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Abstract
Given any finite subset A of order n of a distributive lattice and k ∈ {1, . . . , n}, there
is a natural extension of the median operation to n variables which generalizes the
notion of the kth smallest element of A. By applying each of these operations to A,
a totally ordered set to(A) is obtained. We refer to to(A) as the total orderization of
A. After developing a brief theory of total orderization invariant maps on distribu-
tive lattices, it is shown in this paper how these functions generalize and provide
new characterizations for symmetric continuous positively homogeneous functions,
bounded orthosymmetric multilinear maps, and certain power sum polynomials on
vector lattices. These theorems generalize several results by Bernau, Huijsmans, Kus-
raev, Azouzi, Boulabiar, Buskes, Boyd, Ryan, and Snigireva and in turn reveal novel
properties of the various maps studied in this paper.

Keywords Distributive lattice · Vector lattice · Positively homogeneous function ·
Orthosymmetric map · Orthogonally additive polynomial · Total orderization

Mathematics Subject Classification 05B35 · 46A40

1 Introduction

Given a nonempty set X , the space RX of real-valued functions on X is a distributive
lattice under the pointwise ordering. For n ∈ N and f1, . . . , fn ∈ R

X , we know
that
∧n

k=1 fk is given by the pointwise minimum, and
∨n

k=1 fk is specified by the
pointwise maximum. More generally, for any k ∈ N with k ≤ n, the function
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Mk( f1, . . . , fn)(x) =
{
the kth smallest value of { f1(x), . . . , fn(x)}

}

is also element of RX . We can naturally refer to the totally ordered subset of RX

{M1( f1, . . . , fn),M2( f1, . . . , fn), . . . ,Mn( f1, . . . , fn)}

as the total orderization of { f1, . . . , fn}.
In [7, Section 2], Boyd, Ryan, and Snigireva provide natural extensions of the

median operation on a distributive lattice to expand the notion of theseMk functions,
and hence the concept of total orderizations, to Banach lattices. Though they use a
different notation than this paper, they essentially define for k ≤ n, a Banach lattice
E , and f1, . . . , fn ∈ E

Mk( f1, . . . , fn) =
∨

1≤i1,i2,...,in+1−k≤n
i1<i2<···<in+1−k

⎛

⎝
n+1−k∧

j=1

fi j

⎞

⎠ .

For n = 2 however, the situation is more simple, and the median operation need
not be considered. Given a distributive lattice L and x, y ∈ L , the total orderization
of {x, y} is simply {x ∧ y, x ∨ y}. Perusing through the literature on vector lattices,
one can observe that these total orderizations of order two possess some intriguing
invariance properties.

The most elementary of these occurrences is that the sum of two elements remains
invariant under total orderizations. Specifically, for a vector lattice E and f , g ∈ E ,
we know that f + g = ( f ∧ g) + ( f ∨ g).

Interestingly, Bernau and Huijsmans showed in [4, Proposition 1.13] that if A is an
Archimedean almost f -algebra, then the multiplication on A is invariant under total
orderizations, that is

ab = (a ∧ b)(a ∨ b) (a, b ∈ A).

More generally, Kusraev proved in [12, Proposition 1] that a positive bilinear map
T : E × E → F , with E and F Archimedean vector lattices, is orthosymmetric if and
only if

T (x, y) = T (x ∧ y, x ∨ y) (x, y ∈ E).

Later, Azouzi, Boulabiar, and Buskes showed that the geometric mean, a symmetric
continuous positively homogeneous function, is also invariant under total orderiza-
tions. Indeed, if E is an Archimedean geometric mean closed vector lattice and

f � g := 1

2
inf{θ f + θ−1g θ ∈ (0,∞)} ( f , g ∈ E+),
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then it is proven in [2, Lemma 4.1] that

f � g = ( f ∧ g) � ( f ∨ g) ( f , g ∈ E+).

Extending beyond n = 2, Boyd, Ryan, and Snigireva recently extended Kusraev’s
result above to several variables in [7, Proposition 2] for regular n-linear forms on a
Banach lattice. Specifically, they show that if E is a Banach lattice and A : En → R

is a regular n-linear form, then A is orthosymmetric if and only if

A( f1, . . . , fn) = A
(
M1( f1, . . . , fn),M2( f1, . . . , fn), . . . ,Mn( f1, . . . , fn)

)

for every f1, . . . , fn ∈ E . Using the terminology of this paper, Boyd, Ryan, and
Snigireva prove here that A is orthosymmetric if and only if A is total orderization
invariant.

In this manuscript we further investigate the common thread of invariance under
total orderizations in these results. We begin by introducing a brief theory for maps
on distributive lattices that are total orderization invariant in Sect. 2. Specifically, we
show in Proposition 2.9 that every map defined on a distributive lattice that is total
orderization invariant is symmetric (though the converse does not hold) and provide
in Theorems 2.11 and 2.12 two characterizations for total orderization invariant maps
defined on a distributive lattice with a smallest element.

In Sect. 3 we then illustrate that total orderization invariant maps generalize the
notions of symmetric continuous positively homogeneous functions (Theorem 3.5),
bounded orthosymmetric multilinear maps between a uniformly complete vector
lattice and a separated bornological space (Theorem 3.14), and the related and to-be-
introduced bounded orthogonally generated power sum polynomials on vector lattices
(Theorem 3.17). In the same breath, characterizations for each of these types of maps
in terms of total orderizations are provided. We achieve these results by exploiting
not only the theory developed in Sect. 2 of this paper but also the theory of functional
calculus given in [8, 11] as well as some results on bounded orthosymmetric maps
and orthogonally additive polynomials found in [3, 13].

The main theorems in this paper generalize the results by Bernau, Huijsmans, Kus-
raev, Azouzi, Boulabiar, Buskes, Boyd, Ryan, and Snigireva outlined previously in this
section. The utility of the theory outlined in this paper can be further seen in Corol-
laries 3.6, 3.15, and 3.18, where novel properties of these maps under consideration
are given.

We assume the reader is familiar with the basics of lattice and vector lattice theory,
but the reader is referred to [1, 5, 14, 17] for any unexplained terminology or basic
facts if necessary. In this paper N stands for the set of strictly positive integers, while
R denotes the ordered field of real numbers.

2 Total Orderization Invariant Maps

We begin this section with some convenient notation.
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118 Page 4 of 20 C. M. Schwanke

Notation 2.1 Let L denote a nonempty distributive lattice throughout this section.

Notation 2.2 Given n ∈ N, we write [n] := {1, . . . , n} for short in this paper.
The median operation on L (see e.g. [5, Chapter II, Section 6]) is defined for

x1, x2, x3 ∈ L by

(x1, x2, x3)=(x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3)=(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3).

Defining for x1, x2, x3 ∈ L , and k ∈ [3]

Mk(x1, x2, x3) =
∨

i1,i2,...,i4−k∈[3]
i1<i2<···<i4−k

⎛

⎝
4−k∧

j=1

xi j

⎞

⎠ =
∧

i1,i2,...,i4−k∈[3]
i1<i2<···<i4−k

⎛

⎝
4−k∨

j=1

xi j

⎞

⎠

and simplifying these expressions, we get

M1(x1, x2, x3) = x1 ∧ x2 ∧ x3, M2(x1, x2, x3) = (x1, x2, x3), and

M3(x1, x2, x3) = x1 ∨ x2 ∨ x3.

Remark 2.3 It is readily checked that

(i) Mk is symmetric for each k ∈ [3],
(ii) if x1, x2, x3 ∈ L and x1 ≤ x2 ≤ x3, then Mk = xk for every k ∈ [3], and
(iii) M1(x1, x2, x3) ≤ M2(x1, x2, x3) ≤ M3(x1, x2, x3) for all x1, x2, x3 ∈ L .

These Mk operations naturally extend to any finite number of variables. As men-
tioned in the introduction, they appear in [7, Section 2] under a slightly different
notation.

Definition 2.4 For n ∈ N, x1, . . . , xn ∈ L , and k ∈ [n] let

Mk(x1, . . . , xn) =
∨

i1,i2,...,in+1−k∈[n]
i1<i2<···<in+1−k

⎛

⎝
n+1−k∧

j=1

xi j

⎞

⎠ =
∧

i1,i2,...,in+1−k∈[n]
i1<i2<···<in+1−k

⎛

⎝
n+1−k∨

j=1

xi j

⎞

⎠ .

In Proposition 2.5 we show that the contents of Remark 2.3 extend to any finite
number of variables. The author suspects this result is possibly known but was unable
to locate a reference.

Proposition 2.5 Let n ∈ N. Then

(i) Mk : Ln → L is a symmetric function for all k ∈ [n],
(ii) if x1, x2, . . . , xn ∈ L satisfy x1 ≤ x2 ≤ · · · ≤ xn, then Mk(x1, . . . , xn) = xk

for all k ∈ [n], and
(iii) M1(x1, . . . , xn) ≤ M2(x1, . . . , xn) ≤ · · · ≤ Mn(x1, . . . , xn) for all

x1, x2, . . . , xn ∈ L.
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Proof (i) Fix k ∈ [n], and let x1, x2, . . . , xn ∈ L be arbitrary. It suffices to show that
for any i, j ∈ [n] with i < j we have

Mk(x1, . . . , xi , . . . , x j , . . . , xn) = Mk(x1, . . . , x j , . . . , xi , . . . , xn).

In order to minimize cumbersome notation, we will show that

Mk(x1, x2, . . . , xn) = Mk(x2, x1, . . . , xn),

noting that the more general proof is similar. For n = 1 the result is trivial, and for
n = 2 the result is known since M1(x1, x2) = x1 ∧ x2 and M2(x1, x2) = x1 ∨ x2.
Assuming that n ≥ 3, observe that

Mk(x1, x2, . . . , xn) = R(x1, x2, . . . , xn) ∨ S(x1, x2, . . . , xn) ∨ T (x1, x2, . . . , xn),

where

R(x1, x2, . . . , xn) =
∨

3≤q1,q2,...,qn−1−k≤n
q1<q2<···<qn−1−k

(x1 ∧ x2 ∧ xq1 ∧ · · · ∧ xqn−1−k ),

and

S(x1, x2, . . . , xn) =
⎛

⎜
⎜
⎝

∨

3≤r1,r2,...,rn−k≤n
r1<r2<···<rn−k

(x1 ∧ xr1 ∧ · · · ∧ xrn−k )

⎞

⎟
⎟
⎠

∨

⎛

⎜
⎜
⎝

∨

3≤s1,s2,...,sn−k≤n
s1<s2<···<sn−k

(x2 ∧ xs1 ∧ · · · ∧ xsn−k )

⎞

⎟
⎟
⎠ ,

and

T (x1, x2, . . . , xn) =
∨

4≤t1,t2,...,tn−k≤n
t1<t2<···<tn−k

(x3 ∧ xt1 ∧ · · · ∧ xtn−k ).

Clearly, we see that R(x1, x2, . . . , xn) = R(x2, x1, . . . , xn), S(x1, x2, . . . , xn) =
S(x2, x1, . . . , xn), and T (x1, x2, . . . , xn) = T (x2, x1, . . . , xn). It follows that

Mk(x1, x2, . . . , xn) = Mk(x2, x1, . . . , xn).

We conclude that Mk is symmetric.
(ii) Suppose x1, x2, . . . , xn ∈ L satisfy x1 ≤ x2 ≤ · · · ≤ xn , and let k ∈ [n] be

arbitrary. Then we obtain

Mk(x1, . . . , xn) =
∨

i1,i2,...,in+1−k∈[n]
i1<i2<···<in+1−k

⎛

⎝
n+1−k∧

j=1

xi j

⎞

⎠ =
n∧

i=k

xi = xk .
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(iii) For n = 1, the result is trivial. Suppose n ≥ 2 and fix k ∈ [n − 1]. We prove
that Mk(x1, . . . , xn) ≤ Mk+1(x1, . . . , xn), that is, that

∨

i1,i2,...,in+1−k∈[n]
i1<i2<···<in+1−k

⎛

⎝
n+1−k∧

j=1

xi j

⎞

⎠ ≤
∨

t1,t2,...,tn−k∈[n]
t1<t2<···<tn−k

(
n−k∧

l=1

xtl

)

.

To this end, let i1, i2, . . . , in+1−k ∈ [n]with i1 < i2 < · · · < in+1−k arbitrary. Clearly,
there exist t1, t2, . . . , tn−k ∈ [n] with t1 < t2 < · · · < tn−k for which

{t1, t2, . . . , tn−k} ⊆ {i1, i2, . . . , in+1−k}.

By the monotonicity of infima, we obtain

n+1−k∧

j=1

xi j ≤
n−k∧

l=1

xtl ≤
∨

t1,t2,...,tn−k∈[n]
t1<t2<···<tn−k

(
n−k∧

l=1

xtl

)

.

Since the inequality

n+1−k∧

j=1

xi j ≤
∨

t1,t2,...,tn−k∈[n]
t1<t2<···<tn−k

(
n−k∧

l=1

xtl

)

holds for all i1, i2, . . . , in+1−k ∈ [n] with i1 < i2 < · · · < in+1−k , we conclude that

∨

i1,i2,...,in+1−k∈[n]
i1<i2<···<in+1−k

⎛

⎝
n+1−k∧

j=1

xi j

⎞

⎠ ≤
∨

t1,t2,...,tn−k∈[n]
t1<t2<···<tn−k

(
n−k∧

l=1

xtl

)

.

It follows that

M1(x1, . . . , xn) ≤ M2(x1, . . . , xn) ≤ · · · ≤ Mn(x1, . . . , xn).


�
The following terminology is motivated by Proposition 2.5(iii) above.

Definition 2.6 Given n ∈ N and x1, . . . , xn ∈ L , we write

to({x1, . . . , xn}) := {M1(x1, . . . , xn),M2(x1, . . . , xn), . . . ,Mn(x1, . . . , xn)}

and call the totally ordered set to({x1, . . . , xn}) the total orderization of {x1, . . . , xn}.
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Remark 2.7 It is an immediate consequence of Proposition 2.5 that if {x1, . . . , xn} ⊆
L , then {x1, . . . , xn} is totally ordered if and only if

to({x1, . . . , xn}) = {x1, . . . , xn}.

Wenext provide a formal definition ofmaps on distributive lattices that are invariant
under total orderizations. These functions constitute our primary focus throughout the
rest of the paper.

Definition 2.8 Let n ∈ N, and suppose A is a nonempty set. A map T : Ln → A is
said to be total orderization invariant if

T (x1, . . . , xn) = T
(
M1(x1, . . . , xn),M2(x1, . . . , xn), . . . ,Mn(x1, . . . , xn)

)

holds for every x1, . . . , xn ∈ L .

Our first result regarding these maps is useful despite its simplicity.

Proposition 2.9 Fix n ∈ N. Let A be a nonempty set. If a map T : Ln → A is total
orderization invariant, then T is symmetric.

Proof Suppose T : Ln → A is total orderization invariant. Let x1, . . . , xn ∈ L . By
assumption we have

T (x1, . . . , xn) = T
(
M1(x1, . . . , xn),M2(x1, . . . , xn), . . . ,Mn(x1, . . . , xn)

)
.

Also,Mk is symmetric for each k ∈ [n] by Proposition 2.5(i). Thus for any permuta-
tion σ on [n] we obtain

T (x1, . . . , xn) = T
(
M1(x1, . . . , xn),M2(x1, . . . , xn), . . . ,Mn(x1, . . . , xn)

)

= T

(

M1

(
xσ(1), . . . , xσ(n)

)
,M2

(
xσ(1), . . . , xσ(n)

)
, . . . ,Mn

(
xσ(1), . . . , xσ(n)

))

= T
(
xσ(1), . . . , xσ(n)

)
.

This concludes the proof. 
�
The converse of Proposition 2.9 does not hold, as the following counterexample

illustrates.

Example 2.10 Consider the Banach lattice C[0, 1] under the supremum norm. Define
T : C[0, 1] → R by T ( f , g) = ‖ f ‖ + ‖g‖. Clearly, T is symmetric. However, for
f , g ∈ C[0, 1] defined by f (x) = 1 − x and g(x) = x , we have T ( f , g) = 2 and
T ( f ∧ g, f ∨ g) = 3

2 . Thus T is not total orderization invariant.

We next proceed to the main results of this section. Theorem 2.11 below will be
employed in Theorem 3.14 to obtain a characterization of bounded orthosymmetric
multilinear maps on vector lattices.
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118 Page 8 of 20 C. M. Schwanke

Theorem 2.11 Fix n ∈ N. Suppose L possesses a smallest element θ , and let A be a
nonempty set. Put a ∈ A, and assume T : Ln → A is total orderization invariant. The
following are equivalent.

(i) T (x1, . . . , xn) = a whenever x1, . . . , xn ∈ L and xi ∧x j = θ for some i, j ∈ [n],
and

(ii) T (θ, x1, . . . , xn−1) = a holds for all x1, . . . , xn−1 ∈ L.

Proof The implication (i) ⇒ (ii) is evident since θ is the smallest element of
L . In order to prove (ii) ⇒ (i), suppose that T (θ, x1, . . . , xn−1) = a for every
x1, . . . , xn−1 ∈ L . To show that (i) holds, let x1, . . . , xn ∈ L be such that xi ∧ x j = θ

for some i, j ∈ [n]. Then we have

M1(x1, . . . , xn) =
n∧

k=1

xk = θ.

Hence from assumption (ii) we obtain

T (x1, . . . , xn) = T
(
M1(x1, . . . , xn),M2(x1, . . . , xn), . . . ,Mn(x1, . . . , xn)

)

= T
(
θ,M2(x1, . . . , xn), . . . ,Mn(x1, . . . , xn)

)
= a.


�
We conclude this section with the following essential tool for the proof of Theo-

rem 3.17.

Theorem 2.12 Fix n ∈ N. Suppose L possesses a smallest element θ , and let A be a
nonempty set. Let φ : L → A be an arbitrary function, and assume T : Ln → A is
total orderization invariant. The following are equivalent.

(i) T (x1, . . . , xn) = φ
(∨n

k=1 xk
)
whenever x1, . . . , xn ∈ L satisfy xi ∧ x j = θ for

all i, j ∈ [n] with i �= j , and
(ii) T (θ, . . . , θ

︸ ︷︷ ︸
n−1 copies

, x) = φ(x) holds for all x ∈ L.

Proof The implication (i) ⇒ (ii) is trivial. In order to verify (ii) ⇒ (i),
assume that T (θ, . . . , θ

︸ ︷︷ ︸
n−1 copies

, x) = φ(x) holds for each x ∈ L . Let x1, . . . , xn ∈ L satisfy

xi ∧ x j = θ for all i, j ∈ [n] with i �= j . Then

Mn−1(x1, . . . , xn) =
∨

i1,i2∈[n]
i1<i2

⎛

⎝
2∧

j=1

xi j

⎞

⎠ = θ.

It then follows from Proposition 2.5(iii) thatMk(x1, . . . , xn) = θ for all k ∈ [n − 1].
Thus we attain

T (x1, . . . , xn) = T
(
M1(x1, . . . , xn),M2(x1, . . . , xn), . . . ,Mn(x1, . . . , xn)

)
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= T

⎛

⎜
⎝θ, . . . , θ
︸ ︷︷ ︸
n−1 copies

,

n∨

k=1

xk

⎞

⎟
⎠

= φ

(
n∨

k=1

xk

)

.


�

3 Total Orderization Invariant Maps on Vector Lattices

In this final section of the paper, we consider Archimedean real vector lattices instead
of the more general distributive lattices. The primary aim of this section is to illustrate
that symmetric continuous positively homogeneous functions, bounded orthosymmet-
ric multilinear maps, and what we call bounded orthogonally generated power sum
polynomials are all total orderization invariant. In fact, we prove that invariance under
total orderizations actually characterizes these maps and reveal some new properties
of these functions along the way.

Notation 3.1 Throughout the remainder of this paper, E denotes an Archimedean real
vector lattice that is nontrivial; i.e. E �= {0}.

Weextensively utilize theArchimedeanvector lattice functional calculus introduced
by Buskes, de Pagter, and van Rooij in [8, Section 3]. Using the notation in [8], we
denote by H(Rn) the space of all continuous, real-valued functions h on R

n that are
positively homogeneous, i.e. h(λx) = λh(x) for every λ ∈ R

+ and all x ∈ R
n .

Definition 3.2 [8, Definition 3.1] Given f1, . . . , fn, g ∈ E and h ∈ H(Rn), we write
h( f1, . . . , fn) = g when

h(ω( f1), . . . , ω( fn)) = ω(g)

holds for every nonzero real-valued vector lattice homomorphism ω defined on the
vector sublattice of E generated by { f1, . . . , fn, g}.

This functional calculus cannot always be defined in certain vector lattices however.
For example, if h(x, y) = √x2 + y2, then there exists f and g in the Fremlin tensor
product C[0, 1]⊗̄C[0, 1] such that h( f , g) is undefined (see [10, Theorem 4.10]). We
thus turn to the notion of h-completeness, as introduced in [11].

Definition 3.3 [11, Definition 3.2] For h ∈ H(Rn), we say that E is h-complete if for
every f1, . . . , fn ∈ E there exists a unique g ∈ E such that h( f1, . . . , fn) = g.

Remark 3.4 By [8, Theorem 3.7], if E is uniformly complete, then E is h-complete
for every h ∈⋃n∈NH(Rn).
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We next show that symmetric continuous positively homogeneous functions
h : En → E defined via the Archimedean functional calculus are total orderiza-
tion invariant. As a matter of fact we prove that invariance under total orderizations
characterizes the symmetry of these maps. This result is required for our proof of
Theorem 3.17.

Theorem 3.5 Fix n ∈ N. Let h ∈ H(Rn), and assume that E is h-complete. The
following are equivalent.

(i) h : Rn → R is symmetric.
(ii) The function h : En → E defined via the Archimedean functional calculus is

symmetric.
(iii) The function h : En → E defined via the Archimedean functional calculus is

total orderization invariant.

Proof We first prove that (ii) ⇒ (i). To this end, suppose that h is symmetric on
E , and consider a permutation σ on [n]. We have that

h( f1, . . . , fn) = h
(
fσ(1), . . . , fσ(n)

)

holds for all f1, . . . , fn ∈ E . Fix f ∈ E\{0}, and let A be the vector sublattice of E
generated by { f }. Also let ω be a nonzero real-valued vector lattice homomorphism
on A. Adjusting by a scalar multiple if necessary, we can assume that ω( f ) = 1. Next
let x1, . . . , xn ∈ R. Invoking [11, Theorem 3.11] and our assumption (ii), we get

h(x1, . . . , xn) = h
(
ω(x1 f ), . . . , ω(xn f )

)
= ω
(
h(x1 f , . . . , xn f )

)

= ω
(
h(xσ(1) f , . . . , xσ(n) f )

)

= h
(
ω(xσ(1) f ), . . . , ω(xσ(n) f )

)
= h(xσ(1), . . . , xσ(n)).

Hence h : Rn → R is symmetric.
We next show that (i) ⇒ (iii). To this end, assume that h : Rn → R is symmetric.

Let f1, . . . , fn ∈ E , and let A be the vector sublattice of E generated by

{
f1, . . . , fn, h( f1, . . . , fn), h

(
M1( f1, . . . , fn),M2( f1, . . . , fn), . . . ,Mn( f1, . . . , fn)

)}
.

Suppose that ω : A → R is a non-zero vector lattice homomorphism. Using [11,
Theorem3.11], the fact that {ω( f1), . . . , ω( fn)} is a totally ordered set of real numbers
along with Remark 2.7, and the assumption that h : Rn → R is symmetric, we have

ω
(
h( f1, . . . , fn)

)
= h
(
ω( f1), . . . , ω( fn)

)

= h

(

M1

(
ω( f1), . . . , ω( fn)

)
,M2

(
ω( f1), . . . , ω( fn)

)
, . . . ,Mn

(
ω( f1), . . . , ω( fn)

))
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= h

(

ω
(
M1( f1, . . . , fn)

)
, ω
(
M2( f1, . . . , fn)

)
, . . . , ω

(
Mn( f1, . . . , fn)

))

= ω

(

h
(
M1( f1, . . . , fn),M2( f1, . . . , fn), . . . ,Mn( f1, . . . , fn)

))

.

Since the set of all nonzero vector lattice homomorphisms ω : A → R separate the
points of A, we obtain

h( f1, . . . , fn) = h
(
M1( f1, . . . , fn),M2( f1, . . . , fn), . . . ,Mn( f1, . . . , fn)

)
.

Finally note that the implication (iii) ⇒ (ii) follows from Proposition 2.9. This
concludes the proof. 
�

By applying Theorem 3.5 in the uniform completion of E , we obtain the fol-
lowing corollary providing a sufficient condition for h-completeness for symmetric
h ∈⋃n∈NH(Rn).

Corollary 3.6 Let n ∈ N, and suppose h ∈ H(Rn) is symmetric. If for every
f1, . . . , fn ∈ E with f1 ≤ f2 ≤ · · · ≤ fn there exists a unique g ∈ E such that
h( f1, . . . , fn) = g, then E is h-complete.

Next we shift our focus to orthosymmetric multilinear maps, orthogonally additive
polynomials, and orthogonally generated power sum polynomials on vector lattices.

Definition 3.7 Given n ∈ N and a vector space V , we call an n-linearmap T : En → V
orthosymmetric if T ( f1, . . . , fn) = 0 holds whenever f1, . . . , fn ∈ E and | fi | ∧
| f j | = 0 for some i, j ∈ [n]. An n-homogeneous polynomial P : E → V is said
to be orthogonally additive if P( f + g) = P( f ) + P(g) holds for all f , g ∈ E
with | f | ∧ |g| = 0. If P( f + g) = P( f ) + P(g) holds for all f , g ∈ E+ with
f ∧ g = 0, then we say that P is positively orthogonally additive. Likewise, we call
a map T : En → V positively total orderization invariant if the restriction of T to
(E+)n is total orderization invariant.

Fix n, r ∈ N. Classically, a power sum symmetric polynomial of degree n in r
variables is a map S : Rr → R of the form

S(x1, . . . , xr ) =
r∑

k=1

xnk .

We naturally extend this notion to more general settings as follows.

Definition 3.8 Let n, r ∈ N. For real vector spaces U and V and an n-homogeneous
polynomial P : U → V , define a symmetric map S : Ur → V by

S(u1, . . . , ur ) =
r∑

k=1

P(uk).
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We call maps of this form power sum symmetric polynomials of degree n in r variables
or simply power sum polynomials for short. The polynomial P will be refereed to as
the generating polynomial for S. We call a power sum polynomial S : Er → V
orthogonally generated if its generating polynomial is orthogonally additive.

In this section we reference the vector lattice n-power (for n ∈ N) of an
Archimedean vector lattice E , see [6].

Notation 3.9 For n ∈ N, the vector lattice n-power of E will be denoted by (E n©, n©).

We in particular study bounded orthosymmetric n-linear maps T : En → Y and
bounded orthogonally generated power sum polynomials of degree n in r variables
S : Er → Y , where E is a uniformly complete Archimedean vector lattice and Y is
a real separated bornological space. This setup is of profound interest to us because
the theory of total orderization-invariance alone does not appear to be sufficient for
achieving all of our desired results. We will thus receive aid from the following results
by F. Ben Amor and Kusraeva as well some techniques used in the proofs of the latter
theorem.

Theorem 3.10 [3, Theorem 18] Let E be uniformly complete, and let Y be a real
separated bornological space. If n ∈ N and T : En → Y is a bounded n-linear map,
then the following are equivalent.

1. T is orthosymmetric.
2. T is symmetric and its associated n-homogeneous polynomial PT is orthogonally

additive.
3. There exists a linear operator S : E n© → Y such that

T ( f1, . . . , fn) = S ◦ n©( f1, . . . , fn) ( f1, . . . , fn ∈ E).

In particular, we have

PT ( f ) = S ◦ n©( f , . . . , f
︸ ︷︷ ︸
n copies

) ( f ∈ E).

The following portion of the main result from [13] by Kusraeva is stated for sep-
arated convex bornological spaces and for positive f1, . . . , fr ∈ E , yet the result
actually holds for all f1, . . . , fr ∈ E and for separated bornological spaces that are
not necessarily convex. For the reader’s convenience, we give an outline of the proof
with some slight modifications.

Theorem 3.11 [13] Fix n, r ∈ N. Let E be uniformly complete, suppose Y is a real
separated bornological space, and let P : E → Y be a bounded orthogonally additive
n-homogeneous polynomial. Define

S(x1, . . . , xr ) = n

√
√
√
√

r∑

k=1

xnk (x1, . . . , xr ∈ R).
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Then

P
(
S( f1, . . . , fr )

)
=

r∑

k=1

P( fk) (1)

holds for all f1, . . . , fr ∈ E, where the expressionS( f1, . . . , fr ) in (1) is defined via
the Archimedean vector lattice functional calculus.

Proof Suppose that P is orthogonally additive. Let Eu denote the universal completion
of E , which is well-known to be a semiprime f -algebra. Fix f1, . . . fr ∈ E . Let C be
the Archimedean f -subalgebra of Eu generated by

{ f1, . . . , fr ,S( f1, . . . , fr )} .

Let ω : C → R be a nonzero multiplicative vector lattice homomorphism. Using [11,
Theorem 3.11] in the second equality below, we obtain

ω

((
S( f1, . . . , fr )

)n
)

=
(

ω
(
S( f1, . . . , fr )

))n
=
(

S
(
ω( f1), . . . , ω( fr )

))n

=
⎛

⎝ n

√
√
√
√

r∑

k=1

(
ω( fk)
)n
⎞

⎠

n

=
r∑

k=1

(
ω( fk)
)n = ω

(
r∑

k=1

f nk

)

.

Since the set of all nonzero multiplicative vector lattice homomorphisms ω : C → R

separates the points of C (see [8, Corollary 2.7]), we have

(
S( f1, . . . , fr )

)n =
r∑

k=1

f nk . (2)

By [6, Theorem 4.1], there exists a uniformly complete vector sublattice F of Eu

and a vector lattice isomorphism i : E n© → F such that both

n∏

k=1

xk ∈ F

and

i ◦ n©(x1, . . . , xn) =
n∏

k=1

xk

hold for all x1, . . . , xn ∈ E . It then follows from (2) and the identity

n©(x1, . . . , xn) = i−1

(
n∏

k=1

xk

)

(x1, . . . , xn ∈ E)
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that

n©
(
S( f1, . . . , fr ), . . . ,S( f1, . . . , fr )︸ ︷︷ ︸

n copies

)
=

r∑

k=1

n©( fk, . . . , fk︸ ︷︷ ︸
n copies

).

The result then follows fromTheorem 3.10, as there exists a linear operator S : E n© →
Y for which

P(x) = S ◦ n©(x, . . . , x
︸ ︷︷ ︸
n copies

)

holds for every x ∈ E . 
�
We additionally require the following lemma, which is analogous to [4, Proposi-

tion 1.13] by Bernau and Huijsmans, mentioned in the introduction. The omitted proof
consists of a familiar point-separating argument, similar to what was presented in the
proofs of Theorems 3.5 and 3.11.Amore general result is later proved inTheorem3.14.

Lemma 3.12 Let n ∈ N, and let A be an Archimedean semiprime f -algebra. Then

n∏

k=1

ak =
n∏

k=1

Mk(a1, . . . , an)

holds for all a1, . . . , an ∈ A.

We will use the following notation throughout the remainder of the paper.

Notation 3.13 For m, n ∈ N with m ≤ n, E uniformly complete, Y a real sepa-
rated bornological space, a map T : En → Y , f1, . . . , fm ∈ E, and k1, . . . , km ∈
{0, 1, 2, . . . , n} for which∑m

i=1 ki = n, we write

T ( f k11 . . . f kmm ) = T ( f1, . . . , f1︸ ︷︷ ︸
k1 copies

, . . . , fm, . . . , fm︸ ︷︷ ︸
km copies

).

Using the technique employed in the proof of Kusraeva’s Theorem 3.11 along with
Theorem 2.11, we show that a bounded multilinear map is orthosymmetric if and only
if it is total orderization invariant. As mentioned in the introduction, the equivalence
(i) ⇐⇒ (ii) in Theorem 3.14 below is known for the special case when E is a
Banach lattice and Y = R (see [7, Proposition 2]).

Theorem 3.14 Fix n ∈ N. Let E be uniformly complete and Y a real separated
bornological space. Suppose T : En → Y is a bounded n-linear map. The follow-
ing are equivalent.

(i) T is orthosymmetric,
(ii) T is total orderization invariant, and
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(iii) T is positively total orderization invariant.

Proof (i) ⇒ (ii) As previously, let Eu denote the universal completion of E , and
recall that Eu is a semiprime f -algebra. Suppose that f1, . . . fn ∈ E . We claim that

n©( f1, . . . , fn) = n©
(
M1( f1, . . . , fn),M2( f1, . . . , fn), . . . ,Mn( f1, . . . , fn)

)
.

Indeed, by [6, Theorem 4.1], there exists a uniformly complete vector sublattice F of
Eu and a vector lattice isomorphism i : E n© → F such that both

n∏

k=1

xk ∈ F

and

i ◦ n©(x1, . . . , xn) =
n∏

k=1

xk

hold for all x1, . . . , xn ∈ E .
It follows from this fact and Lemma 3.12 that

n©( f1, . . . , fn) = i−1

(
n∏

k=1

fk

)

= i−1

(
n∏

k=1

Mk( f1, . . . , fn)

)

= n©
(
M1( f1, . . . , fn),M2( f1, . . . , fn), . . . ,Mn( f1, . . . , fn)

)
.

By Theorem 3.10, there exists a linear operator S : E n© → Y for which

T (x1, . . . , xn) = S ◦ n©(x1, . . . , xn)

holds for every x1, . . . , xn ∈ E . It thus follows that

T ( f1, . . . , fn) = S ◦ n©( f1, . . . , fn)

= S ◦ n©
(
M1( f1, . . . , fn),M2( f1, . . . , fn), . . . ,Mn( f1, . . . , fn)

)

= T
(
M1( f1, . . . , fn),M2( f1, . . . , fn), . . . ,Mn( f1, . . . , fn)

)
.

(ii) ⇒ (iii) Trivial.
(iii) ⇒ (i) Suppose that

T ( f1, . . . , fn) = T
(
M1( f1, . . . , fn),M2( f1, . . . , fn), . . . ,Mn( f1, . . . , fn)

)
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holds for all f1, . . . , fn ∈ E+. Note that the n-linearity of T implies that
T (0, f1, . . . , fn−1) = 0 holds for all f1, . . . , fn−1 ∈ E+. Therefore, it follows from
Theorem 2.11 (with L = E+, θ = 0, and a = 0) that

T ( f1, . . . , fn) = 0 ( f1, . . . , fn ∈ E+ with fi ∧ f j = 0 for some i, j ∈ [n]). (3)

Next we claim that T is symmetric. Indeed, given a permutation σ on [n], for all
f1, . . . , fn ∈ E+ we have from Proposition 2.9 that

T ( f1, . . . , fn) = T
(
fσ(1), . . . , fσ(n)

)
.

Then using the n-linearity of T , we have for each f1, . . . , fn ∈ E that

T ( f1, . . . , fn) = T
(
f +
1 − f −

1 , . . . , f +
n − f −

n

)

=
∑

k1,...,kn∈{0,1}
T
((

f +
1

)k1(− f −
1

)1−k1 · · · ( f +
n

)kn (− f −
n

)1−kn
)

= (−1)n−∑n
i=1 ki

∑

k1,...,kn∈{0,1}
T
((

f +
1

)k1( f −
1

)1−k1 · · · ( f +
n

)kn ( f −
n

)1−kn
)

= (−1)n−∑n
i=1 ki

∑

k1,...,kn∈{0,1}
T
((

f +
σ(1)

)kσ(1)
(
f −
σ(1)

)1−kσ(1) · · · ( f +
σ(n)

)kσ(n)
(
f −
σ(n)

)1−kσ(n)

)

= T
(
fσ(1), . . . , fσ(n)

)
.

Thus the map

PT ( f ) = T ( f , . . . , f
︸ ︷︷ ︸
n copies

) ( f ∈ E)

is ann-homogeneous polynomialwith generating symmetricn-linearmap T . It follows
from the boundedness of T that PT is bounded. For f , g ∈ E+ with f ∧ g = 0, the
binomial theorem together with (3) yield

PT ( f + g) = PT ( f ) + PT (g) +
n∑

k=1

(
n

k

)

T ( f n−kgk)

= PT ( f ) + PT (g).

Thus PT is positively orthogonally additive. Then PT is orthogonally additive by [16,
Lemma 2.1]. By [3, Theorem 18], T is orthosymmetric. 
�

As a corollary, we obtain the following characterizations of bounded orthosymmet-
ric multilinear maps.

Corollary 3.15 Let E be uniformly complete, assume Y is a real separated bornolog-
ical space, and suppose T : En → Y is a bounded n-linear map. The following are
equivalent.
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(i) T is orthosymmetric,
(ii) T ( f1, . . . , fn) = 0 whenever f1, . . . , fn ∈ E satisfy

∧n
k=1 | fk | = 0, and

(iii) T ( f1, . . . , fn) = 0 whenever f1, . . . , fn ∈ E+ satisfy
∧n

k=1 fk = 0.

Proof We first prove (i) ⇒ (iii). To this end, assume T is orthosymmetric and let
f1, . . . , fn ∈ E+ be such thatM1( f1, . . . , fn) =∧n

k=1 fk = 0. From Theorem 3.14
we obtain

T ( f1, . . . , fn) = T
(
M1( f1, . . . , fn),M2( f1, . . . , fn), . . . ,Mn( f1, . . . , fn)

)

= T
(
0,M2( f1, . . . , fn), . . . ,Mn( f1, . . . , fn)

)

= 0.

Next we verify (iii) ⇒ (ii). For this task assume (iii) holds, and suppose
f1, . . . , fn ∈ E satisfy

∧n
k=1 | fk | = 0. Recall that 0 ≤ f +

k , f −
k ≤ | fk | holds for each

k ∈ [n]. It then follows from assumption (iii) that for any k1, . . . , kn ∈ {0, 1} we have

T
((

f +
1

)k1( f −
1

)1−k1 · · · ( f +
n

)kn ( f −
n

)1−kn
)

= 0.

We thus obtain

T ( f1, . . . , fn) = T
(
f +
1 − f −

1 , . . . , f +
n − f −

n

)

=
∑

k1,...,kn∈{0,1}
T
((

f +
1

)k1(− f −
1

)1−k1 · · · ( f +
n

)kn (− f −
n

)1−kn
)

= (−1)n−∑n
i=1 ki

∑

k1,...,kn∈{0,1}
T
((

f +
1

)k1( f −
1

)1−k1 · · · ( f +
n

)kn ( f −
n

)1−kn
)

= 0.

We conclude the proof by noting the implication (ii) ⇒ (i) is evident. 
�
Remark 3.16 The logical equivalence (i) ⇐⇒ (ii) in Corollary 3.15 is contained in
[15, Proposition 3.38] by Roberts via a different proof.Maps that satisfy the conditions
of Corollary 3.15(ii) are referred to in [15] as jointly orthosymmetric.

Next we turn our focus to orthogonally generated power sum polynomials. We
obtain the following characterization of bounded orthogonally generated power sum
polynomials using Theorems 2.12, 3.5, and 3.11. For E a Banach lattice and Y = R,
the equivalence (i) ⇐⇒ (ii) in Theorem 3.17 is known and stated in terms of
orthogonally additive polynomials in [7, Remark (7) following Proposition 4].

Theorem 3.17 Fix n, r ∈ N with r ≥ 2. Let E be uniformly complete, and let Y be
a real separated bornological space. Suppose S : Er → Y is a bounded power sum
polynomial of degree n in r variables. The following are equivalent.

(i) S is orthogonally generated,
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(ii) S is total orderization invariant, and
(iii) S is positively total orderization invariant.

Proof (i) ⇒ (ii) Suppose that S is orthogonally generated. As in Theorem 3.11,
let S be defined on E by functional calculus. Let f1, . . . , fr ∈ E . Denote by P the
generating n-homogeneous polynomial for S, which by assumption is orthogonally
additive. Moreover, it follows from the identity

P( f ) = S(0, . . . , 0
︸ ︷︷ ︸
r−1 copies

, f ) ( f ∈ E)

and the boundedness of S that P is bounded. Thus by Theorem 3.11, we have

P
(
S( f1, . . . , fr )

)
=

r∑

k=1

P( fk).

From this result and Theorem 3.5 we get

S( f1, . . . , fr ) =
r∑

k=1

P( fk) = P
(
S( f1, . . . , fr )

)

= P

(

S
(
M1( f1, . . . , fr ),M2( f1, . . . , fr ), . . . ,Mr ( f1, . . . , fr )

))

=
r∑

k=1

P
(
Mk( f1, . . . , fr )

)

= S
(
M1( f1, . . . , fr ), . . . ,Mr ( f1, . . . , fr )

)
.

(ii) ⇒ (iii) Trivial.

(iii) ⇒ (i)Assume S( f1, . . . , fr ) = S
(
M1( f1, . . . , fr ), . . . ,Mr ( f1, . . . , fr )

)

holds for all f1, . . . , fr ∈ E+. Since

S(0, . . . , 0
︸ ︷︷ ︸
r−1 copies

, f ) = P( f )

holds for every f ∈ E+, it follows from Theorem 2.12 that

S( f1, . . . , fr ) = P

(
r∨

k=1

fk

)

whenever f1, . . . , fr ∈ E+ satisfy fi ∧ f j = 0 for all i, j ∈ [r ] with i �= j .
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Consider f1, f2 ∈ E+ with f1 ∧ f2 = 0. If r ≥ 3, then additionally set fk = 0 for
all integers 3 ≤ k ≤ r . Since { f1, . . . , fr } is a pairwise disjoint subset of E+, we get

P( f1 + f2) = P( f1 ∨ f2) = P

(
r∨

k=1

fk

)

= S( f1, . . . , fr )

=
r∑

k=1

P( fk) = P( f1) + P( f2).

Thus P is positively orthogonally additive. Hence P is orthogonally additive by [16,
Lemma 2.1], and so S is orthogonally generated. 
�

As an immediate corollary, we attain the following characterization for bounded
orthogonally additive polynomials which generalizes [7, Remark (7) following Propo-
sition 4], a result which extends the notion of n-homogeneous polynomial valuations
(see [9, Section 2]) to anyfinite number of summands.Amap P : E → V , withV a real
vector space, is called a polynomial valuation if P is an n-homogeneous polynomial
for some n ∈ N and a valuation, meaning that P( f ) + P(g) = P( f ∧ g) + P( f ∨ g)
holds for every f , g ∈ E .

Corollary 3.18 Fix n, r ∈ N with r ≥ 2. Let E be uniformly complete, and let Y be a
real separated bornological space. Suppose P : E → Y is a bounded n-homogeneous
polynomial. The following are equivalent.

(i) P is orthogonally additive,

(ii)
∑r

k=1 P( fk) = ∑r
k=1 P
(
Mk( f1, . . . , fr )

)
holds for every f1, . . . , fr ∈ E,

and
(iii)
∑r

k=1 P( fk) =∑r
k=1 P
(
Mk( f1, . . . , fr )

)
holds for every f1, . . . , fr ∈ E+.
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