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Abstract

The statistical inference of multi-component reliability stress—strength system with
nonidentical-component strengths is considered for the modified Weibull extension
distribution in the presence of progressive censoring samples. For this aim, we study
the estimation of multi-component reliability parameter in classical and Bayesian
inference. So we derive some point and interval estimates such as maximum likelihood
estimation, asymptotic confidence intervals, uniformly minimum variance unbiased
estimation, approximate and exact Bayes estimation and highest posterior density
intervals. Comparing of different estimates is provided by employing the Monte Carlo
simulation, the mean squared error and coverage probabilities. Finally, one real data
is utilized to illustrate the applicability of this new model.

Keywords Multi-component reliability - Classical estimation - Bayes estimation -
Progressive censored

Mathematics Subject Classification 62F10 - 62F15 - 62N02

1 Introduction

The Weibull distribution, which introduced by Swedish physicist [25], is one of the
most commonly used lifetime distributions for modeling data in reliability, engineer-
ing, finance, hydrology, physics and environmental studies. This distribution is very
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flexible in modeling failure time data, as the corresponding failure rate function can be
increasing, constant or decreasing. On the other hand, for complex system, the failure
rate function can often be of bathtub shape and modeling of this system is so impor-
tant in reliability analysis. For this reason, the modified Weinull extension (MWEX)
with bathtub shaped failure rate function was proposed by Xie et al. [26]. Since its
inception from 2002, the MWEXx distribution has received a considerable amount of
attention from the statistical community, with over 560 citations to date. Its versatility
and effectiveness in a variety of situations have been portrayed in numerous books and
papers. The probability density function (PDF) and cumulative distribution function
(CDF) of this distribution are, respectively,

FOo) = 4B (f)ﬁ—l e(i)ﬁ+ka<1—e(5)ﬁ)’ "
o
Aa(l—e(é)ﬁ)

Fx)y=1—e¢ , ()

where «, 8, A > 0. Herein we denote a MWEX distribution with the parameters o,
B and A by MWEx(e, B, A). It is notable that MWEX is a general distribution where
some most distributions can be obtained from it. In following, we explain about two
of them: first one is Weibull distribution and the second one is Chen’s distribution, see
Chen [8]. The Weibull distribution can be obtained as a special case of this distribution
when « is so small that 1 —e(&” is approximately equal to —(;—‘)‘3 . The particular case
of the MWEX distribution for « = 1 is Chen’s distribution. The failure rate function
(FRF) of MWEX distribution is

h(x) = A8 (g)ﬁ_l e

which depends only on the shape parameter 8. The HF increases if 8 > 1 and is
bathtub shaped if 8 < 1. Some possible shapes of the PDF and the FRF of MWEx
distribution are shown in Fig. 1.
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Fig.1 Shape of failure rate (left) and probability density (right) functions of MWEX distribution
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The main contribution in the paper is the study in the context of Weibull extension
model, there are other related works. For example, a new five parameter distribution,
known as the modified beta flexible Weibull extension distribution, is derived and
studied by Abubakari et al. [1]. Kamal and Ismail [12] considered the flexible Weibull
Extension-Burr XII distribution. Nassar et al. [19] introduced a new extension of
Weibull distribution, called Alpha logarithmic transformed Weibull distribution that
provides better fits than some of its known generalizations. Peng and Yan [20] intro-
duced a new extended Weibull distribution with one scale parameter and two shape
parameters. Also, a new distribution as the exponentiated modified Weibull extension
distribution has been considered by Sarhan and Apaloo [24].

Type-I and Type-II censoring schemes are two most fundamental schemes in many
different censoring schemes. In these schemes, removing of the active units during
the tests is not possible, whereas the removal of surviving units during the test can
be pre-planned and intentional in order to save time and cost associated with test. For
this and many other reasons, the progressive censoring is introduced. Combining the
Type-II and progressive censoring schemes leads to consider progressive Type-II cen-
soring scheme. Recently, this scheme was very successful in applications. Under this
scheme, on a life test, N units are placed and before hand the experimenter decides
n be the number of failures to be observed. So, at the first failure time, R units ran-
domly are removed from N — 1 surviving units. At the second failure time, from
the N — R; — 1 remaining units, R, units randomly are removed from the experi-
ment. By continuing this process, finally, at the n—th failure time, all the remaining

surviving units R, = N —n — Ry — --- — R,_| randomly are removed from the
experiment. So, in a progressive Type-II censoring scheme #n is the number of failure
time observations, {X1, ..., X,} is the censoring sample, and {N, n, Ry, ..., R,} is

the progressive censoring scheme, such that Ry + - - - + R,, +n = N. Clearly, Type-II
progressive censoring scheme can be converted to the conventional Type-II right cen-
soring scheme (by Ry = --- = R,_1 = 0 and R, = N — n) and complete sampling
case (by Ry = --- = R, = 0 and N = n). We propose that the reader refers to the
book of Balakrishnan and Aggarwala [4], for more details on progressively censoring
and relevant references.

Inference about stress—strength parameter is one of the interest and fundamental
problems in reliability analysis. This parameter is shown by R = P(Y < X), where Y
and X are known as stress and strength and they are two independent random variables.
Obviously, the system is reliable so long as the strength X is greater than its stress
Y. This parameter has many applicable in different fields. For example, in clinical
studies in medicine, if X and Y are the response of the control group to a therapeutic
approach and the response of the treated group, respectively (see [11]), then R can
be seen as the measure of treatment effect. The link between statistics and reliability
theory leads to estimate of the stress—strength parameter, starting with the pioneering
work of [6]. From that time, many researchers have studied inference on the reliability
parameter from the classical and Bayesian points of views. Very recently, Al-Babtain et
al. [2] considered Bayesian and non-Bayesian reliability estimation of stress—strength
model for power-modified Lindley distribution. Sabry et al. [23] discussed Monte
Carlo simulation of stress—strength model and reliability estimation for extension of
the exponential distribution. Also, Metwally et al. [18] studied reliability analysis
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of the new exponential inverted Topp—Leone distribution with applications. About
the multi- stress—strength reliability, Yousef and Almetwally [28] investigated multi-
stress—strength reliability based on progressive first failure for Kumaraswamy model
in Bayesian and non-Bayesian approaches. Also, Almetwally et al. [3] studied optimal
plan of multi-stress—strength reliability Bayesian and non-Bayesian methods for the
alpha power exponential model using progressive first failure. Moreover, about the
fuzzy reliability approach, Sabry et al. [22] considered inference of fuzzy reliability
model for inverse Rayleigh distribution. Also, Meriem et al. [ 17] introducing the Power
XLindley distribution studied statistical inference, fuzzy reliability and COVID-19
application.

Reliability scientists, a system with more than one component, have called a multi-
component system. In such system, there is one common stress component and k
strength independent and identical components. Obviously, the system is reliable so
long as at least s from k strength components exceed its stress. This model has received
a great deal of attention, in recently years and is known as G system: s-out-of-k. Many
examples can be given of multi-component systems. For instance, consider one G
system: the 4 out of 8 as functioning V-8 engine of an automobile. In this system, the
car can be derived if only four cylinders are firing. However, the automobile cannot
be driven, if less than four cylinders are fired. Also, for another example, consider
a suspension bridge. In this case, heavy traffic, wind loading, corrosion, etc., can be
considered as stresses and the & number of vertical cable pairs can be considered as
strengths. In this situation, the bridge breaks down, if a minimum s number of vertical
cables are damaged. A more homely but complicated example of a multi-component
system would be a music (stero Hi-Fi) system consisting of an FM tuner and record
changer in parallel; connected in series with an amplifier and speakers (with the two
speakers, say A and B) connected in parallel. Bhattacharyya and Johnson [5] firstly
have presented this model as follows:

k
k o k—
Ryx = Z( ) f (1= Fx)"(Fx()" "dFy(y), 3)
s P/ J-—
where the strength variables (X1, ..., Xy) are independent and identically distributed

with the CDF Fy () and stress variable Y has the CDF Fy (-). Recently, this model has
attracted a lot of attention and has been considered for complete and censored samples
by some authors, for instance [14, 15].

As we saw, this assumption that the strengths are of i.i.d should be considered
in every applications and this condition is not available in many practical situations,
when the system component structures are different. The readers can see Farahmand
et al. [10], for more details. So, in following, we try to focus on multi-component
stress—strength models with nonidentical random strengths.

In following, one system with k = (kq, ..., k;;) strength components is studied.
In such systems, the components have nonidentical distributions so that the i-th com-
ponent,i = 1, ..., m, follows a distribution with CDF Fx(-) and all of this strength
variables are affected by a common stress ¥ with CDF Fy (). Obviously, this system
is reliable so long as at least s = (s, . . ., s) from Kk strength components exceed its
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stress. Rasethuntsa and Nadar [21] have improved 3 to derive one suitable model as
follows:

k1 km o M
Ry= Y Y < (1’;’1)) / H((l—m@))”’(ﬂ(y))k"”’)dFY(y>.
=1 0=

P1=51 Pm=5Sm
“)

In very recently paper, Kohansal et al. [16] studied this model, for two components
of strength variables. But, now, we consider this model for m components strength
variables. So, we assume that the i -th strength component follows a MWEx(«, 8, A;),
fori =1,...,m, and the stress Y follows a MWEx(«, 8, A) distribution.

Accordingly, we continue the paper as follows. In Sect. 2, when the common
parameters are unknown, the point statistical estimation of R is considered, so
that, we obtain the MLE and Bayesian estimation are obtained. Because the lack of
explicit from, we approximate the Bayesian estimation by Markov Chain Monte Carlo
(MCMC) method. Also, in view of interval estimation, we studied the asymptotic and
HPD intervals. In Sect. 3, when the common parameters are known, the statistical esti-
mation of Ry y is considered, so that, we obtain the MLE, exact Bayesian estimation,
UMVUE, asymptotic and HPD intervals. In Sect. 4, we use the Numerical simulation
results to compare the theoretical methods and Sect. 5, we consider the general case,
when all parameters are different and unknown. In Sect. 6, one real data is utilized
to illustrative the applicability of this new model. Finally, we conclude the paper in
Sect. 7.

2 Inference on R,  with Unknown Common Parameters

In many empirical data analysis, the common parameters values of strengths and stress
variables are approximately same. So, in such situations, we assume that they are
equal. Also, some estimations, in other cases spatially the case with known common
parameters, can be obtained from this case. In other advantages of this case, we can
pointed the extent of estimations.

2.1 MLE of Ry

Now, we suppose that X1 ~ MWEx(«, B8, A1), X2 ~ MWEx(«, 8, X2), ..., X\ ~
MWExX(«, 8, Apy) and Y ~ MWExX(«, B, 1) are independent random variables. Using
Egs. (1) and (2), we can obtain the multi-component reliability with nonidentical-
component strengths in (4) as follows:

ki m & (1B ’ P
k, 0 (X pr)a(d—eta’) vg \ ki—pi
Rsx = E (l | (pi))/ 6(1:1 ) | | <1 76)»104(178(&) ))
0

P1=S51 pm=sm [=1 =1

2By )8
% w(z)ﬂqem(l,e‘a) H dy Pur it = ali—e )
o

kim
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ki

=3 .. Z ( ( )) /1 ZMPH—A |m

P1=51 Pm=Sm = i

(1- tl)‘)k’_”’)dt

ki—p
( il (kz - pl)(—l)q’t)"q’>dt
q

q1=0

1
ki km

BB

P1=51 Pm=Sm

SP IR o1 SR w1 (W03 (W)

P1=51 Pm=5sm q1=0 qm=0 =1 =1

%fn 1 Zkl(mwzm—l
x (—=1)=1 )\/ ti=1 dt
0

km  ki—p1 kim—pm

S Y S < (1)

P1=S51 Pm=5sm q1=0 gn=0 =1 =1

=

l

1

m

> A
X (=)=

(&)

m

Z M(pr+qn) -H»

Now, to derive the MLE of Rk, we use the invariance property, so, first, we obtain
the MLE’s unknown parameters «, 8, A1, ,..., Am, A. With n system on the life-
testing experiment, we construct the likelihood function. So, the observed samples
can be provided as follows:

Observed stress variables Observed strength variables

@) @)
Y] Xy - Xlk,
Y = : and X; = : : ,l=1,...,m.
o) (1)
Yy X, ... Xnkl
In following, we assume that {Y7,...,Y,} is progressive censoring sample from
MWEx(«a, 8, A) withthe {N, n, Si, ..., S,} censoring scheme. Also, {Xl(ll), e, Xi(,l;},
i=1,....,n,1 =1,...,m is progressive censoring sample from MWEx(«, 8, A;)
with the {K7, k;, Rl(ll), el Ri(,l;}censoring scheme, wherei =1,...,n,l=1,...,m
Therefore, we write the likelihood function of Ay, , ..., A, and A, «, B as

L, -y Amy A, @, Bldata) aH(H(H [ - RED)) u/))

i=l M=l j=1
Si
x fr(i)(1 = Fy(y))
About the advantage of this likelihood function, we can say that this is a general

function, so that, some other likelihood functions case can be obtained from it as
follows:

Rl(]ll) =0, S; = 0= Ry in complete sample case.
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e k= (k1,k2,0,...,0)= Rk withtwo nonidentical-component in the progressive
censoring case.
e k= (k,0,...,0) = Ry in the progressive censoring case.

o k = (k1,k2,0,...,0), Rl(Jl[) = 0, §i = 0 = Rsk with two nonidentical-
component in complete sample case.

e k=(k0,...,0), Rz(jl,) =0, S; = 0= Ry in complete sample case.

e k=(1,0,...,0) = R = P(X < Y) in the progressive censoring case.

e k=(1,0,...,0), Rl(j[[) =0, S =0= R = P(X < Y) in complete sample case.

‘We can obtain the likelihood function, based on observed data, as

m n mk+1 m ki (l)
L(Al,...,k,n,k,a,ﬁ|data)o<(kak’)ﬂ PR (1—“—[1—[ iy 1)
=1 i=11l=1 ji=1
n m ki )(l) B m
i Xy ()4 )" (S nmepinan)

()RR e

RO

/A
A, B) = ZZ (R +1)(1 =€) 1=1,..m, ™
i=1 ji=1

n

Ba.f) =Y (8 +1)(1 — &), 8)

i=1

To obtain the MLEs of unknown parameters, after deriving the log-likelihood function
from (6), we should solve together the following equations:

4 nk, 4 n
a—M=—1+ ahi(@. p). I=1.....m. - == +aB@p). )
86 m (l) n y
W (Zkz+1)+zzzlog )43 wn )
ﬂ i=11=1 ji=1
m ki (l) ) 0]

+ZZZ By ”’)(1 akl(Rl(Jll)+l) (’”)ﬂ)
i=11=1 ji=1
" ; ; %i)P
+§(%)ﬁlog (%)(1 —ar(s; +1)e(v) ) (10)
0 —n(f—1) = NNV Vi
£=%(Zk1+l)—§<z . (—’)ﬂ+2(y—)ﬁ)
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+XZ(S,-+1)(1 ) +ﬂ(§)ﬂe(3)ﬁ> (11)

The MLEs of A1, ...,An, A, @, B, presented by ’):1, ...,’):m, ’):, o, E, can be
obtained from simultaneous solution of equations (9), (10) and (11), using one numer-
ical method such as Newton—Raphson algorithm. Finally, the invariance property of
MLE concludes that the MLE of R; x, presented by sz[ll“E, can be obtained as

e E ST A0

m

> an *
x (=1)=t

(12)

m

Z (P1+611)+k

2.2 Asymptotic Confidence Interval

We provide the asymptotic confidence interval of Rg, in this section. For such aim,
firstly, using the multivariate central limit theorem, we derive the asymptotic distribu-
tion of unknown parameters A1, ..., A,, A, o, B,and then later, using delta method,
we derive the asymptotic distribution and asymptotic confidence interval of R .

It is noted that the expected Fisher information matrix J(6) = —E (1 (6)) prepares
the asymptotic variances and covariances of the parameter vector 6. In this presented,

= (A, ..., Am, A, a, B) is a vector of unknown parameters and 1(0) = [/;;] =
[82E/(86’i89j)], i,j=1,...,m+43,is the observed Fisher information matrix. From
the 7(0) elements, obviously, we cannot obtain J(6) elements easily. So, we use the
observed Fisher information matrix instead of expected Fisher information matrix.
The elements of 7(#) matrix are as follows:

nk; n
11412?,l=1 ..... m, ]m+l’m+1=ﬁ’ Iy =0, Lk=1,..., m+ 1,1 #k

]
0 ) {0

Imiz = i‘ S (rRG+1)(1- ) +ﬂ(%)ﬂe(7) ) i=1m,

i=1 ji=1
n i\ . i\
Im+1,m+2 = - Z <S,' + 1)(1 — e(%) + ﬂ(%)ﬂe(%) )’
i=1
O o 0

n )
i =30 30 (R 1) (2 0 ()l ) 2

i=1 ji=1
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n ) . y
Ly 1,m+3 =(x2<5[ + 1)(%)‘3 log(%)e(ﬁ) ,
i=1
n m k (l) o)

Ino,m+3 = —*(Zkl—l—l)—f(zzz i (1+ﬁlog(xl” ))

i=11=1 jj=1
+ Z (%)ﬂ(l +ﬂlog(%)>)
N N ®
+ZZZM( G )G (5 10g ()
i=1I=1 ji=

L0 0
+ﬁlog( Zii )— log(%) + 1)

+AZ<S+) B
n(B — 1) n <1> , o
="V S kv B D23 T (3 ()
=1

i=1I=1 jj=1 i=1

Q‘~

)(ﬂ(a)ﬂlog( )+/310g( ) log( )+1)

m " 0 (;j>)ﬁ 0
Yiji L i
35Sk 1) e (B2 1)

i=1I=1 ji=1

%i(s,+ () (%)ﬂ(ﬂ(%)ﬂw—l),

1

n

n
Inyamis = —@(Z ki+1)
m ki (l) (O] x® (0]

+ZZZ ) ;")(1 —axl(Rfj.]Jrl)e(%)ﬁ((xint)jL 1))

i=1I=1 ji=1

+i<%>ﬂlog2<%>(lfw<sf+l>e<%>”<<§>+l>)-

From the multivariate central limit theorem, it can be concluded that

P -~

ity 225 ey s 2 @ B) ~ N3 (M1, A2, <oy s s @ B), T, A2, oy Ao, Ay @, B)),

where 1A, A2, ..., Am, Ay, B) = [Lij], i, j = 1,...,m + 3, is a symmetric
matrix, in which /; ; are givenin the above equations. Also, 1 (A, A2, ooy A, A, o, B)

_ [bi ;] , i,j = 1,...,m + 3, in which b;; is the elements of
det(101.42.cccdn 1t )

adjA(ry, Aoy ooy Ay Ay, B)).
Now, from the delta method, it can be concluded that

RMEE ~ N(Rgk. B),
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where, B = bTT"1(A1, Aa, ..., Am, A, @, B)b, in which

b — [P Rsk dRsx ORsk ORsx 0Rsik]"
N My  Or  da 0B
_[ORsk  0Rsk Rk o T’

O M 0A

with

D S S 1) [k X0 ()

P1=51 Pm=Sm q1=0 qm=0 =1

Zqul A
% (—1)it _ (1 +41) l=1,....m, (13)

(121 r(pr+aq) + /\)

km  ki—p1 km—Pm

a3 S < (1)

P1=51 Pm=Sm q1—0 Qm—o =1

& 1; 1(pr+qr)
x (—DiF — . (14)
2
(X Mlpr+an +2)
=1
So,
-1 [ 0Rsk ORsx ORsx
= (det(X(h1, 22, .o, A A s ko R :
<et(( 15 A2, ma ks @ ﬂ))) [ Y YT 0 0}
(D11 b12 - bim brm+1  bimta  bim+3 ] _BaR,\s'k_
1

byp - bay bomt1  bamyz  bamts

: : : Rsx
x bm,m bm.m-H bm,m+2 bm,m+3 %
bin+1,m+1 bm+1,m+2 bm+1,m+3 T

bm+2,m+2 bm+2,m+3 8

bm+3,m+3 i

= <det(I(A1,A2, A M ,3)))7l
IRs k

= - aRkaRk BRsk , v ORs K 2 ka2
(ZZ o it (E aAS,- bimi1)”+ (555 )b'”“*’"“)'

Ai

j=1li=l

Consequently, we construct a 100(1 — 1) % asymptotic confidence interval for R k as

RS - oy VBRI 45y VB
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where z,; is 100n-th percentile of N (0, 1).

2.3 Bayes Estimation of R;

In this section, under the squared error loss function, we infer the Bayesian estimation
and corresponding credible intervals for Rg k, assuming that the unknown parameters
are the independent gamma random variables. So, we consider the prior distributions
of the parameters as

Mo~ T, by) : mOg) oA e ™M 1 =1, m,
A~ T, bug1)  Tmg1(R) oc A0+t e=bmet k)

a ~ T(ams2, bmya) : Tmez(@) oc @®m2=lembmee
B~ T(ams3, bms3) © Tma3(B) o plms3~lembnssp

By this selection, we write the joint posterior density functionof Ay, ---, A;, A, o, B
by

T(AL, .oy A, A, @, Bldata) o< L(Aq, ..., Ap, A, «, B|data)

(T )71 GImms2 @3 (). (15)

=1

After some calculations, we conclude that the Bayes estimations of the unknown
parameters cannot be obtained in a closed form, from (15), so that we should approxi-
mate the Bayesian estimations. For this, we propose the MCMC method. For this aim,
by simplifying equation (15), we can rewrite it as follows:

m
T(A1y .oy Amsy A, @, Bldata) o (l_[)»?kl""a’_le_)‘/ (bz—aAz(a,ﬂ))>
=1

o (knﬂmﬂ_1e—x(bm+1—aB(a,ﬁ)))

k; ) n

m
xi_jl /371) ( & /371) ami2—1 ,—bpy2a
X ( 1_[ 1_[ ( ” ) X (a) X qmt2T e Umt

i=1i=1 j=1 i=1

=

> () 5 (1) a1
=1

X ﬂ e_bm+3.5’

where A;(-,-),l =1,...,m and B(-, -) are given in (7) and (8), respectively. So, we
can obtain the posterior PDFs of the parameters as

Atla, B, data ~ I'(nk; +a;, by — aAy(e, B)), I =1,...,m,
Mo, B, data ~ I'(n + am+1, bm+1 — aB(a, B)),

@ Springer



61 Page 12 of 35 A.Kohansal et al.

mlt o b B data) o a2 (] ﬁﬂ )i

m
am43+n(Y ki+1)—1

k
7B,y Ay Ay, data)y oc B 1= x( Hn(xi)ﬁ_l)

Because the posterior PDFs of &;, / = 1, ..., m and A are gamma distributions, we
generate random samples from them, easily. But, the posterior PDFs of « and j are not
well-known distributions. So, we use Metropolis—Hastings method, to generate ran-
dom samples from them. Therefore, the Gibbs sampling algorithm can be implemented
by the following:

1. Begin with initial values (A1(0), - .., Am(0), A0), @), B(©))-

2. Sett =1.

3. Generate o) from 7 (ot |[A 1t —1), - - - Am(—1)» A—1), B—1), data) using Metropolis—
Hastings method, with N («_1), 1) as proposal distribution.

4. Generate B, fromw (B|A1¢—1)s - - - » Am(z—1), Ar—1), % —1), data) using Metropolis—
Hastings method, with N (B(;—1), 1) as proposal distribution.

5:m+ 4. Generate A from I'(nk; + a;, by — ag—1Ai(og—1y, Be-1))), | =
1,...,m.

m + 5. Generate Ay from I'(n + a1, buy1 — ag—1)B(ag—1), Bi—-1))-

m + 6. Evaluate the value

km  ki—pi kim—pm

Row= 3 S (1) < (TT(*27)

P1=51 Pm=5Sm q1=0 gm=0 =1 =1
% q A
x (—1)i=] 2 :
> My (pr+ gD + Ay
=1
m+7.Sett =t + 1.
m + 8. Repeat T times in Steps 3 : m+7.
Finally, we obtain the Bayesian estimation of Rg i as follows:
1
k\év[kc =7 Z Riys k- (16)
=1
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Moreover, a 100(1 — )% HPD credible interval of Rk can be provided, using

the idea of Chen and Shao [9] as follows. First, sort R(sk, ..., R(T)sk as
R((1)s,x)s - - - » R((T)s,k) and then construct all the 100(1 — 1) % confidence intervals of
Rs x, as:

(Rinys,k)s Rara-nnsk)s - - -5 (Rrnhs,k)» Ri(1)s k))s

where [T'] symbolizes the largest integer less than or equal to 7. The HPD credible
interval of Ry is the shortest length interval.

3 Inference on R x Known Common Parameters

When the common parameters values of strengths and stress variables are known,
obtaining the estimations have less computational complexity than the case which
considered in previous section. Moreover, due to the diverse and nice estimations, this
case is very popular with researchers.

3.1 MLE of Ry

Suppose that {Y7,...,Y,} is progressive censoring sample from MWEx(«, 8, 1)

with {N, n, S1, ..., Sy} censoring scheme. Also, {Xl.(ll), .. XI(Z} i=1,...,n 1l =

1,...,m is progressive censoring sample from MWEx(«, 8, A;) with {K, k;, Rl(?,

RI(Z} censoring scheme, where i = 1,...,n,l =1, ..., m. Now, assuming that
o and B are known, from Sect. 2.1, we obtain the MLE of Rk by

G et (1)

m

X (—1y (1+Z(p +q )ZB((“;;)) : a7

About the asymptotic confidence interval, when the common parameters « and g
are known, the Fisher information matrix can be obtained by

_hji=g. .. _
I(M,)»z,...,)»m,)»)—{o i ij=1,...,m+ 1.
As I(Ay, A2, ..., Ay, A) is a diagonal square matrix, so, similar to Sect. 2.2, we can

obtain the asymptotic distribution of R k as k\;\’ﬂ“E ~ N(Rsx, C), where

C‘i(aRs’k)z 1 +(3Rs,k>2 1
- ;) 1jj ) Dnrimer
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aRsk oR sk

in which and

are given in (13) and (14), respectively. Consequently, we
construct a 100(1 - 77)% asymptotic confidence interval for Rg k as

(RMEE — 21 4 VC RMEE 42,4 VO),

where z,; is 100n-th percentile of N (0, 1).

3.2 UMVUE of R,

Suppose that {Yy,...,Y,} is progressive censoring sample from MWEx(«, 8, 1)
with {N, n, Sy, ..., S,} censoring scheme. Also, {Xl(ll), .. XI(Z} i=1,...,n 1l =
1, ..., misprogressive censoring sample from MWEx(«, 8, A;) with { K, k;, Rz(l)’ e,

Rl.(,l;} censoring scheme, wherei = 1,...,n,/ =1, ..., m. Now, assuming that o and
B are known, we write the likelihood function by

n m Kk (l)

LAty ..., Am, A, a, Bldata) o (ﬁ)‘;lkl)ﬁn(lng—l) n ( l_[ 1_[ l]l )

i=1l=1 ji=1

N
I
—

a( % A]A[(a,ﬁ)+AB(a,A))

« (ﬁ(%)ﬁl) « ei=i=1i=1 = “ w e \iZi . (18)

where A;(«, B),l =1, ..., m and B(«a, §) are given in (7) and (8), respectively. We
note that, from (18), when the parameters « and g are known, A;(«, 8), [ =1,...,m
and B(«, B) are complete sufficient statistics for A;,/ = 1, ..., m and X, respectively.

We obtain one progressive censoring samples from the exponential distribution

v \f
with mean 5 by considering the transformation Y* = ot(e(f) — 1), i=1,...,n.
Now, using them, define the following variables:

_ NYP,
Zy=(N—-S8 —D¥5-Y)),

n
Zy=(N=)_Si—n+D¥i=Yr).
i=1

We conclude that, from Cao and Cheng [7], Z1, . . ., Z, are independent and identically
distributed, with mean of l , from the exponential distribution and so, B(«, ) = Z Z;

follow one gamma distribution with parameters n and A, symbolically B(c, ,3) ~
I'(n, A).
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0
i \P
Lemma 1 LetX(l)* a(e( al) —1),j1= ...,k l=1,....mi=1,...,n

The conditional PDFs of Y| given B(a, B) = b, X(l)* given Ai(a, B) = a; are,
respectively, as follows:

(b —Ny)"?
Jy#1B@.py=p(¥) = N(n — 1)1),,7_1, 0<y<b/N,
(a1 — Kix, )nk172
P ay ey O = Kkt = D= 0 < < /Ky L=1,...om
Proof Just like the method provided in [15], the lemma can be proved. O

Theorem 1 Applying the complete sufficient statistics of Aj(a, ), l = 1,...,m
and B(a, B) for A, | = 1,...,m and A, respectively, we obtain the UMVUE of
YA, ooy Ay A) = m+, which presented by Yy (M1, ..., Am, L), is as

> (prtanri+a
=1
nky—1 nkm 1 > i (- h
m pitaiNJi J J
SR S (l_[lzl (T) ) A m D Case I,
j1=0 Jm=0 n+121” ]
m
> i
m =1
n—2 nky—1 nky —1 > > i+l i
. a - m. - (pitqr\Ji
B VD VTR S (mql)l—l (1_[1:1 (") )
J1=0 ja= Jm=0 #
s 2)(,11\2 1) (Hl\m 1)
fl+ Case 11,
nky+ 3 ji
=1
m
> i
=1
lnk171 n—2 nk3—1 nky, —1 %jl %j}#’l pitaqi\Ji
e - a — m (/)
Y Y Y e B0 () (T ()7
=0 p=0 =0  jm= 1#2
nky—1y n—2y mkz—1 nkm —1
( L i ) Case I11
)
nAz+Z i
Z/l
=1
L]
L]
.
m
nki—1 nkm—1—1 nky—1 > > gt i
- a - m pitar\Ji
T o e B (e (e
Jj1=0 Jm=1=0"jim=0 #m
nky =1y (hm—1-1
X(jl)(ln1l)( Casem + 1
,
nkm+2/1
=1
m
>
=1
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where
b . aj
Casel: — <miny——, [ =1,....,my,
N (pr +q)N
Case Il - Case m+1: @
(pr +q)N
{b 4 AL =1 } 1=2 +1
< min — ] j=1....omy, 1=2,....,m .
N (PJ+CI/)N

Proof We can see easily that Y;* follows an exponential distribution With mean ﬁ and
X gll) *1=1,..., mfollow exponential distributions with mean [ =1,
respectively. So,

AK’

" - 1 KX\ > Npr+apyr, i=1,...,m
¢(X11 s T 7X11 ) Yl*) =
0 Otherwise,

is an unbiased estimation of ¥ (Aq, ..., A;, A). Now, using the Rao—Blackwell theo-
rem, we have

ot = E(0 X, X% YDA @ B)

—ay, ..., Ap(@, B) = am, B(a, B) =b)

://"’/fxill)*ml(a!ﬁ):al(xl)“‘fXYIn)*Mm(ayﬂ):am(xrn).fY]*\B(a,B)=b()’)dxl"‘dxmd)’a
A
where
b aj
A=13x1,...,x%m,¥):0<y< N’O<xl < ?,lel >N(pi+q)y,l=1,...,my,
i

and the functions under integral are given in Lemma 1. We continue the proof for Case
Tas

al
Xy Ki(nk; — 1)(a) — Kyxp)"1—2
]/IU Oty oy 1) = / _/;Pm-*-qm)Ny N /;/’I+QI)N‘ a’]’kl_z

K (nky — D) (am — Kpx)™ m=2 N —1)(b — Ny)"~2
2] x =1

L
N Kon (nky — 1) (am — mxm)nkm 2dx )
(pm +4m )Ny a”;km -1 "

a
o Kk — D(ay — Kix)"™12
. x (ﬁkl 1(nky — 1)(a; 1X1) dxl)

P1+a1)Ny nki—2
K1 a

dxy -+ -dx,dy

N(@n — 1)(b — Ny)" 2
X dy
bn—l
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N(n -1 nk; 1

N \rkn—1 N
(pm+¢]m)7y) X e X (1—(p1+q1)fy)
am ai

X (1—%y>1 dy {Put: t:%}

1 b\ nkm—1 b \nki—1
=<n—1)/ Q=02 (1= @u+an—1) " (1= +an—r) a
am ai

nky, —1
m ko — b
(n— l)/ A =0" 2 Z (- 1)/m <” m )(([)m +Qm)7t)jm) o
Jn=0 @m
nky—1
1 b
(Z( 1)“( L >((p1+q1)—t)'“)dz
J1=0 J1 ap
nki:l nlfl( l)lm] l(ﬁ o +q1 ) (nk}l—l) (nk;:;l)
=0 jm=0 =1 n+{§ Ji—1

n
>
=1

For other cases, the results can be obtained in a similar methods. O

So, the UMVUE of R x presented by ﬁgk can be obtained by

NG NG 1 (k= p
Rk = Z PIPIELDD <H<m>>x<n< q ))
P1=S51 Pm=Sm q1=0 qgm=0 =1 =1

m

><(—1)11 wu(m,... Ay A). 19)

3.3 Bayes Estimation of R;

In this section, under the squared error loss function, we infer the Bayesian estimation
and corresponding credible intervals for Rg x, assuming that the unknown parameters
are the independent gamma random variables. So, we consider the prior distributions
of the parameters as

Mo~ Tag, by) s mOg) oA ™M 1=1,... m,

A~ T (@ngts bns1) @ Tng1 (1) oc A1 e mbmaid,
By this selection, we can write the joint posterior density function of Ay, -« , A;, A
by
m "
vV m
ll;ll M ),u N AN SR YR T
TCuts s e, B data) = — = (T4 ))\” e I :

( T F(vl))F(U) =1

I=1
(20)
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where

D

I RUAY.
w = by — E E Rz(,,)+ e )) I=1,....m, pu=>byy
i=1 ji=1

n
Y (s - e,
i=1

v =nkj+a, v=n+ansi.

We obtain the Bayes estimation of Rgx under the squared error loss function, by
solving the following multiple integral

—~ o0 o0 o0
Rszf / / Rs k(A - Ams Ala, B, data)dAg - - dA,, A

km  ki—p1 ki —pm

SIS ol it Z(H( W (1,7

P1=51 Pm=sm q1=0 gm=0 =1

/ / / I E— G YT Aoms M, B, data)day - - - Ay da.
0 Z M(pr+qn) + A

2L

Now, let us put the integral part in (21) by B. So, We can simplify 3 by employing
(20), as follows:

I—[ )\‘})l_l))\‘v

I=1 - %MM—W
B = / / / C1 x p X e [=1 drp---dA,,dA,

Z M(pr+aq) + A

(fier)e

where C) = —
<ll_[l ) )T(v)

. Now, define the following variables:
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A +
0 = — 1(p1+q1) ;
> M(pitqD+r
=1

Am (Pm+Gm)

em = m
> m(prtan+i

T

Z =7 M(p+aq)+i
1=

—

— _biz
A= pitqr’
= )\’ — 9mZ
m Pmtaqm’
m
= Z(l - 91).
=1

m
In this case, 0 < Y_ 6; < 1, z > 0 and the Jacobian is

=1

z
p1t+q1 0
z
0 P2+q2
[JO1, ..., 0n, 2| =
0 0O 0
—Z —Z —I-

So, by this transformation, assuming that D = {(9y, ...

can write

01
0 P1+q1

0
0 P2+q2

— Zm
z 0w [T +a)
Pm+qm Pm+qm 1

m
-z 1- Z 0

=1

m
0<> 6 <1}, we
=1

2 Om) -

H n m
o > ytv—1
5o [ [ e ey
H (p1 + gDV I=1
B m o1y _1
. z(Z (1 ]gez)u)dzdelmdg
]_[6‘”’ 1) (Zw+v)(1— Z@l)v
/ / =1 =l 46 ---db,
m m > vtv
(1_[(1)1 +qz)”’)<12 T 4 (1 — z; Qz)u)’=‘
1 m 3 v1+u)
/ /(32 ]_[9”’ 1—29, 1—29”1;1 /=1 do; ---da,,,
(22)
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where

m m
(1‘[(1 —w,)“/)r(zu,+v)
=1 =1 129
Cr = w=1—-—"" =1 .. m

o . Wy ,
( I F(vl))f'(v) w(pr +qr)
=1

The final integral, represented by (22), can be solved immediately using one numerical
method in most of standard software programs. So, we can obtain the Bayes estimation
of Rsk as

GO SR 3 30 knim(ﬂ( ') = <1m1( ))(—néq'xﬁ. 23)

P1=51 Pm=sm q1=0 Gm=0

As obtaining the Bayes estimation from (23) needs to solve the numerical integrals,
so, like as Sect. 2.3, when parameters « and § are known, we derive the posterior PDFs
of the parameters as

Mla, B,data ~ T'(nk; +a;, by — Aj(e, B)), [ =1,...,m
)\.|(X, ﬂv data ~ F(n + am-i—l» bm+1 - B(a5 /S))

Now, we employ the Gibbs sampling method as follows to obtain the MCMC Bayes
estimation and HPD credible intervals. So

1. Begin with initial values (A10), - - ., Am(0), A(0))-

2.Sett =1.

3 :m + 2. Generate A from I'(nk; +a;, by — Aj(og—1y, Be-1)), I =1,....m
m + 3. Generate A from I'(n + a1, by1 — B(ag—1y, Be-1))-

m —+ 4. Evaluate the value

bn iopr e (k= p
Ri)s,k = Z Z Z Z ( < >)X(n( >>
P1=51 Pm=sm q1=0 gm=0 =1 P =1 “

m

(- )

m

> iy (pr+aq) + A
=1

m+5.Sett =1+ 1.
m + 6. Repeat T times in Steps 3 : m+5.

Finally, we obtain the Bayesian estimation of Rk as follows:

RYE == Rk (24)
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Table 1 Different censoring

(ki, K;) C.S. (n, N) C.S.
schemes

(5,10) Ry (0,0,0,0,5) S1 (0,0,0,0,5)
Ry (5,0,0,0,0) (5,10) Ay} (5,0,0,0,0)
R3 (1,1,1,1,1) S3 (1,1,1,1,1)

(10,20) Ry (0%9,10) Sy 0%9,10)
Rs (10,0%%) (10,20) Ss (10,0%%)
Rg  (1*19) Se  (1*19)

Moreover, just like as presented in Sect. 2.3, a 100(1 — )% HPD credible interval of
R x, can be provided.

4 Simulation Experiments

In this section, we employ the Monte Carlo simulation studies to compare the different
estimations. In point estimates, comparing is done based on mean square errors (MSEs)
and in interval estimates comparing is done based on average confidence lengths (AL)
and coverage percentages (CP). We suppose the simulated system has two strength
components so that, the stress random variable is ¥ ~ MWEx(«, 8, A) and strength
components are X; ~ MWEx(«, B, A;), i = 1,2, 3. It is noted that we implement
simulation study for different censoring schemes presented in Table 1 and we generate
2000 samples to derive the simulation results.

When the common parameters are unknown, we obtain the simulation results based
on (o, B) = (2,3) and (A1, A2, A3, A) = (2, 3,2,4). Also, in this case, the repetition
numbers in Gibbs sampling algorithm are 7 = 3000. Moreover, we employ two priors
as

Prior1: ¢ =0, by =0, Prior2: s =0.2, by =0.5,1=1,...,6.

In this case, we obtain the MLE and Bayes estimate of Rgy from (12) and (16),
respectively. Also, we derive 95% asymptotic and HPD intervals for Ry k. The results
are given in Table 2.

When the common parameters are known, we obtain the simulation results based
on (A1, X2, X3, 1) = (3, 1.5, 3, 2). Also, in this case, the repetition numbers in Gibbs
sampling algorithm is 7 = 3000. Moreover, we employ two priors as

Prior3: a; =0, by =0, Priord: a; =0.25, by =045, 1=1,...,4.

In this case, we obtain the MLE, UMVUE, exact and MCMC Bayes estimates of Rg
from (17), (19), (23) and (24), respectively. Also, we derive 95% asymptotic and HPD
intervals for Rg k. The results are given in Table 3.

The simulation study, from Tables 2 and 3, has the following conclusions:
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e In comparison with point estimations, Bayes estimations perform better than
the others and in the Bayes estimates, informative priors perform than the non-
informative ones, based on MSEs.

e In comparison with interval estimations, Bayes estimations have better perfor-
mance than the others and in the Bayes estimates, informative priors have better
performance than the non-informative ones, based on ALs and CPs.

e By increasing n, for fixed s and k, MSEs and ALs decrease and CPs increase.

e By increasing in k, for fixed s and n, MSEs and ALs decrease and CPs increase.

The two last conclusions may occur due to the fact that by increasing the sample sizes,
more information is gathered.

5 General Case

In analyzing of the real data set, researcher usually faces the general case, when the
common parameters are different. So, studying this case is very important. On the
other hand, some formulas in Sect. 2 can be obtained from this case.

5.1 MLE of R

We suppose that X1 ~ MWEx(«a1, B1, A1), X2 ~ MWEx(a2, B2, A2), -+ Xm ~
MWEx (e, B Am) and ¥ ~ MWEX(«, B, 1) are independent random variables.
Using the equation (1) and (2), we can obtain the multi-component reliability with
nonidentical-component strengths in (4) as follows:

© illmm(l*e(%’)m)
ma= X (3 [

P1=S51 Pm=5Sm

m )/3/ kl-[’[ Y8 .
e (1= —a Y B—1 pa(l—el@” )+ (2P
X | | ( ) A,B(a) e dy.

=1

Now, similar to Sect. 2, we can obtain the likelihood function, based on observed data,
as

m

k;
LG s s @1 @ B B Bldata) o (T (18)™ ) (82)"

(T ) = (M6

X ﬂl " N\ B m

Ul Y
(«T,) +2 (El) > Mo Arey, Br)+arB (1)
X el=l ,
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where A;(-,-),l = 1,...,mand B(-, -) are given in (7) and (8), respectively. To obtain
the MLEs of unknown parameters, after deriving the log-likelihood function from the
above function, we should solve together the following equations:

0 _ 1k Arer ). 1 =1 0 _ " | wBa. )

— = — + oA, B, l=1,....m, — =—+aB(a, B),

N Ay AnRER P n A

80 kg & o n Kk O\ P o

PSS () 4 0 () ()
! ! i=1 ji=1 i=1ji=1 !

0

<1—a1k1<R()+1) (l/l)ﬁl>’ I=1.....m
G+ z(ﬁ)f‘log(g) (l_ax(siﬂ)e(is)ﬁ)

i=1

n Kk (1 )

- nkz(ﬁl—l) B Ul
it o 22 (50

i=1 ji=1
N0 MO

n ki . (i)ﬁ (l)ﬁl
+ZZ/\1(RZ(]}+1)<1 e\ +ﬂ(”’) “ ),l:l,...,m
i=1 ji=1
0 _ nB=1 BN~ (iyg, N ()" gy (2)
EA A A AT Si+l(1—e"‘l IPTRATAC:
Jdo o oz; o ;( ) o

The MLE:s of the unknown parameters can be obtained from simultaneous solution of
the above equations, using one numerical method such as Newton—Raphson algorithm.

Finally, the invariance property of MLE conclude that the MLE of R x, presented by

1/?\24]1“]5 can be obtained as

})ﬂ

(Ot
w-f o £ @A

m ~ 20BN\ ki—pi _
x 1_[ (1 _ ek,&[(l—e("‘l) )) Ag(y)ﬁ 1 )»01(1 @ )+(%)ﬁdy. (25)
=1

5.2 Bayes Estimation of R;

In this section, under the squared error loss function, we infer the Bayesian estimation
and corresponding credible intervals for Rk, assuming that the unknown parameters
are the independent gamma random variables. So, we consider the prior distributions
of the parameters as

A~T(a, b, I=1,....m, A~T(ans1,bms1),
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al ~ F(Clvdl)a l = 17 .. '9m9 o~ F(am—&-2ybm+2)a
Br~Te, f), I=1,....m, B ~T(ams3, bpy3).

Similar to Sect. 2.3, we can obtain the posterior PDFs of the parameters as

Mlay, B, data ~ T'(nk; + a;, by — Ay, B1)), I =1,....m

Mo, B, data ~ T'(n + duy1, but1 — aB(@, B)),

(|, B, data) oc )’

N
no ko O ~do+3 Y ( l”) " ks Ao Br)

(]‘[]‘[ Zii e i J=1,...m,

i=1ji=1

n B

n v a i\ —bmpat Y (1) +raB@.p)
7 (a|h, B, data) oc o@mt2~! X(H(&)ﬁ l)e " i:l( ) ,

N o

i=1
7 (Bilh, e, data) oc griTe!

K MO

B
no ko0 e ¥ (G ) e At )

(]_[]—[ Y )i )e A I=1.....m,

i=1 ji=1

7 (Bl . data) oc pHn ! (ﬂ (2)"1)e

i=1

—bm+35+é () +raB@p)

Because the posterior PDFs of &;, / = 1, ..., m and A are gamma distributions, we
generate random samples from them, easily. But, the posterior PDFs of «;, f;, [ =
1,...,m,a and B are not well-known distributions. So, we use Metropolis—Hastings
method, to generate random samples from them. Therefore, the Gibbs sampling algo-
rithm can be implemented by the following:

1. Begin with initial values (A1(0), ..., Am(0), A©), X1(0)s - - - » %m(0)> X(0)> B1(0)>
- Bm©y B0))-

2. Setr = 1.

3:m+ 2. Generate oy from m(og|Aii—1), Bie—1), data) using Metropolis—

Hastings method, with N (c;;—1), 1), [ =1, ..., m as proposal distribution.

m + 3. Generate o) from 7 (a|A—1), B—1), data) using Metropolis—Hastings
method, with N («(—1), 1) as proposal distribution.

m + 4 : 2m + 3. Generate ;) fromm (8;|A;:—1), 21:—1), data) using Metropolis—
Hastings method, with N(B;;—1), 1),/ =1, ..., m as proposal distribution.

2m + 4. Generate ;) from w(B|A;—1), 1), data) using Metropolis—Hastings
method, with N(B(;—1), 1) as proposal distribution.

2m + 5 : 3m + 4. Generate A from I'(nk; +a;, by — oy —1) Ar(ei—1y, Bra—1)))s
l=1,....,m

3m + 5. Generate A from I'(n + apq1, b1 — -1y B 1), Be—1))-
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3m + 6. Evaluate the value

R0
" o0 [ikz(npzam)(1—g<"‘l'(r)> )
rom= 3 X (M) [

P1=51 Pm=sm [=1

(L)ﬂ/(”
IO (1—‘3 Ao ) ki—pi
<T1 (1 —e )

=1

e dy.

(65" (o
G ( y )/<r>
y )ﬁ/m—l M(r)“l(r)(l e )+ s

Ay Bi < "

1(t)

3m+7. Setr =1+ 1.
3m + 8. Repeat T times in Steps 3 : 3m+7.

Finally, we obtain the Bayesian estimation of Rk as follows:

1
RYE == Rusk- (26)

Moreover, just like as presented in Sect. 2.3, a 100(1 — )% HPD credible interval of
Rs x, can be provided.

6 Real Data Analysis

In this section, we analyze one real data set, for illustrative aims. The data which is
considered in this section demonstrates the breaking strengths of jute fiber at 10 mm,
15 mm and 20 mm gauge lengths and can be founded in [27]. Recently, this data is
investigated by Kang et al. [13] as a stress—strength model for exponential distribution.
Now, we suppose that a system contains two different gauge lengths of jute fiber, so
that the jute fiber at 10 mm and 15 mm gauge lengths is considered as the strength
and the jute fiber at 10 mm gauge lengths is the stress of the system. Therefore, we
set that X1, X» and Y denote the jute fiber with length 10 mm, 15 mm and 20 mm,
respectively. So, the observations of X, X and Y can be considered, respectively, as
follows:

693.73 704.66 232.83 778.17 126.06
637.66 383.43 151.48 108.94 50.16
671.49 183.16 257.44 727.23 291.27
101.15 376.42 163.40 141.38 700.74 |’
262.90 353.24 42211 43.93 590.48
212.13 303.90 506.60 530.55 177.25
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594.40 20275 168.37 574.86 225.65 71.46
76.38 156.67 127.81 813.87 562.39 113.85
468.47 135.09 72.24 49794 355.56 578.62
569.07 640.48 200.76 550.42 748.75 |’ | 707.36
489.66 678.06 457.71 106.73 716.30 547.44
42.66 80.40 339.22 70.09 193.42 48.01

To simplify calculations, we re-normalized the data on a scale of 0 to 1. We noted that
this work has no effect on statistical inference. Now, first, we have fitted the MWEx
distribution on the three data sets, separately and obtained the results as follows.
For X1, @1 = 1.4390, B; = 1.5830, A; = 2.8930 and the p-value= 0.7635. For
X, @y = 1.0670, B = 1.4710, %y = 2.1701 and the p-value= 0.2410. For Y,
@ = 0.9700, B = 1.0810, & = 1.3447 and the p-value= 0.4819. From the p-values,
we conclude that the MWEX distribution gives suitable fits for X1, X, and Y data sets.
The estimated parameters for different data sets show that only the general case can be
considered for analyzing of them. For these three data sets, we provide the empirical
distribution functions and PP-plots in Fig. 2.

For complete data set, putting s = (2,2) and k = (5,5), we obtain the MLEs
of a1, Bi, M, a2, B2, A2, @, B, A1 and RMLE by 1.4930, 1.5830, 2.8930, 1.0670,
1.4710, 2.1701, 0.9700, 1. 0810 1.3447 and 0.5463, respectively. Also, with non-
informative priors, we obtain RM sk C and the corresponding 95% HPD interval by 0.5449
and (0.2658, 0.8290), respectlvely

Now, we generate two different censoring progressive scheme as follows:

Scheme 1: RV = R® =10,0,1,0], $=1[0,0,1,0,0], (k= (4,4),s=(2,2)).
Scheme 2: RV = R® =10,1,1], S§=1[1,0,0,1], (k=(3,3),s=(1,1)).

For Scheme 1, we obtain the MLEs of «1, 1, A1, a2, B2, A2, &, B, A1 and RMLE by
1.2500, 1.8520, 2.4146, 1.2600, 1.3930, 2.5659, 1.8410, O 9270 1.2359 and 0 4891
respectively. Also, with non-informative priors, we obtain R and the corresponding
95% HPD interval by 0.5119 and (0.1959, 0.7893), respectlvely For Scheme 2, we
obtainthe MLEs of oy, B1, A1, a2, B2, A2, &, B, A andR LE by 0.8430,2.6120,0.5292,
0.8870, 1.8510, 0.7164, 0.9220, 1. 1840 1.1563 and O 8039 respectively. Also, with
non-informative priors, we obtain R C and the corresponding 95% HPD interval by
0.7417 and (0.3315, 0.9707), respectlvely

To see the effect of hyper-parameters, we obtain the Bayes estimates and HPD
intervals of RM sk C with informative priors. The hyper-parameters can be obtained using
re-sampling method by a; = 3.48, by = 091, ap = 5.04, b = 2.01, a3 = 1.33,
bz = 0.83,c1 = 694,d; = 4.21,¢c; =437, dy = 234, c3 = 442, d3 = 2.46,
e = 7541, fi = 45.92, e = 53.35, fo = 35.19, 3 = 6.33 and f3 = 4.75. So,
for complete data, we obtain i?\;v[f and the corresponding 95% HPD interval is equal
to 0.5367 and (0.2985, 0.7402), respectively. Also, for Scheme 1, we obtain ﬁst
and the corresponding 95% HPD interval is equal to 0.5167 and (0.2286, 0.7275),
respectively. Moreover, for Scheme 2, we obtain R C and the corresponding 95%
HPD interval is equal to 0.7731 and (0.3791, 0. 9341) respectlvely
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Fig.2 Empirical distribution function (left) and the PP-plot (right) for X (first row), for X, (middle row)
and for Y (third row)

With comparing the different point and interval estimates, it seems that the estimates
in Scheme 1 perform better than in Scheme 2. Moreover, we observe that HPD intervals
with informative priors are smaller than the non-informative ones. So, it is reasonable
that we should use the informative priors, if they are available.
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7 Conclusion

In this paper, the statistical inference of multi-component stress—strength system with
nonidentical-component strengths is studied, for the MWEX distribution, in the pres-
ence of the progressive censoring scheme. For this aim, we derived some point and
interval estimations in classical and Bayesian inference, such as MLE, UMVUE,
asymptotic and HPD intervals. Also, we considered these estimations in some cases,
when the common parameters are unknown, known and in general case.

The theoretical methods are compared with Monte Carlo simulation study. The
important results can be described as follows. The Bayes estimates performed better
than the classical ones. Also, in Bayesian estimates, the performance of informative
priors is better than the non-informative ones, in terms of point and interval estimates.
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