of function f7

hand, we have f7(x) − f7(0) ≥ f ′
7(0; x − 0) for all x ∈ R, which shows that the

conditions of Corollary 1 are satisfied and as a result, we have:

f r7 (0; h) = d f7(0; h) = f ′
7(0; h) = 0.

This function also demonstrates the case when the given function is directionally
differentiable, but is not Clarke directionally differentiable.
Example 9 Consider the function f3 from Example 3 and try to interpret Theorem 7
and Corollary 1. Recall that

f3(x) =
{
4|x + 1| if x ≤ 0,
|x − 1| + 3 if x > 0.

Then, all conditions of Theorem 7 and the assumption (19) are satisfied at points
x < −1 and

f r3 (x; h) = d f3(x; h) = f ′
3(x; h) = f ◦

3 (x; h)

for all x < −1 and h ∈ R. For x = −1 we have:

f r3 (−1; h) �= d f (−1; h) = f ′
3(−1; h) = f ◦

3 (−1; h) = 4h

for h > 0,where the assumption (19) is not satisfied at x = −1. Finally, it is clear that
the condition (21) of Corollary 1 is satisfied at the point x = 0, where the condition
of Theorem 6 is not satisfied and as a result we have:

f r3 (0; h) = d f3(0; h) = f ′
3(0; h) =

{−4h if h ≤ 0,
h if h > 0.

�= f ◦
3 (0; h)

for all h ∈ R, where

f ◦
3 (0; h) =

{
h if h ≤ 0,
4h if h > 0.

��
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Remark 7 An extension of the optimaity condition (6) to a nonconvex case established
in terms of the weak subgradients [29, Theorem 4], the representation of the radial
epiderivative as a support function of the weak subdifferential set in nonconvex case
(see [28, Theorems 4.5 and 4.6]), Theorem 5 on the necessary and sufficient condition
for the radial epidifferentiability, regularity relations given in Theorem 7, Corollaries 1
and 2 as well as the illustrative examples presented above help to better understand the
radial epiderivative notion. On the other hand, Theorem 7, Corollaries 1 and 2 show
that computational methods and approaches existing for computing the directional
derivative, subderivative and the generalized derivative can be used to estimate the
radial epiderivative.

Remark 8 The regularity conditions (19), (21) and (22) given inTheorem7,Corollaries
1 and 2 respectively, not only provide necessary and sufficient conditions for equality
of the generalized derivatives under consideration, but these conditions also generalize
the main affine support relation (1) of the convex analysis to a nonconvex case. The
examples considered above explain and illustrate that these conditions are valid not
only for convex but also for nonconvex functions.

5 Computing Radial Epiderivatives

This section presents two approaches for computing the radial epiderivatives. First of
them gives approximate formulas in terms of the weak subgradients, while the second
approach provides an iterative algorithm.

5.1 Computing the Radial Epiderivatives in Terms of theWeak Subgradients

This section presents theorems with constructive proofs, which provide explicit for-
mulas for approximate computing weak subgradients at a given point. These theorems
can be considered as versions of the same theorem for the Euclidean (�2) and the �1−
norms.

We first give the following lemma which plays an important role in the proof of the
subsequent theorems.

Lemma 2 Let f : R
n → R be a proper function, x ∈ R

n, and f (x) be finite. If
f has a radial epiderivative f r (x; x) for every x ∈ R

n, then f r (x; ·) is weakly
subdifferentiable at 0Rn , f is weakly subdifferentiable at x and

∂w f r (x; 0) = ∂w f (x). (24)

Proof Suppose that the radial epiderivative f r (x; ·) exists and is given by (12). It
follows from this relation that f r (x; ·) is bounded from below on some neighborhood
of 0Rn and that, it is a positively homogeneous function (see Lemma 1). Therefore by
Theorem 3, it is weakly subdifferentiable at 0Rn .

On the other hand, it follows from the definition of the radial cone that

(x − x, f (x) − f (x)) ∈ R(epi( f ); (x, f x)).
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Indeed, the radial cone R(epi( f ); (x, f x)) consists of elements of the form

lim
n→+∞ tn[(xn, yn) − (x, f (x))],

where in particular we can take tn = 1, xn = x, yn = f (x) for all n, which leads to
the element (x−x, f (x)− f (x)).Therefore by (12), we obtain the following relation:

f r (x; x − x) ≤ f (x) − f (x) (25)

for all x ∈ R
n .

Now we show that f is weakly subdifferentiable at x and that (24) is satisfied. Let
(x∗, c) ∈ ∂w f r (x; 0). Then

f r (x; h) ≥ 〈x∗, h〉 − c‖h‖ for all h ∈ R
n,

or

f r (x; x − x) ≥ 〈x∗, x − x〉 − c‖x − x‖ for all x ∈ R
n .

By (25) this implies

f (x) − f (x) ≥ 〈x∗, x − x〉 − c‖x − x‖, for all x ∈ R
n,

which means that (x∗, c) ∈ ∂w f (x).
If (x∗, c) ∈ ∂w f (x), then for any fixed h ∈ R

n we have:

f r (x; h) = inf
t>0

lim inf
u→h

f (x + tu) − f (x)

t

≥ inf
t>0

lim inf
u→h

〈x∗, tu〉 − c‖tu‖
t

= 〈x∗, h〉 − c‖h‖

that is (x∗, c) ∈ ∂w f r (x; 0) and hence the proof is completed. ��
Theorem 8 Let f : Rn → R be a proper function, x ∈ (Rn, ‖ · ‖2), and let y = f (x)
be finite. Assume that, f is radially epidifferentiable at x . Then, for every ε > 0 and
h ∈ R

n\{0Rn } with ‖h‖ = 1, there exists a weak subgradient (v, c) ∈ ∂w f (x) such
that

f r (x; h) = 〈v, h〉 − c + ε, (26)

or

v = (c + f r (x; h) − ε)h. (27)
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Proof Let h ∈ R
n be an arbitrary point with ‖h‖ = 1. By the positive homogeneity of

f r (x; ·) (see Lemma 1), it is sufficient to consider elements h with ‖h‖ = 1. Let ε > 0
be an arbitrary positive number. We will show that there exist a nonnegative number
c, and a vector v ∈ R

n (possibly depending on c and h) such that the pair (v, c) is a
weak subgradient of f r (x; ·) at zero, that is the following inequality is satisfied for
every x ∈ R

n :

f r (x; x) − f r (x; 0) ≥ 〈v, x − 0〉 − c ‖x − 0‖ .

Since f r (x; 0) = 0, the above inequality can be written simply in the following form:

f r (x; x) ≥ 〈v, x〉 − c ‖x‖ for all x ∈ R
n .

In this proof, we aim not only to construct a weak subgradient (v, c) of the given
function f , but also to construct a maximal weak subgradient for a given point h, in
the sense that the function g(x) = 〈v, x〉 − c ‖x‖ is everywhere less than or equal
to g(h) = f r (x; h) − ε and that g achieves its maximum value on the unit sphere
S1 = {x ∈ R

n : ‖x‖ = 1} at the point x = h.

We will seek a pair (v, c) such that, the directional derivative

g′(h; y) = 〈v, y〉 − c〈h, y〉/ ‖h‖ for all y ∈ R
n

of function g at h in direction y, equals zero on the subspace

H = {y ∈ R
n : 〈h, y〉 = 0}.

Then, the equality g′(h; y) = 0 on the subspace H, implies:

〈v, y〉 = 0 for all y ∈ H.

Thus, we obtain that the vector v must be orthogonal to the subspaceH. SinceH is an
(n − 1)-dimensional subspace of Rn , there exists a set of orthonormal basis vectors
{e1, . . . , en−1} in H. Then, by orthogonality of v to the subspace H, we have

〈v, e j 〉 = 0 for all j = 1, . . . , n − 1. (28)

Now note that the condition g(h) = f r (x; h)−ε leads to the relation 〈v, h〉−c‖h‖ =
f r (x; h) − ε. By using the equality ‖h‖ = 1 and combining this equality with the
n − 1 relations given in (28), we obtain n equations for n + 1 unknown parameters
(v, c) ∈ R

n × R+ in the following form:

〈v, h〉 = c‖h‖ + f r (x; h) − ε, (29)

〈v, e j 〉 = 0 for all j = 1, . . . , n − 1. (30)

Since the vector h is chosen to be perpendicular to the subspaceH, and the basis vectors
e j , j = 1, . . . , n−1 are orthonormal, we obtain that the vectors h, e1, . . . , en−1 are
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linearly independent, and therefore, the system of linear equations given by relations
(29)–(30) has a unique solution v for each c.

We now find a solution to the system of equations (29)–(30) explicitly. Recall that
the vector h is orthogonal to the subspace H. Therefore, we can seek a solution to
the set of equations (30) in the form v = λh, where λ is an unknown coefficient. By
substituting this expression for v in (29), we obtain λ = c + f r (x; h) − ε.

Thus for any given c ≥ 0, we have obtained a pair (vc, c) ∈ R
n × R+ with

vc = (c + f r (x; h) − ε)h

such that

g(x) ≤ g(h) = f r (x; h) − ε.

Now we show that the number c in the definition of g can be chosen large enough
such that

gc(x) = 〈vc, x〉 − c ‖x‖ ≤ f r (x; x) for all x ∈ R
n . (31)

For this aim, since g and f r (x; ·) are both positively homogeneous functions, it is
sufficient to show (31) only for points x in the unit sphere S1.

Suppose to the contrary that there exist sequences {ck} with ck → +∞ and {xk} ⊂
S1 such that

gck (xk) = 〈vck , xk〉 − ck ‖xk‖ > f r (x; xk) for all k = 1, 2, . . .

or, since ‖xk‖ = 1,

ck(〈h, xk〉 − 1) + f r (x; h)〈h, xk〉 − f r (x; xk) − ε〈h, xk〉 > 0 (32)

for all k = 1, 2, . . .. Without loss of generality, we can assume that xk is a convergent
sequence. Consider two cases.

(Case 1) Let xk → x̃ �= h. In this case, since both h and x̃ are in a unit circle, we
have 〈h, x̃〉 − 1 < 0. Then, due to the boundedness from below of f r (x; ·) on the
unit sphere (by the hypothesis, f r (x; ·) is given by (12)), the relation (32) leads to a
contradiction for k → ∞.

(Case 2) Let xk → h. Now, since 〈h, h〉 = 1, by letting to the limit as k → ∞, we
obtain −ε > 0, which is a contradiction.

Thus, (31) is proved, and it is shown that given any ε > 0, there exists a number
cε > 0 such that the function gcε corresponding to the pair (vε, cε) = ((cε+ f r (x; h)−
ε)h, cε), defined as

gcε (x) = (cε + f r (x; h) − ε)〈h, x〉 − cε ‖x‖

satisfies the following conditions

gcε (x) ≤ f r (x; x) for all x ∈ R
n,
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and

gcε (x) ≤ gcε (h) = f r (x; h) − ε.

The first relation, in particular, means that (vε, cε) ∈ ∂w f r (x; 0). Hence by Lemma
2, we obtain that, (vε, cε) ∈ ∂w f (x), which completes the proof. ��

Now we give the �1− norm version of Theorem 8. Since the proof of this version
is similar to that of Theorem 8, we present it without the proof.

Theorem 9 Let f : Rn → R be a proper function, x ∈ (Rn, ‖ · ‖1), and y = f (x)
be finite. Assume that, f is radially epidifferentiable at x . Then, for every ε > 0 and
h = (h1, . . . , hn) ∈ R

n \ {0Rn }, there exists a weak subgradient (v, c) ∈ ∂w f (x)
such that

f r (x; h) = 1

n
〈v, Sgn(h)〉 − c + ε, (33)

or

v = (c + f r (x; h) − ε)Sgn(h) (34)

orwhere Sgn(h) is the n dimensional vector definedas Sgn(h) = (sgn(h1), sgn(h2), . . . ,
sgn(hn)) and sgn(hi ) = 1 if hi > 0 and sgn(hi ) = −1 if hi < 0, i = 1, . . . , n.

Example 10 Consider the function f3 from Example 3 and try to illustrate Theorems
8 and 9. Recall that

f3(x) =
{
4|x + 1| if x ≤ 0,
|x − 1| + 3 if x > 0.

For this function, we will compute the weak subdifferentials at different points.

First consider the point x = 1. By Lemma 2 we have ∂w f r3 (1; 0) = ∂w f3(1). By
definition of the weak subdifferential we obtain:

∂w f3(1) = ∂w f r3 (1; 0)
= {(v, c) ∈ R × R+ : f r3 (1; h) − f r3 (1; 0) ≥ vh − c|h| for all h ∈ R}
= {(v, c) ∈ R × R+ : −c − 3

2
≤ v ≤ c + 1}. (35)

Now try to compute weak subgradients by applying Theorems 8 and/or 9. Let
h = −1, ε = 1/2. Then by (16) we have f r3 (1;−1) = −3/2, and applying formula
v = (c + f r3 (x; h) − ε)h we obtain v = −c + 2. By checking with (35), we see that
(v, c) = (−c + 2, c) ∈ ∂w f3(1) for every c ≥ 1/2.
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5.2 Algorithm for Computing the Radial Epiderivatives

In this section, we present an algorithm for numerical computing the radial epideriva-
tive for continuous functions, satisfying the lower Lipschitz condition at a given point.
We will prove that the algorithm needs a finite number of iterations to compute the
radial epiderivative of a function with the above mentioned properties, at a given point
in a given direction. First we present the algorithm.

Assume that f : Rn → R ∪ {+∞} is continuous function and satisfies the lower
Lipschitz condition (14) at x ∈ R

n with Lipschitz constant L > 0.

Algorithm 1 Approximate computing of the radial epiderivative f r (x; h) of function
f at x in direction h.

1: Let h ∈ {h = (h1, h2, ..., hn) ∈ R
n : ‖h‖ = 1}, t0 > 0 be an initial value for t which is a sufficiently

small positive number, t > t0 be an upper bound for t, β > 0, be a stepsize for t and x ∈ R
n .

2: y0 = f (x+t0h)− f (x)
t0

.

3: k ← 0.
4: while tk ≤ t do
5: tk+1 = t0 + (k + 1) ∗ β,

6: ỹk+1 = f (x+tk+1h)− f (x)
tk+1

,

7: yk+1 = min{yk , ỹk+1}.
8: k ← k + 1.
9: end while
10: f r (x, h) = yk .

We prove that Algorithm 1 terminates in a finite iterations.

Theorem 10 Let f : Rn → R ∪ {+∞} be a proper lower semicontinuous function
and x ∈ R

n . Assume that f is lower Lipschitz at x and that tk, yk, yk+1 are defined
as in Algorithm 1 for every k = 1, 2, . . . . Then, there exists a positive number N such
that yk = yN for all k > N .

Proof Let f : Rn → R be a proper continuous function, x ∈ R
n, and let f be lower

Lipschitz at x with Lipschitz constant L. Suppose that tk, yk, yk+1 are defined as in
Algorithm1 for every k = 1, 2, . . . .Assume to the contrary thatAlgorithm1 generates
strongly decreasing sequence of numbers yk with yk > yk+1 for all k = 1, 2, . . . such
that this sequence is not bıunded from below. Let the number M be chosen such that
M > L. Then by the assumption, there exists a number k such that yk < −M . Then,
we have:

−M > yk = f (x + tkh) − f (x)

tk
≥ −tk L‖h‖

tk
= −L,

which is a contradiction. ��
The following section discusses and studies optimality conditions via the radial

epiderivatives.
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6 Optimality Conditions via Generalized Derivatives

We begin this section with the following result which establishes a necessary and
sufficient condition for a descent direction via the radial epiderivative, for nonconvex
nonsmooth functions. We will say that h ∈ X is a descent direction for function
f : X → R∪{+∞} at x ∈ X, if there exists a positive number t̄ such that f (x+ t̄ h) <

f (x).

Theorem 11 Let (X, ‖.‖X) be real normed space and let f : X → R ∪ {+∞} be a
proper function. Assume that f is radially epidifferentiable at x ∈ X. Then, the vector
h ∈ X is a descent direction for f at x if and only if f r (x; h) < 0.

Proof Proof of If. let f be radially epidifferentiable at x . Assume that f r (x; h) < 0
for some h ∈ X. Then by Proposition 1 we have:

f r (x; h) = inf
t>0

lim inf
u→h

f (x + tu) − f (x)

t
< 0.

Then, there exists a positive number ε > 0 such that f r (x; h) < −ε. Thus, there
exists a positive number tε such that

lim inf
u→h

f (x + tεu) − f (x)

tε
< −ε.

Since f is radially epidifferentiable at x, by Theorem 4, it is lower semicontinuous
there and hence, the latter relation implies:

f (x + tεh) − f (x)

tε
< −ε,

which means that h is a descent direction for f at x .
The proof of “only if" is similar to that of “if" part. ��

Remark 9 Note that Theorem 11 explains a necessary and sufficient condition for a
descent direction to the global minimum. This means that in the case when the point
x ∈ X is a local but not global minimum point of f , the vector h ∈ X will lead to a
”better" point x1 for f (that is f (x1) < f (x)) if f r (x; h) < 0.

Nowwe formulate the following optimality condition which can easily be obtained
from Theorem 11. Note that the similar optimality condition was earlier established
by Kasimbeyli in [25, Theorem 3.6].

Corollary 3 Let (X, ‖.‖X) be real normed space and let f : X → R ∪ {+∞} be a
proper function. Assume that f is radially epidifferentiable at x ∈ X. Then, f attains
global minimum at x if and only if f r (x; h) attains its minimum at h = 0.

Proof The proof easily follows from Theorem 11. ��
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Example 11 Consider the function f3 from Example 3. Let

f3(x) =
{
4|x + 1| if x ≤ 0,
|x − 1| + 3 if x > 0.

Obviously h = 0 is a global minimum of the radial epiderivative

f r3 (−1; h) =
{−4h if h ≤ 0,
h if h > 0

(see (16)), which illustrates the assertion of Corollary 3 and demonstrates that x = −1
is a global minimum of f3. On the other hand, since x = −1 is a global minimum
of f3, at this point the other (global) optimality condition (0, 0) ∈ ∂w f3(−1) must
be satisfied (see (9)). It can easily be checked that (0, 0) ∈ ∂w f3(−1) = {(v, c) ∈
R × R+ : −c − 4 ≤ v ≤ c + 1}.

As another illustration of Corollary 3, consider the point x = 1, which is a local
(but not global) minimum of f3. At this point (see (16)), we have:

f r3 (1; h) =
{

3h
2 if h ≤ 0,
h if h > 0.

Clearly, h = 0 is not a minimum point of f r3 (1; h), and as a result, it can easily be
seen that (0, 0) /∈ ∂w f3(1).

On the other hand, since f r3 (1; h) < 0 for every h < 0,we obtain that (for example)
h = −1 is a descent direction for f3 at x = 1. In this case, the better point can be
computed in the form x = 1 + t(−1) and the optimal value for t = topt > 0 can
be found by solving the scalar problem: min{ f3(1 − t) : t > 0}. An easy computing
shows that for t = 2, the next iteration gives the global minimum x = −1. �

Remark 10 In [14], the authors developed a method for approximate computing the
weak subgradients via the directional derivatives, which was used there to formulate
an algorithm for solving some classes of nonconvex minimization problems. With the
help of Theorems 8 or 9, the approximate computingmethod for theweak subgradients
can be used to estimate radial epiderivatives and by thisway, using Theorem11 one can
compute the (global) descent direction for a (nonconvex) function under consideration.
On the other hand, if we are given the value of the radial epiderivative, we can estimate
the weak subgradients by using Theorems 8 or 9, and then use them in the weak
subgradient based solution method given in [14].

Finally, we illustrate the behavior of the generalized derivatives considered in this
paper, and optimality conditions given in Theorem 1 and in relations (9) and (10) on
two simple functions.

Example 12 Let

f8(x) =
{
x2 if x ≤ 0,
−x + 1 if x > 0.

(36)
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Fig. 7 The radial epiderivative (left), and subderivative and Clarke’s derivative (right) of f8 at the point
x = 0

Then,

f r8 (0; h) =
{
0 if h ≤ 0,
−h if h > 0.

Clearly, f r8 (0; h) → −∞ as h → +∞ which indicates that function f8 is unbounded
from below and hence has no a global minimum value, see Fig. 7.

On the other hand,

d f8(0; h) =
{
0 if x ≤ 0,
+∞ if x > 0.

Consequently, f ◦
8 (0; h) = d f8(0; h). Despite the fact that x = 0 is not a minimum

point of f8, the generalized subdifferential set contains the zero element, indicating
that the point x = 0 is a Clarke stationary point.

Now consider the function

f9(x) =
{
x2 if x ≤ 0,
x + 1 if x > 0.

(37)

Then,

f r9 (0; h) =
{
0 if x ≤ 0,
h if x > 0.

Clearly, f r9 (0; h) attains its globalminimumvalue at h = 0 indicating that the function
f9 attains its global minimum at x = 0, see Fig. 8. Note also that (0, 0) ∈ ∂w f9(0)
which again justifies this assertion.

On the other hand, despite the differences between the functions f8 and f9, we
obtain the same expressions for the Clarke directional derivative and the subderivative:
d f8(0; h) = d f9(0; h) = f ◦

8 (0; h) = f ◦
9 (0; h) = +∞ for h > 0. �

123



81 Page 28 of 30 G.D. Yalcin, R. Kasimbeyli

Fig. 8 The radial epiderivative (left), and subderivative and Clarke’s derivative (right) of f9 at the point
x = 0

7 Conclusion

This paper studies new properties of the radial epiderivatives and explains a class
of radially epidifferentiable functions. We prove that lower Lipschitz functions are
radially epidifferentiable and vice versa. It follows from this theorem that all convex
functions are radially epidifferentiable and that radial epiderivative of every convex
function coincides with the classic directional derivative. On the other hand, all DC
functions f of the form f = f1 − f2, where − f2 is lower Lipschitz, become radially
epidifferentiable.The paper presents new regularity conditions for establishing equal-
ity between the different kinds of generalized derivatives and compares them with
the existing in the literature conditions. We establish new global optimality condition
via the radial epiderivatives for nonconvex functions. These conditions are compared
with the optimality conditions given in the literature via the generalized derivatives. All
the regularity and optimality conditions are demonstrated and illustrated on examples.
The paper presents amethodology for finding a global descent direction for nonconvex
functions, in terms of radial epiderivatives. The paper also presents explicit formulas
and an iterative algorithm for approximate computing the radial epiderivatives. We
hope that new computing formulas presented in the paper for the radial epideriva-
tives and the global descent directions and optimality conditions can be used for new
research directions in the future such as:

– Developing of new radial epiderivatives based global solution methods in noncon-
vex programming (see e.g. [14, 15]).

– Applications in subdifferential calculus in nonconvex programming (see e.g. [7,
8]).

– Extensions of this work, e.g., in finance and neuroscience, such as via a generalized
stochastic optimal control or generalized risk management (see e.g. [24, 42])

– Applications in data science (see e.g. [2, 6, 22]).
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