
Bull. Malays. Math. Sci. Soc. (2023) 46:185
https://doi.org/10.1007/s40840-023-01575-2

Surfaces in Non-flat 3-Space Forms Satisfying ���H = ��H
Luis J. Alías1 · S. Carolina García-Martínez2 · H. Fabián Ramírez-Ospina2

Received: 16 February 2023 / Revised: 13 August 2023 / Accepted: 13 August 2023 /
Published online: 11 September 2023
© The Author(s) 2023

Abstract
In this paper, we locally classify the surfaces immersed into the non-flat (Riemannian
or Lorentzian) 3-space forms satisfying the condition � �H = λ �H for a real number λ,
where �H is the mean curvature vector field and � denotes the Cheng–Yau operator
of the surface. We obtain the classification result by proving, at a first step, that the
mean curvature function must be constant and, in a second step, we complete the
classification.

Keywords Mean curvature vector field · Spacelike surface · Timelike surface ·
B-scroll · Newton transformation · Cheng–Yau operator

Mathematics Subject Classification 53B25 · 53B30

1 Introduction and Statement of theMain Results

Let us denote byM3
q(c) the standardmodel of a three-dimensional non-flatRiemannian

(when the index is q = 0) or Lorentzian (when the index is q = 1) space form with
constant curvature c = ±1, which are given as hyperquadrics of the corresponding
pseudo-Euclidean 4-spaces. That is, when q = 0, M3

0(c) = M
3(c) will denote the
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unit 3-sphere as hyperquadric of the Euclidean 4-space,

S
3 = {x = (x1, x2, x3, x4) ∈ R

4 : 〈x, x〉 = 1} ⊂ R
4, if c = 1,

or the hyperbolic 3-space as hyperquadric of the Lorentz–Minkowski 4-space,

H
3 = {x = (x1, x2, x3, x4) ∈ R

4
1 : 〈x, x〉1 = −1} ⊂ R

4
1, if c = −1,

where 〈, 〉1 = −dx21 + dx22 + dx23 + dx24 is the Lorentzian metric in R
4
1. Similarly,

when q = 1 M
3
1(c) will denote the de Sitter 3-space as hyperquadric of the Lorentz–

Minkowski 4-space,

S
3
1 = {x = (x1, x2, x3, x4) ∈ R

4
1 : 〈x, x〉1 = 1} ⊂ R

4
1, if c = 1,

or the anti de Sitter 3-space as hyperquadric of the pseudo-Euclidean 4-space of index
2,

H
3
1 = {x = (x1, x2, x3, x4) ∈ R

4
2 : 〈x, x〉2 = −1} ⊂ R

4
2, if c = −1,

where 〈, 〉2 = −dx21 − dx22 + dx23 + dx24 is the index 2 metric in R4
2.

Let R4
t stand for the corresponding pseudo-Euclidean 4-space of index t where

M
3
q(c) is lying, with t ∈ {0, 1, 2}, and consider ψ : M2

s → M
3
q(c) ⊂ R

4
t an isometric

immersion of a non-degenerate surface M2
s of index s. As usual and to simplify the

notation, when any of the indexes q, t or s vanishes, we will omit it. We will often
omit the dimension of M , writing simply M or Ms if the index is relevant. We will
also denote simply by 〈, 〉 the corresponding pseudo-Euclidean metric in R4

t , without
distinguish the index.

The well-known Laplace–Beltrami equation for the particular case of non-
degenerate isometrically immersed surfaces ψ : M2

s → M
3
q(c) ⊂ R

4
t states

that

�ψ = 2 �H, (1)

where � is the Laplace–Beltrami operator of the surface and �H denotes the mean
curvature vector field of the immersion in R

4
t . Since �H = H N − cψ , where H is

the mean curvature function of M2
s into M

3
q(c) and N is a unit vector field normal

to M2
s in M

3
q(c), it follows from here that �ψ = λψ for a real constant λ if and

only if H = 0, that is, if and only if M is a minimal surface in M
3
q(c), giving so a

simple version of the Takahashi theorem for the particular case of surfaces in M
3
q(c)

[14, 17]. It follows from (1) that every surface in M
3
q(c) satisfying �ψ = λψ , with

λ ∈ R, trivially satisfies also the weaker condition � �H = λ �H. Motivated by this fact,
in [1], Alías, Ferrández and Lucas studied the condition � �H = λ �H for hypersurfaces
in non-flat space forms. In particular, when q = 0 and as a consequence of Proposition
3.3 in [1], it follows that minimal surfaces and totally umbilical surfaces are the only
surfaces in the non-flat Riemannian 3-space forms satisfying � �H = λ �H. On the other
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hand, for the case of surfaces in the non-flat Lorentzian 3-space forms, q = 1, they
also proved that minimal surfaces, totally umbilical surfaces and B-scrolls are the only
non-degenerate surfaces inM3

1(c) satisfying that condition.
The Laplace–Beltrami operator of a surface in a 3-space form is an intrinsic second-

order linear differential operator which arises naturally as the linearized operator of
the first variation of the mean curvature of the surface for normal variations. Similarly,
the Cheng–Yau operator, denoted here by � and introduced in [6], arises naturally as
the linearized operator of the first variation of the Gaussian curvature of the surface.
Since that time, the Cheng–Yau operator has provided fruitful applications to the
study of surfaces with constant Gaussian curvature (and, more generally, to the study
of hypersurfaces with constant scalar curvature in the higher-dimensional setting),
includingmaximumprinciples results like those in [2]. The Laplace–Beltrami operator
and the Cheng-Yau operator can be seen as second-order linear differential operators
in trace form given by tr(Pk ◦ ∇2 f ), with k = 0 and k = 1, respectively, where
∇2 f : X(M) −→ X(M) is the self-adjoint linear operator metrically equivalent to
Hessian of f , P0 = I is the identity operator and P1 = P is theNewton transformation
associated to the shape operator of M (for the details, see next section). Although in
general the Cheng–Yau operator is not elliptic, even in the Riemannian case, it still
shares nice properties with the Laplace–Beltrami operator.

From this point of view, and inspired by Garay’s extension of Takahashi theorem
in [9] and its subsequent generalizations and extensions [5, 8, 11, 12], the first author,
jointly with Gürbüz in [3] and with Kashani in [4], initiated the study of the general
condition �ψ = Aψ + b for (hyper)surfaces in Riemannian space forms, where A
is a constant matrix and b is a constant vector. In particular, as a consequence of
[4, Corollary 1.5] it follows that the only surfaces in the non-flat Riemannian space
forms satisfying the condition �ψ = λψ for a real constant λ are the totally geodesic
surfaces. This can be seen also as a consequence of Eq. (10) in next section, which is
the equivalent to the Laplace–Beltrami Eq. (1) for the Cheng–Yau operator. However,
in this case Eq. (10) does not imply a direct relation between condition�ψ = λψ and
condition � �H = λ �H, like it happens between conditions �ψ = λψ and � �H = λ �H.

In this paper, and motivated by the previous results on the study of condition� �H =
λ �H, we consider the study of the condition � �H = λ �H for λ ∈ R for non-degenerate
surfaces in non-flat 3-space forms. In particular, for the case of Riemannian 3-space
forms we obtain the following classification result.

Theorem 1 Let M be a surface immersed into the Euclidean sphere S
3 ⊂ R

4 or into
the hyperbolic space H

3 ⊂ R
4
1, and let � be the Cheng–Yau operator of M. The

surface M satisfies the condition � �H = λ �H if and only if

(1) λ = 0 and

(a) M is a totally geodesic surface in S
3;

(b) M is either a totally geodesic surface or a flat totally umbilical surface in H
3.

(2) λ 
= 0 and

(a) M is a totally umbilical, but not totally geodesic, surface in S
3;

(b) M is a non-flat totally umbilical, but not totally geodesic, surface in H
3.
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See Examples 1 and 2 for the precise description of the totally geodesic and totally
umbilical surfaces in S3 and H

3.
On the other hand, for the case of Lorentzian 3-space forms the classification is

much richer due to the fact that, in that case, the non-degenerate surface can be either
spacelike (s = 0) or timelike (s = 1), and in the latter its shape operator is not
necessarily diagonalizable. In this case, we state separately the case λ = 0 and the
case λ 
= 0. For λ = 0, we obtain the following classification.

Theorem 2 Let Ms be a non-degenerate surface immersed into the de Sitter space
S
3
1 ⊂ R

4
1 or into the anti de Sitter space H

3
1 ⊂ R

4
2, and let � be the Cheng–Yau

operator of Ms. The surface Ms satisfies the condition � �H = �0 if and only if

(a) M is one of the following surfaces: a totally geodesic (spacelike or timelike)
surface, a flat totally umbilical (spacelike) surface or a minimal B-scroll in S

3
1,

(b) M is one of the following surfaces: a totally geodesic (spacelike or timelike)
surface, a flat totally umbilical (timelike) surface, a minimal B-scroll or a flat
B-scroll in H

3
1.

On the other hand, when λ 
= 0, the classification is as follows:

Theorem 3 Let Ms be a non-degenerate surface immersed into the de Sitter space
S
3
1 ⊂ R

4
1 or into the anti de Sitter space H

3
1 ⊂ R

4
2, and let � be the Cheng–Yau

operator of Ms. The surface Ms satisfies the condition � �H = λ �H, with λ 
= 0, if and
only if

(a) M is either a non-flat totally umbilical, but not totally geodesic, (spacelike or
timelike) surface or a non-minimal B-scroll in S

3
1.

(b) M is either a non-flat totally umbilical, but not totally geodesic, (spacelike or
timelike) surface or a non-minimal and non-flat B-scroll in H

3
1.

Again, see Examples 1 and 2 for the precise description of the totally geodesic and
totally umbilical surfaces in S

3
1 and H

3
1, and see Example 3 for the definition of B-

scrolls.
The paper is organized as follows. In Sect. 2,we collect the basic definitions and give

detailed computations for the expression of � �H. In Sect. 3, we show the examples of
surfaces satisfying condition the � �H = λ �H. Finally, in Sect. 4 we locally characterize
those examples as the only ones satisfying the required condition.

Remark 1 Certainly, it is an interesting problem to study the condition � �H = λ �H for
general hypersurfaces of any dimension in Riemannian or Lorentzian space forms.
This was actually the first intention of the authors, but the computations became
much more difficult and overall conclusive results were not possible. This is still a
work in progress; the authors hope to obtain in the near future the corresponding
classification results at least for hypersurfaces in four-dimensional Riemannian space
forms. According to the authors’ calculations, in the case of higher dimension it does
not seem feasible to give a unified approach to the problemwhich can work in general,
as in the two-dimensional case.
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2 Preliminaries

Let ψ : M2
s −→ M

3
q(c) ⊂ R

4
t be an isometric immersion of a non-degenerate surface

M2
s of index s into M

3
q(c) and let N be a (locally defined) unit vector field normal to

M2
s in M

3
q(c) where 〈N , N 〉 = ε = ±1 (in the case q = 0, ε ≡ 1). Let ∇0, ∇ and

∇ denote the Levi-Civita connections on R
4
t , M

3
q(c) and M2

s , respectively. Then, the
Gauss and Weingarten formulas are given by

∇0
X Y = ∇X Y + ε 〈SX , Y 〉 N − c 〈X , Y 〉 ψ, (2)

and

S(X) = −∇X N = −∇0
X N ,

for all tangent vector fields X , Y ∈ X(M), where S : X(M) −→ X(M) stands for
the shape operator (or Weingarten endomorphism) of M , with respect to the chosen
orientation N .

Let B = {E1, E2, N } be an adapted (local) frame on M , with E1, E2 tangent to M .
We will say that B is an orthonormal frame when

〈E1, E1〉 = ε1, 〈E2, E2〉 = ε2 〈N , N 〉 = ε, and
〈E1, E2〉 = 〈E1, N 〉 = 〈E2, N 〉 = 0,

where ε1, ε2, ε ∈ {−1, 1} and ε1 + ε2 + ε = 1, if q = 1, while that ε1 + ε2 + ε = 3
if q = 0, and we will say that B is a pseudo-orthonormal frame when:

〈E1, E2〉 = −1, 〈N , N 〉 = ε and 〈E1, E1〉 = 〈E2, E2〉 = 0,
〈E1, N 〉 = 〈E2, N 〉 = 0.

It is well known (see, for instance, [15, pp. 261–262]) that the shape operator S of
a non-degenerate surface M2

s can be expressed, in an appropriate frame, in one of the
following types:

I. S ≈
[

κ1 0
0 κ2

]
; II. S ≈

[
κ −b
b κ

]
, b 
= 0; III. S ≈

[
κ 0
1 κ

]
. (3)

In cases I and II, S is represented with respect to an orthonormal frame, whereas
in case III, the frame is pseudo-orthonormal. If s = 0, it only appears case I. The
characteristic polynomial QS(t) of the shape operator S is given by

QS(t) = det(t I − S) = t2 − tr(S)t + det(S).

Then, the mean and the Gaussian curvatures of M are given by

H = ε

2
tr(S) and K = c + εdet(S),
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respectively. The Newton transformation of M is the operator P : X(M) −→ X(M)

defined by

P = (−1)q(2εH I − S). (4)

Note that by Cayley–Hamilton theorem, we have S ◦ P = (−1)qε(K − c)I . Recall
that the Newton transformations were introduced by Reilly [16] in the Riemannian
context.

In the next result, we collect the main algebraic and analytic properties of the
Newton transformation P that will be necessary in the rest of the paper. The first four
claims are simply direct algebraic computations; the proof of claims (e) and (f) can be
easily adapted from [3] (for the Riemannian case) and [13] (for the Lorentzian case).
Recall here that, in our notation, the divergence of a vector field X ∈ X(M) is the
smooth function defined as the trace of operator ∇ X , where ∇ X(Y ) := ∇Y X . That
is,

div(X) = tr(∇ X) =
∑
i, j

gi j 〈∇Ei X , E j
〉
,

{Ei } being any local frame of tangent vectors fields, where (gi j ) represents the inverse
of the metric (gi j ) = (

〈
Ei , E j

〉
). Analogously, the divergence of an operator T :

X(M) −→ X(M) is the vector field div(T ) ∈ X(M) defined as the trace of ∇T , that
is,

div(T ) = tr(∇T ) =
∑
i, j

gi j (∇Ei T )E j ,

where ∇T (Ei , E j ) = (∇Ei T )E j .

Lemma 4 The Newton transformation P of a non-degenerate surface immersed in
M

3
q(c) satisfies the following properties:

(a) P is self-adjoint and commutes with S,
(b) tr(P) = (−1)q 2εH,
(c) tr(S ◦ P) = (−1)q 2ε(K − c),
(d) tr(S2 ◦ P) = (−1)q 2 H(K − c).
(e) tr(∇X S ◦ P) = (−1)q 〈ε∇K , X〉,
(f) div(P) = 0.

Using this lemma, we obtain div(P(∇ f )) = tr
(
P ◦∇2 f

)
, where∇2 f : X(M) −→

X(M) denotes the self-adjoint linear operator metrically equivalent to the Hessian of
f , given by

〈∇2 f (X), Y
〉 = 〈∇X (∇ f ), Y 〉, for all X , Y ∈ X(M). Associated with the

Newton transformation P , we can define the second-order linear differential operator
� : C∞(M) −→ C∞(M) given by

� f = tr
(
P ◦ ∇2 f

)
. (5)
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An interesting property of� is the following. For every couple of smooth functions
f , g ∈ C∞(M), we have

�( f g) = g� f + f �g + 2 〈P(∇ f ),∇g〉 . (6)

Note that the operator � can be naturally extended to vector valued functions as
follows: If F = ( f1, f2, f3, f4) : M2

s → R
4
t with fi ∈ C∞(M), then �F =

(� f1,� f2,� f3,� f4).
Next, we are going to compute � acting on the coordinate components of the

immersion ψ , that is, a function given by 〈a, ψ〉, where a ∈ R
4
t is a fixed arbitrary

vector. A direct computation shows that

∇ 〈a, ψ〉 = a� = a − ε 〈a, N 〉 N − c 〈a, ψ〉 ψ, (7)

where a� ∈ X(M) denotes the tangential component of a along the immersion.
Taking covariant derivative in (7), and using that ∇0

X a = 0, jointly with the Gauss and
Weingarten formulae, we obtain

∇X∇ 〈a, ψ〉 = ∇X a� = ε 〈a, N 〉 S(X) − c 〈a, ψ〉 X , (8)

for every vector field X ∈ X(M). Finally, from (5) and Lemma 4, we find that

� 〈a, ψ〉 = ε 〈a, N 〉 tr(S ◦ P) − c 〈a, ψ〉 tr(P)

= (−1)q
(
2(K − c) 〈a, N 〉 − 2εcH 〈a, ψ〉

)
. (9)

Then, we can compute �ψ as follows:

�ψ = (−1)q
(
2(K − c)N − 2εcHψ

)
. (10)

On the other hand, a straightforward computation yields

∇ 〈a, N 〉 = −S(a�).

From Weingarten formula and (8), we find that

∇X∇ 〈a, N 〉 = −∇X (Sa�) = −(∇X S)(a�) − S(∇X a�)

= −(∇a� S)(X) − ε 〈a, N 〉 S2(X) + c 〈a, ψ〉 S(X),

for every tangent vector field X . This equation, jointly with Lemma 4 and (5), yields

� 〈a, N 〉 = −tr
(
P ◦ ∇a� S

) − ε 〈a, N 〉 tr
(

P ◦ S2
)

+ c 〈a, ψ〉 tr(P ◦ S)

= (−1)q
(

− ε
〈
∇K , a�〉

− 2Hε(K − c) 〈a, N 〉 + 2cε(K − c) 〈a, ψ〉
)
.

(11)
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In other words,

�N = (−1)q
(

− ε∇K − 2Hε(K − c)N + 2cε(K − c)ψ
)
. (12)

Let us consider now �H the mean curvature vector field of M2
s in the pseudo-

Euclidean space R
4
t where M

3
q(c) is lying. Then, it is easy to show that �H is given

by

�H = H N − cψ. (13)

An easy computation from (13), and using (6), (9) and (11), yields the following

�〈a, �H〉 = �(H 〈a, N 〉) − c � 〈a, ψ〉
= 〈a, N 〉 �H + H� 〈a, N 〉 + 2

〈
P(∇H),∇ 〈a, N 〉

〉

− c(−1)q[
2(K − c) 〈a, N 〉 − 2εcH 〈a, ψ〉 ]

= (−1)q
(

− εH 〈a,∇K 〉 − 2(−1)q 〈a, S ◦ P(∇H)〉
+ [

(−1)q�H − 2H2ε(K − c) − 2c(K − c)
] 〈a, N 〉

+ [
2cεH(K − c) + 2εH

] 〈a, ψ〉
)
.

In other words,

(−1)q� �H = −εH∇K − 2ε(K − c)∇H

+[
(−1)q�H − 2(K − c)

(
c + εH2

) ]
N + 2cεH Kψ. (14)

3 Examples

Our goal in this section is to give some examples of surfaces in M
3
q(c) satisfying the

condition

� �H = λ �H, λ ∈ R. (15)

In the next section, we will show that they are the only ones.

Example 1 (Totally geodesic surfaces) If M is totally geodesic inM3
q(c), then S ≡ 0.

Then, H = 0 = det(S) and K = c, and it follows easily from (14) that � �H = �0,
which gives� �H = λ �Hwith λ = 0. Recall here that totally geodesic surfaces inM3

q(c)

are obtained as intersections ofM3
q(c) with hyperplanes through the origin of R4

t and
they are open pieces of the following surfaces:

1. Round spheres S2 ⊂ S
3, given by the equation 〈x, a〉 = 0 for an arbitrary fixed

unit vector a ∈ R
4;
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2. Hyperbolic planes H2 ⊂ H
3, given by the equation 〈x, a〉 = 0 for an arbitrary

fixed spacelike unit vector a ∈ R
4
1;

3. Spacelike round spheres S2 ⊂ S
3
1, given by the equation 〈x, a〉 = 0 for an arbitrary

fixed timelike unit vector a ∈ R
4
1;

4. Timelike de Sitter planesS21 ⊂ S
3
1, given by the equation 〈x, a〉 = 0 for an arbitrary

fixed spacelike unit vector a ∈ R
4
1;

5. Spacelike hyperbolic planes H2 ⊂ H
3
1, given by the equation 〈x, a〉 = 0 for an

arbitrary fixed timelike unit vector a ∈ R
4
2;

6. Timelike anti de Sitter planes H2
1 ⊂ H

3
1, given by the equation 〈x, a〉 = 0 for an

arbitrary fixed spacelike unit vector a ∈ R
4
2.

Example 2 (Totally umbilical (non-totally geodesic) surfaces) If M is a totally umbil-
ical (but non-totally geodesic) surface in M

3
q(c), then S = μI for μ ∈ R and I the

identity operator, with H = εμ and K = c + εμ2 = c + εH2 both constant, H 
= 0.
Bearing in mind (13), it then follows from (14) that

� �H = (−1)q
(

− 2εH2
(

c + εH2
)

N + 2cεH
(

c + εH2
)

ψ
)

= (−1)q+12εH
(

c + εH2
) (

H N − cψ
)

= (−1)q+12εH
(

c + εH2
) �H.

Therefore, all totally umbilical surfaces inM3
q(c) satisfy condition (15) with

λ = (−1)q+12εH
(

c + εH2
)

= (−1)q+12εH K .

Since H 
= 0, we have that λ = 0 if and only if K = c + εH2 = 0, which can happen
only when c = 1 and ε = −1 or when c = −1 and ε = 1. They all have H = ±1
and correspond to open pieces of Euclidean planes in hyperbolic space H3, spacelike
Euclidean planes in de Sitter space S

3
1 and timelike Lorentz–Minkowski spaces in

anti-de Sitter space H3
1 (see below for details).

As is well known, totally umbilical (but non-totally geodesic) surfaces inM3
q(c) are

obtained as intersections of M3
q(c) with hyperplanes (not passing through the origin)

of R4
t and they are open pieces of the following surfaces:

1. Round spheres S2(r) ⊂ S
3 of radius 0 < r < 1, given by the equation 〈x, a〉 = τ

for an arbitrary fixed unit vector a ∈ R
4 and 0 < |τ | = √

1 − r2 < 1, with
K = 1/r2;

2. Round spheres S2(r) ⊂ H
3 of radius r > 0, given by the equation 〈x, a〉 = τ

for an arbitrary fixed timelike unit vector a ∈ R
4
1 and |τ | = √

1 + r2 > 1, with
K = 1/r2;

3. Hyperbolic planes H2(r) ⊂ H
3 of radius r > 1, given by the equation 〈x, a〉 = τ

for an arbitrary fixed spacelike unit vector a ∈ R
4
1 and |τ | = √

r2 − 1 > 0, with
K = −1/r2;

4. Euclidean planesR2 ⊂ H
3, given by the equation 〈x, a〉 = τ for an arbitrary fixed

lightlike vector a ∈ R
4
1 and τ 
= 0, with K = 0;
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5. Spacelike round spheres S
2(r) ⊂ S

3
1 of radius r > 1, given by the equation

〈x, a〉 = τ for an arbitrary fixed timelike unit vector a ∈ R
4
1 and |τ | = √

r2 − 1 >

0, with K = 1/r2;
6. Spacelike hyperbolic planes H2(r) ⊂ S

3
1 of radius r > 0, given by the equation

〈x, a〉 = τ for an arbitrary fixed spacelike unit vector a ∈ R
4
1 and |τ | = √

1 + r2 >

1, with K = −1/r2;
7. Timelike de Sitter planes S21(r) ⊂ S

3
1 of radius 0 < r < 1, given by the equation

〈x, a〉 = τ for an arbitrary fixed spacelike unit vector a ∈ R
4
1 and 0 < |τ | =√

1 − r2 < 1, with K = 1/r2;
8. Spacelike Euclidean planes R2 ⊂ S

3
1, given by the equation 〈x, a〉 = τ for an

arbitrary fixed lightlike vector a ∈ R
4
1 and τ 
= 0, with K = 0;

9. Timelike de Sitter planes S21(r) ⊂ H
3
1 of radius 0 < r < 1, given by the equation

〈x, a〉 = τ for an arbitrary fixed timelike unit vector a ∈ R
4
2 and 0 < |τ | =√

1 − r2 < 1, with K = 1/r2;
10. Spacelike hyperbolic planes H2(r) ⊂ H

3
1 of radius r > 0, given by the equation

〈x, a〉 = τ for an arbitrary fixed timelike unit vector a ∈ R
4
2 and |τ | = √

1 + r2 >

1, with K = −1/r2;
11. Timelike anti de Sitter planes H2

1(r) ⊂ H
3
1 of radius r > 1, given by the equation

〈x, a〉 = τ for an arbitrary fixed spacelike unit vector a ∈ R
4
2 and τ 
= 0, with

K = −1/r2;
12. Timelike Lorentz–Minkowski planes R2

1 ⊂ H
3
1, given by the equation 〈x, a〉 = τ

for an arbitrary fixed lightlike vector a ∈ R
4
2 and τ 
= 0, with K = 0.

The situation becomes more interesting when the metric induced on the surface is a
Lorentzianmetric, which allows the possibility of non-diagonalizable shape operators.
Let us start by looking for new examples of surfaces that satisfy the required condition
and whose shape operator is not diagonalizable.

Example 3 (B-scrolls) Let γ (s) be a null curve in M
3
1(c) ⊂ R

4
t with an associated

Cartan frame {A, B, C}; that is, γ : I ⊆ R ← M
3
1(c) ⊂ R

4
t is a curve with〈

γ ′(s), γ ′(s)
〉 = 0 and {A, B, C} is a pseudo-orthonormal frame of vector fields along

γ (s) with

〈A, A〉 = 〈B, B〉 = 0, 〈A, B〉 = −1,

〈A, C〉 = 〈B, C〉 = 0, 〈C, C〉 = 1,

such that

γ ′(s) = A(s),

C ′(s) = −a A(s) − κ(s)B(s),

where a is a real number and κ(s) 
= 0 for all s. Then, the mapψ : I ×R → M
3
1(c) ⊂

R
4
t given by ψ(s, u) = γ (s) + u B(s) parametrizes a Lorentzian surface in M

3
1(c)

which, following the usual terminology, is called a B-scroll (see [7] and [10]).
It is not difficult to see that N (s, u) = −aB(s)u+C(s) defines a unit normal vector

field along the surface, obviously with ε = 1, and the shape operator is given by the
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matrix

S =
(

a 0
k(s) a

)

with respect the usual tangent frame
{ ∂ψ

∂s ,
∂ψ
∂u

}
. Observe that S is not diagonalizable

with minimal polynomial mS(t) = (t − a)2. Moreover, H = a and K = c + a2. In
particular, a B-scroll is minimal if and only if a = 0, while a B-scroll is flat if and
only if c = −1 and a = ±1. It then follows from (13) and (14) that

� �H = (−1)q+12a
(

c + a2
) �H = λ �H

so that B-scrolls inM3
1(c) satisfy condition (15) with

λ = (−1)q+12a
(

c + a2
)

.

In particular, λ = 0 if and only if it is either a minimal B-scroll in S
3
1 (a = 0) or it is

either a minimal B-scroll (a = 0) or a flat B-scroll (a = ±1) in H3
1.

The following result characterizes, at least locally, B-scrolls as the only Lorentzian
surfaces inM3

1(c) whose shape operator S has minimal polynomial mS(t) = (t −a)2,
where a ∈ R.

Proposition 5 Let M2
1 be a Lorentzian surface into M

3
1(c) ⊂ R

4
t , let a be a real

number and let (t − a)2 be the minimal polynomial of its shape operator S. Then, in
a neighborhood of any point, M2

1 is a B-scroll over a null curve.

Proof A proof of this proposition for a 
= 0 can be found in [1, Theorem 4.2], but the
proof is also valid for a = 0. For the reader convenience, let us do this proof for the
remaining case a = 0, following the same idea that in [1].

Let us consider p ∈ M2
1 and a pseudo-orthonormal frame {A, B} of tangent vector

fields in a neighborhood of p such that

S(A) = k B,

S(B) = 0,

where k 
= 0. Let N be a unit vector field normal to M2
1 intoM

3
1(c). Since M2

1 is locally
an embedded surface intoM3

1(c), we can take an integral curve γ (s) of A starting from
p. Namely, we can write A(s) = A(γ (s)), B(s) = B(γ (s)), C(s) = N (γ (s)) and
k(s) = k(γ (s)) so that the covariant derivate of C is given by

DC

ds
(s) = −k(s)B(s).

For each s, let xs(t) denote an integral curve of B starting from γ (s). Then,

DB

dt
(xs(t)) = ∇0

ẋs (t)B(xs(t)) = ∇0
B B(xs(t)) = ∇B B(xs(t)).
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ByCodazzi equation,we know that∇B B ∈ span{B}. Thus, there exists a differentiable
function f such that

DB

dt
(xs(t)) = f (xs(t))B(xs(t))

It is not hard to see that the solution of previous differential equation is equal to

B(xs(t)) = gs(t)B(s)

for a certain positive function gs(t) with gs(0) = 1. Therefore,

xs(t) = γ (s) +
∫ t

0
gs(v)dv B(s),

that is, in a neighborhood of p, M2
1 is a B-scroll with a = 0. ��

4 Proof of theMain Results

If M is a surface inM3
q(c) satisfying condition (15), we can use Eqs. (13) and (14) to

obtain the following formulae

0 = H∇K + 2(K − c)∇H , (16)

�H = (−1)q2(K − c)
(

c + εH2
)

+ λH , (17)

H K = (−1)q+1ε
λ

2
. (18)

We state and prove our first result.

Proposition 6 Let M be a surface immersed intoM3
q(c) satisfying the condition � �H =

λ �H. Then, the mean curvature H is constant.

Proof Let us assume that H is non-constant and consider the set U = {
p ∈ M :

∇H(p) 
= 0
}
. On this set, we have from (16)

∇
(

H2(K − c)
)

= H
(
2(K − c)∇H + H∇K

)
= 0.

In other words, H2K − cH2 is constant on U , say H2K − cH2 = C . This, jointly
with (18), yields

(−1)q+1ε
λ

2
H − cH2 = C is constant on U ,
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which implies that H is root of the follow second degree polynomial equation

cX2 + (−1)qε
λ

2
X + C = 0.

Then, H is locally constant on U , which is a contradiction. Thus, U must be an empty
set and H is constant. ��

In particular, since we already know that H is constant, when λ = 0 Eqs. (16), (17)
and (18) reduce to

H∇K = 0, (19)

(K − c)
(

c + εH2
)

= 0, (20)

H K = 0. (21)

Thus, we distinguish the following cases:
Case I H = 0. That is, tr(S) = 0. From (20), we have K = c, that is, det(S) = 0.

Therefore, if S is diagonalizable, it must be S = 0, and we have that M is totally
geodesic in M

3
q(c). On the other hand, if S is not diagonalizable (which can happen

only when q = s = 1 and hence ε = 1), we have that its minimal polynomial is given
by mS(t) = t2, that is, zero is a double real eigenvalue of M2

1 . Thus, by Proposition 5
with a = 0 we conclude that M2

1 must be a minimal B-scroll inM3
1(c).

Case II H 
= 0. From (21), we conclude that

K = c + ε det(S) = 0 (22)

and using this in (20), we get H2 = −εc. Since ε and c only take values±1, it implies
that

H2 = −εc = 1. (23)

By (22), det(S) = −εc = H2 = (εH)2. Therefore, the characteristic polynomial of
S is given by

QS(t) = t2 − tr(S)t + det(S) = t2 − 2εHt + (εH)2 = (t − εH)2.

Therefore, its minimal polynomial is either mS(t) = t − εH or mS(t) = (t − εH)2 =
(t − H)2, with H2 = 1. In the first case, the surface must be a flat totally umbilical
surface and M

3
q(c) 
= S

3, while in the second case, and using Proposition 5 with
a = ±1, M must be a flat B-scroll in H3

1.
Conversely, from Examples 1 and 2 we already know that totally geodesic surfaces

inM3
q(c) and flat totally umbilical surfaces inM3

q(c) 
= S
3 verify condition (15) with

λ = 0. Furthermore, from Example 3 we also know that minimal B-scrolls in S
3
1

and in H
3
1 and flat B-scrolls in H

3
1 verify condition (15) with λ = 0. This reasoning

completes the proof of Theorem 1 for the case λ = 0 and the proof of Theorem 2.
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On the other hand, when λ 
= 0 and since H is constant, we know from (18) that
H 
= 0 and K 
= 0 is also constant. Replacing (18) in (17) leads us to K = c + εH2,
which implies det(S) = H2. Then, the characteristic polynomial of S is given by

QS(t) = t2 − tr(S)t + det(S) = t2 − 2εHt + ε2H2 = (t − εH)2.

Therefore, its minimal polynomial is either mS(t) = t − εH or mS(t) = (t − H)2,
in both case with H 
= 0 and K 
= 0. In the first case, the surface must be a non-flat
totally umbilical, but not totally geodesic, surface inM3

q(c), while in the second case,
and using Proposition 5 M must be either a non-minimal B-scroll in S

3
1 (a 
= 0) or a

non-minimal and non-flat B-scroll in H3
1 (a 
= 0,±1).

Conversely, from Example 2 we already know that non-flat totally umbilical sur-
faces in M

3
q(c) with H 
= 0 satisfy condition (15) with λ 
= 0. Moreover, from

Example 3 we also know that non-minimal B-scrolls in S31 and non-minimal and non-
flat B-scrolls in H

3
1 also satisfy condition (15) with λ 
= 0. This reasoning completes

the proof of Theorem 1 for the case λ 
= 0 and the proof of Theorem 3.
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