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Abstract

The evaluation of the information entropy content in the data analysis is an effective
role in the assessment of fatigue damage. Due to the connection between the gener-
alized half-normal distribution and fatigue extension, the objective inference for the
differential entropy of the generalized half-normal distribution is considered in this
paper. The Bayesian estimates and associated credible intervals are discussed based
on different non-informative priors including Jeffery, reference, probability match-
ing, and maximal data information priors for the differential entropy measure. The
Metropolis—Hastings samplers data sets are used to estimate the posterior densities
and then compute the Bayesian estimates. For comparison purposes, the maximum
likelihood estimators and asymptotic confidence intervals of the differential entropy
are derived. An intensive simulation study is conducted to evaluate the performance
of the proposed statistical inference methods. Two real data sets are analyzed by the
proposed methodology for illustrative purposes as well. Finally, non-informative pri-
ors for the original parameters of generalized half-normal distribution based on the
direct and transformation of the entropy measure are also proposed and compared.
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1 Introduction

The differential entropy Hy ( f) of a continuous random variable X with the probability
density function (PDF) f(x) is defined (see, Shannon [1]) by

Hx(f) =E[-In f(x)] = —/ S () In f(x)dx. ey

In fact, it measures the uniformity of a distribution such that it increases when f (x)
approaches uniform distribution that means the prediction of an outcome from f (x)
gets more difficult. Additionally, for sharply picked distributions, the differential
entropy Hy (f) is low. In this sense Hx (f) can be interpreted as a measure of uncer-
tainty relative to f (x). For this, the parametric estimation of differential entropy under
various statistical models was brought to the attention of a significant number of
researchers [2-8]. Generally, most researchers have focused their attention on either
classical or Bayesian estimation of entropy by adopting prior distributions for param-
eters involved in the underlying model. In contrast, adopting the prior distribution
for the entropy itself has not received much attention and we, therefore, focus on
this problem. In this context, Shakhatreh et al. [9] and Ramos et al. [10] presented
some Bayesian estimates (BEs) of differential entropy under Weibull and gamma
distributions, respectively. They considered the issue of estimation based on some
non-informative prior distributions of differential entropy. Their results show satis-
factory performance of recommended BEs relative to maximum likelihood estimate
(MLE) of differential entropy.

The generalized half-normal (GHN) distribution, proposed by Cooray and Ananda
[11], is one of the most popular models used to describe the lifetime process under
fatigue. Let X be a random variable from a GHN distribution with shape parameter
a > 0 and scale parameter 6 > 0, the associated PDF and the cumulative distribution
function (CDF) can be expressed as

e =2 (5) G) ool 5 ()] w20
Flx;a,0) =1 —2® (— (g)a) . x>0,

respectively, where ®(-) is the CDF of the standard normal distribution. Hereafter,
we denote the GHN model with parameters o and 6 as GH N («, 6). It is widely used
in many practical applications because of its flexibility to fit various data sets. It is
observed that the two-parameter GHN distribution can be monotonically increasing or
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decreasing and bathtub hazard rate shape depending upon the value of its parameters. It
can be both positively and negatively skewed. Because of these properties, it is shown
that the GHN distribution can be an alternative to the exponential, Weibull and gamma
distributions, among others. It is shown in Cooray and Ananda [11] that the GHN model
is followed from considerations of the relationship between static fatigue crack exten-
sion and the failure time of a certain specimen. Fatigue is a structural damage which
occurs when a material is exposed to stress and tension fluctuations. Recently the GHN
distribution has attracted the attention of many authors working on theory and methods
as well as in various fields of applied statistics. For example, Kang et al.[12] discussed
some non-informative priors for the GHN distribution when shape and scale parame-
ters are of interest, respectively. They developed the first and second-order probability
matching priors for the shape and scale parameters of GHN distribution when one of
two parameters is the parameter of interest. They also discussed the reference priors
for the shape and scale parameters of GHN distribution. Ahmadi et al. [13] derived
estimation of parameters and reliability function under GHN distribution based on
progressive type-II censoring. They considered both classical and Bayesian meth-
ods for estimation while the expectation-maximization (EM) algorithm and Lindley’s
approximation were proposed to approximate suggested estimators. Wang and Shi [14]
discussed the estimation issues in the constant-stress accelerated life test for GHN dis-
tribution. They just used classical methods and bootstrap technique for constructing
confidence intervals. Ahmadi and Ghafouri [15] presented classical and Bayesian esti-
mation of multi-component stress-strength reliability for GHN distribution in terms
of progressive type-II censoring.

From (1), the differential entropy of a random variable X ~ GH N (¢, 0) can be
easily obtained by

B ! 2 1\ ¥(3) o
H—H“f)—z‘l“\/;‘(l‘a) 2 ()

where ¥/ (+) is the digamma function. So, the joint differential entropy based on inde-
pendent and identically distributed (iid) random variables X1, X, ..., X, from GHN
distribution is Hx, x,...x,(f) =nH.

To this end, it well known that entropic-based measures like differential entropy
can be examined and demonstrated for application to fatigue failures. They have been
used to predict damage and failure [16]. So, the differential entropy can play an effi-
cient role in the assessment of fatigue damage. Due to the connection between the
GHN distribution and fatigue crack extension explored by Cooray and Ananda [11],
it is quite natural to quantify the entropy measure under the GHN lifetime data as no
attempt has been made previously. The main aim of this paper is to develop some point
and interval estimates for the differential entropy measure of GHN from a Bayesian
perspective. In some practical situations, it is difficult to specify appropriate subjec-
tive prior information and selecting priors is like the other modeling in science that is
always facing criticism. For this reason, we develop the Bayesian set-up by considering
different objective priors to reflect prior knowledge on the parameters. There are some
literature on objective Bayesian perspective, see for example [17—-19]. Obviously, the
differential entropy H is a function of the model parameters « and 6. Although Kang
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et al.[12], based on some non-informative priors, have obtained different posterior
distributions for the parameters of interest, the obtained posterior means cannot be
directly plugging into H. Moreover, the BE of H using non-informative prior distri-
butions of the original model parameters may lead to inappropriate results unless these
prior distributions are invariant under one-to-one transformations, see [9]. Therefore,
this paper focuses on the BEs of H based on different non-informative priors.

This paper is organized as follows. In Sect. 2, we first present some useful results on
the objective priors which will be used in the next sections. In Sect. 3, we describe the
Metropolis—Hastings (M—H) sampler approach used for computing the BEs of H. In
Sect. 4, we discuss frequentist estimation methods including the MLE and asymptotic
confidence interval of H. An extensive Monte Carlo simulation study is performed to
assess how the proposed methods of estimation behave and two real data sets taken
from practical fields are analyzed to illustrate the results developed here. Finally, some
objective priors for the original parameters of GHN distribution are briefly discussed
and some conclusions are made in Sect. 5.

2 Objective Bayesian Estimation Procedures

Let X1, X», ..., X, be acomplete sample from G H N («, 6). The likelihood function
(LF) of this sample is

2\" no\ 1< 2

. _ o\ ‘ X\ 2o

o= ((3) G (1) o420
1=

Under the reparameterization o = % and

1 1 2 v(3)
G—Wexp{H—§+ln\/;+(l—W)2ﬁ},

the LF of H and W can be given by

2 " n " %_1 1 " 2
L(H,W:x) = ([;) WS (ﬂ&-) exp {—ES%W > (Wx»w} :
i=1

i=I
@)

where

B 1 1 2 v(3)
SH,W_exp{—W (H—E—i-ln\/;—i—(l—W)zﬂ)}.
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From Wang and Shi [14], the expected Fisher information (FI) matrix of o and 6 is
given by

2
oy = [ 2] - [— [5 -2+ @-m2-y7] je-n2- w}
21 422 —12-m2-y) 2(%)
3)
where y is Euler’s constant. The FI matrix of H and W can be obtained easily by
Z(a, 0) and the Jacobian transformation .7, where

: e
J = | ¥(3) 1
wop (1 T w w2sp

Therefore, the FI matrix of H and W is readily derived as

S(H. W) = JT1T = [E’”’ EHW] @)
YwH Zww
where
2
23HH=W,
5 _5 _ 2 n 1
5 LN Y L/ ’
W wr g 2 w) |’
and 1
¥(3)
—2_In2—y— 22 (5)

In this section, four types of non-informative Bayesian estimation of H, are discussed
in further detail. For this purpose, posterior distributions of H and its Bayesian esti-
mation under squared error loss (SEL) function under Jeffreys, reference, matching
probability and maximal data information priors are investigated below.

2.1 Jeffreys Prior

The following non-informative prior, known as Jeffreys prior [20] is defined in terms

of the FI, 7/ (H, W)  /det (X (H, W)) where

1 72
det (X(H, W)) = Wa <7 — 2) , (6)
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is the determinant of X (H, W). From (6), we have

1
! (H, W) x W H € (=00, 00), W > 0. (7

Generally, this type of prior can be useful for three reasons. First, itis reparameterization-
invariant; see [20]. Second, Jeffreys prior is a uniform density on the space of
probability distributions in the sense that it assigns equal mass to each different dis-
tribution; see [21]. Third, Jeffreys prior maximizes the amount of information about
the parameter of interest, in the Kullback—Leibler sense, see for example [22]. From
(2) and (7), the Jeffreys posterior is concluded by

1
n w
w! (H, WIx) oc WH—"=25% (]_[x,-)
i=1

1 n
X exp {—Eag,w Z(Wx,-)vzv} . He(—00,00),W=>0. (8

i=1

Since 7/ (H, W) is not proper, we cannot be able to say that 7/ (H, W |x) is definitely
a density. In the following theorem, the conditions that 7/ (H, W|x) can be a density
are verified.

Theorem 1 For all n > 2, the posterior density w’ (H, W|x) is proper.

Proof Using the change of variable u = 8%—[,W’ we have
+oo +o00
A(x) :f / 7! (H, W|x)dH dW
0 —00

1 +00  p+400 N | n % n_q 1 n 2
=§/0 i wir T Tx ) w2 "exp —EMZ(W)C[)W du dW
i=1 i=1
1
1 +00 1 n+1 ’?_ xi )W
@)
2'72 0 u % 2
die1 X

If n =1, then we have A(X) f0+°° # dW = oo.Forn > 2, let x(1y, X2), - - ., X(n)
be the order observations such that x(;) < x) < ... < Xx(,). From Cauchy—-Schwarz
inequality, it follows that

1 [~ 1 2 "2
w w
- ( E x(i)) < E X (10)
i=1 i=1
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There exists £ € {1, 2, ..., n}, such that x; < x(,). Since ali +— < 1, we have
Y X,W
nooW €
inln<<xe>w<l. a1
(Z?:l xiw> o

From (10) and (11), it follows that

n

1
na n +o0o s 1\ "] (1—[7}:1 xl,)W

3 +oo /"l 1
< nnl"<’1>/ — expi——In ) dW < oo.
21=3 27 Jo w w X
O

Theorem 2 The posterior mean of H relative to w’ (H, W|x) is finite for any n > 2.

Proof Using the change of variable u = 8%, W We can write

o0 oo
|E(HIx)| = ‘/0 / HnJ(H,W|x)deW‘
—00

Y 2\ v vf()
1 2\ v v(3)
f(a““(v;)‘m> ”\

where A(x) is given in (9) and

1
B(x) = /OO /00 ww" <l_[xi> u?exp {—%uZ(Wx,-)VZV} dudW, (12)
o Jo i= i
1 1 1
C(x):/ f W (]_[x>

From Theorem 1, A(x) is finite for all n > 2. Moreover, B(X) is finite for all n > 2
(The proof is very similar to the proof of Theorem 1 and is therefore omitted for the
sake of brevity). We shall show that |C (x)| is finite for all n > 2. Using the fact that

u? 1(1nu)exp{——uZ(le)W} du dW.
i=1
(13)

/ T et (In gy dr = L) (¥ (2) —In(a)), 14)
0
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we can write C(x) in the following form

n

Cx) =2%r<2

(v (5) +m2) 10 —262%) - ],

where

C3(x) = /OO (%) i)™ (Zﬁ) dw. (15)
0 :

Clearly, C1(x) is finite for all n > 2. Let

[ n+2 n . %
Cu(x) = / <i> (I—[Lx’)ndw_ (16)
o \W 2

Since for W > 0, |In W| < % (W+ %), then

1 1
[C2(x)| < §C1(X) + §C4(X) < 00, a7)

for all n > 2. It remains to prove that |C3(x)| is finite for all n > 2. Note that for

2 2
Yoo x" <1, wehave )ln Z?zlxiw‘ < %‘mx(n)
2

have ‘ In Y xW

i=1"

2
and also for i, x,” > 1, we

<Inn+ %‘ In x()|. Therefore for W > 0, we immediately have

2
<lnn+W‘lnx(,,)’. (18)

"2
In E x;"
i=1

Let

00 n+1 n , %
Cs(x) = / (i) de. (19)
0
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From (18), it follows that
[C3(x)| < (Inn)Cy(x) + 2| Inx(,)|Cs5(x) < oo.

The proof of Theorem 2 is readily complete. O

The marginal posterior distribution of W is given by

1

nJ(W|x)o<<1> i)™ A=Yy, (20)
w i 2\?
<Zl l i )

Moreover, the conditional posterior distribution of H is given by

7! (H|\W, x)ocexp{ nW SHWZ(le)W}, H € (—o00, 00). 2n
i=1

2.2 Reference Prior

Despite of useful features and simple calculations of Jeffreys prior, it does not have
good performance in multi-parameter problems. Hence, other non-informative priors
like reference prior were introduced in the literature. Reference prior was originally
defined by Bernardo [22], but its further results were found by Bernardo [23] and
Berger and Bernardo [24-27]. Suppose a model described by density f(x|¢, A), where
¢ is the parameter of interest and A is a nuisance parameter. Bernardo and Smith
[28] obtained an effective formula for finding a reference prior based on Berger and
Bernardo’s algorithm that is given below. Define

det(I(¢, 1))

Do 1) ="

where I, (¢, 1) is the (A, A)-entry of that matrix. If ¢ and A are independent and if

Dj (¢, 1) = fild)g1(x) and I}, (4, 1) = fr(d)g2(h),

then the reference prior is equal to

7R(@,0) = fid)g(). (22)

In our study, H is the parameter of interest and W is a nuisance parameter. In the
following theorem the reference prior of (H, W) is obtained.
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Theorem 3 The improper reference prior of the parameter (H, W) is given by

1 | =2 1 2]2
ARH Wy o — | —142 (T = . He (00,00, W=>0. (23)
W | 3 2w

Proof 1t can be easily shown that

1
Dy (H, W) = fi(H)g1(W),

2
fiee) = |5 =2,
1| n? n 1\?] ?

On the other hand, we have

where

1

Sow = f(H)g(W),
where

o (H) =1,
1 | 2 n o1 ak

Therefore from (22), the reference prior 7 X (H, W) = fi(H)g2(W). This completes
the proof. O

From (2) and (23), the reference posterior of (H, W) can be expressed as follows:

1
n w n
n 1 2
R &4 —n—1 2 2
R H, Wx) oc Www s (Hxi) exp{—ESH’W § 1:(le~)W}
1= 1=

: RS
|42 (T — H e (—00,00), W= 0
4 2 W ’ » O '

Theorem 4 For all n > 2, the posterior density n R (H, W|x) is proper.
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Proof

D(x):/ / aR(H, W|x)dH dW
0 —00

AL () [T

" 1 <
x w2 exp {—Eu Z(Wxi)v%’} dudW

i=1

-5t (3 f(%)”%[?w(%m%w
i=1"%

. 2
Since ”T — 1> 1, forn =1, we have

=/-

I

1 1 © dw
D(x) > —F(—)/ — =o0.
V2 270y W
For n > 2, we have

D LMo e 2C 25C 25
® < s (5)[(7— 4 ) LX) + 2C4(®) — 27 s(x)] (25)

where C1(x), C4(x) and Cs(x) are given in (15), (16) and (19), respectively. Using
the fact that C(x), C4(x) and Cs(x) are finite for all n > 2, the proof of Theorem 4
is thus complete. O

In what follows, we show the posterior mean of H under reference prior is finite for
any n > 3.

Theorem 5 The posterior mean of H relative to wR(H, W |x) is finite for any n > 3.

Proof

00 poo
E(H|x) =/ / HaR(H, W|x)dH dW
0 —00

1 © n 1 2 % n
:Z/ WW7n+l Hx, __1+2(5_W> I,tji]
0 0
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1 n
X (1{%) —1nu> exp{—%uZ(Wx,-)sz} du dW

i=1
1 2\ v
({2

where D(x) is defined in (24). Using (14), we get

2 V2

1 2\ v

1
E(H|x) =2572T (f) [(M - 1//(3) - ln2) G1(X) +2G2(x) + G3(x):|

where

Now, it is shown that G (x) is finite for n > 3.

o 2 2 22-14
1(x) < T 1+ X K(x) + ﬁA(X) —2nC1(x), (26)
2

where A(x) and C(x) are defined in (9) and (15) respectively, and

00 n—1 n , %
K(x) = /O <%) %dw.
(Z:'l—lxiw>
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By similar arguments to the proof of Theorem 1, K (x) is finite for n > 3. Moreover,
A(x) and Cy(x) are finite for n > 2. Therefore, G (x) is finite for n > 3. We have

1
1 o0 1 n+1 (H?—]xi)w 7.[2 n 1 272
< - —) A=t T g (T aw
'GZ(X”—Z/O (W) ol <2 W)

1
+ §G1(X), 27)

and using (18)

1 1
00 1 n (Hr}_lxi)W 7.[2 n 1 2712
G < 2|1 — —~r= 1422 == dw
1G5 ()] < |nx<n>|/0 <W> T (2 W)

+ (Inn)G (x). (28)

Using arguments similar to the ones applied in the proof of Theorem 4, it follows that
integrals given in (27) and (28) are finite for n > 3. Since G1(x), |G2(x)|, |G3(X)|
and D(x) are finite for n > 3, we conclude that

V2
| (50 (/7) - 58 oo <=

For n = 2, the expected value of |H| relative to posterior aR(H, W|x) is given by
E(H||x) = G11(X) + G12(x),
where

% 0 P W 112212
G11(X)=—/0 f HWWw83 (]—[x,) [——1+2<§_W>}

2
1
X exp I_ES%”V Z(Wxi)vzv} dH dW,

i=1

B 00 0O %_32 L __i 2112
Glz(x)—/o fo HWWw=3s2, (Hx) [ 1+2<2 W)}

2
1
X exp {—58%1"4, Z(Wxi)% } dH dW.

i=1

|EHx)| < 287r (%)U(“’( Dy 2>‘G1(x>+2(c;2(x>\ (G«x)ﬂ
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On the other hand, by Definition A.4 of Ramos et al. [10], we have ég w

1 €1
exp { 1/;5/%) — %} , W% o 1and xiW o« 1, i =1, 2,as W tends to infinity. Therefore,

from Proposition A.5 of Ramos et al. [10], we deduce the following assertion:

1
oo 0 2 2 v 1 2 2
Gn(x)>—/l /OOHWW*%@W [Txi] exp —Eag,WZ(Wx,-)W dH dW
- i=1

i=1

1 oo 0 1
X — exp % / ;exp{—z‘g—exp{lﬂ;)—z‘g”deW
1 —oo

~ v | [ [ Inu v ()
_Zexp f /; /; Wexp{—exp{ﬁ u ¢ dudW
> — exp @ (/wd—w></oo exp { — exp @ u du)

4 V2 W expl1) V2
= oo. (29)

Similarly, we also conclude

L fv@ )| feeawy ot v(3)
Glz(x)>—zexp{ NG }(/; W)(/O exp y — exp f u du)

= 0. (30)

From (29) and (30), the posterior mean of H relative to 7% (H, W|x) does not exist
forn = 2. O

The marginal reference posterior of W and conditional reference posterior of H can
be derived, respectively, as follows:

1 1
1 n '}7 AW 2 1 2712
aRWix) o [ — Lx’)n 7{__1+2 n_= . W >0,
w i 2\2
(Zi_lxi>
and

H 1 -
nR(H|W,x) X exp {—HW — 58%1% Z(Wx,-)vZV} , H e (—o0, ).
i=1

2.3 Probability Matching Prior

Another type of non-informative prior is called probability matching prior which
was introduced by Welch and Peers [29]. It is mainly based on a possible agreement
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between frequentist and Bayesian inferences. Based on methods presented in Welch
and Peers [29], the probability matching prior of (H, W) is derived in the following
theorem:

Theorem 6 The probability matching prior of (H, W) is proportional to

N—=

;[”—2—1+2 ﬂ—lz] 0<Ww<?2
ﬂPM(H,W)O( 2—qW | 4 (2 W)

=

1 7?2 142 2
ﬁ[T_hLZ(%__)] W > £
where H € (—o00, 00) and n defined in (5).

Proof The second-order probability matching prior of (H, W) when H is the param-
eter of interest and W is a nuisance parameter can be obtained by solving following
partial differential equation in terms of 7 *M (H, W).

9 /X PM(H W) 9 PM(H W)
W( Hv;nwwﬁ )‘ﬁ(n JK )ZO’

where K = Z;V]W det (X gw). From (4), it is obvious that the FI matrix of (H, W)
does not depend on H. So, (32) can be reduced to

(32)

9 (sznPM(H, W)> _o. (33)

TywvK

oW
Utilizing (4), and after some simplifications, (33) is equivalent to

9 W =27 PM(H, W)
ow 2 2 1 2%
Vi -2 -]

and thus (31) is readily obtained by solving the above equation in terms of
7PM(H, W). This completes the proof. O

=0,

Therefore, the probability matching posterior is as follows

L 1
W NS o 1\
PM n
H, W[X) « ——3§ [[x) |-1+2(5-=
T o Inw —2| W (i:lJCl) [4 ’ (2 W>

1 n

xexp{—EB%,)WZ(Wx,-)‘%/}, (34)
i=1

where H € (—o00, c0) and W > 0.

Theorem 7 For all n > 2, the posterior density w "M (H, W|x) is proper.
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Proof Let’s take

R(X) =/oo foo "M H, W|x)dHdW
0 —00

1yl W 272
_ ! F(E)foo Sd M1 ) M SN B o e
25 2 )y mw =2 7|2 2w ’

(Z?:l xivzv>

(35)
where 7 defined in (5). Forn =1,
1 1 © dwW
R(x) > —F(—)/ —— =
V2 2o InW =2
For n > 2, R(X) can be rewritten as
1 n
Rx) = ——T'() (RiX) + R (%)),
ol=5 "2
where
% (L)n—l (l—[n xi)% 7T2 n 1 2 %
R1(X)=f L =1 1S 42— —) | aw,
2—nW ; 2\2 4 2 W
(Zi—l xl >
and
oo (L n—1 n . % 2 1 2 %
RZ(X) = / (W) (Hl:1 Xl) n T[_ - ] + 2 <2 - _> dW
2 nWw -2 . 2\? 4 2 W
<Zi—l X )
From Definition A.4 of Ramos et al. [10], we get
n? n o 1\?]|? 1
2—nW o« 2,and |——142(=-— — xX —. (36)
W—0 4 2 W w—0 W

According to Proposition A.5 of Ramos et al. [10] and the results in (36), we conclude

2 n n .
2 0 w n 2 2
<Zi—1xi )

==

=

@ Springer



Objective Bayesian Estimation for the Differential Entropy... Page 17 of 44 39

where C|(x) defined in (15) and it is finite for n > 2. So, R (x) is finite for each
n > 2. Arguments similar to the previous ones, we obtain

1 1
2 272 2 272
T n 1 T n
W -2 W, [——-14+2|-—-— — =1+ = .
" wSeo ! [4 + (2 W):| Wgoo|:4 +2]

and

2 27 o nTT )
R2<x><%[”__1+"_]/ (L) =)™
0

4 2 w

1 2

where C1(x) is the same quantity defined in (15). So, it follows that R, (x) is finite for
any n > 2. This completes the proof. O

Theorem 8 The posterior mean of H relative to wP™ (H, W |x) is finite for all n > 3.

Proof

E(H|X) = //HnPM(H Wix)dH dW

1
WW_n+2 n w 7T2 1 212 n
A ARy 51
- [ e 2|<Hx P (2 W) “

1 n
X (1/:;%) —lnu) eXp{—%uZ(Wxi)VzV} dudW

i=1
1 2\ v
()29

where R(x) is defined in (35). From (14), it follows that

E(Hx) = 2372 (g) [(“’}) In 2) S1(%) + 28 (x) + Sz(X)}

1 2\ v(k)
R
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where

00 Ln72 n AW 2 2112
Sl(X)Z/ Gr) (T2 ™ [”—Hz(”—l)} aw,
0

W —2| . 2)\2
el X

Since, for W > 0, |In W| < %(W + %), it is readily seen that

1 1

B )® e (r ) T

1 o
< _
'SZ(X”—z/ InW — 2] 4 2w
o In ]
Dim1 X

w
i

[N
N——"
[N

1
+551). (38)

From (18), it follows that

L
1S3(%)| <2|1HX(,,)|/ “‘,{/ 2| 2\%
(Z:’:I xiW)
+ (Inn)S; (x). 59

From the proof of Theorem 7, R(x) is finite for n > 2. Also, by adopting similar
arguments to the one used in the proof of Theorem 7, it can be easily shown that S; (x)
and integrals given in (38) and (39) and consequently S>(x) and S3(x) are finite for
n > 3. Thus forn > 3,

|E(H|x)| <2271 (g) U (w}) ln2)

1 2 v(3)
+‘ <§—1n<\/;> - 2\/§> ‘R(X) < 0.

It has to be noticed that for n = 2, the posterior mean of H relative to 7 " (H, W |x)
does not exist. The proof is similar to that of Theorem 5 and is therefore omitted for
brevity. O

S1(x) +2[S2(x)[ + |S3(X)|}
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From (34), the marginal probability matching posterior of W and conditional proba-
bility matching posterior of H, can be expressed, respectively, as

1 1

1 '.l_ AW 2 1 2112

7 PM(Wx) (I ) T 2P ) wso
W —2(wn o 2 W

(Zi:lxi )

=

and

H 1 ‘
nPM(H|W,X) o(exp{—nW - ES%QWZ(W_X,‘)‘%/}, H € (—o00, 00).
i=1

2.4 Maximal Data Information (MDI) Prior

Zellner [30] introduced an entropy-based method for finding a prior distribution that
is called MDI prior. For a density f(x|0) with parameter of interest 6, the MDI prior
of 6 is defined as

7M1 (9) o exp | Elin( (xlo)1). (40)

Now, from (40), one can easily conclude that the MDI prior of (H, W) is as follows
TMPIH W) o exp| - H], H e (—00,00), W= 0.

Notice that the MDI prior is completely different with all prior distributions that
discussed before. Because, it is the only prior distribution that contains information
about H. But, this prior distribution leads to improper posterior of (H, W). Hence, its
modified version is considered as

aMPL(H, W) o exp{—|H|}, H € (—00,00), W > 0.

So, for H € (—o0, 00) and W > 0 the MDI posterior of (H, W) can be expressed as

1

n w n
no_ 1, 2
aMPILH, Wix) oc Ww 8T, (Hx,-) exp {—zaH,W > (Wx)W - |H|] )

i=1 i=1
(4D

Theorem 9 The posterior P! (H, W |x) is proper for all n > 3.

Proof In order to simplify notation, let G(x) = [;° [0 #MPI(H, W|x)dHdW.
Since

exp {—%uZ(Wxi)VzV - |H|} = exp [_%”Z(Wxi)é} ’

i=1 i=1
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we have

1
g(x) = >
o0 o0 n " % n 1 " 2
/ / ww (Hx,) uz"lexp {—Eu Z (Wxi)W } dudw. (42)
0 Jo i=1 i=1
It can be shown that for n > 3, quantity (42) is finite by similar proof to the A(x) in
(9). But, for n = 1, 2, the MDI posterior can be shown to be improper by an argument
similar to that of Theorem 5. O

Theorem 10 The posterior mean H relative to tMPI(H, W x) is finite for all n > 4.

Proof Using the change of variable 8 u.w = u, we have

11 2\ v v(3) 1
|E(H|%)| = ' (5 —1In <\/;> - 2[) Vi(x) + il Va(x) — ng(x)

1 2\ v ¥ (3)
f(a”“(/?)‘m) w0+ 5

where
Vix) = / / Wl (l—[x,) uz- expl 221:(Wx,)w
V() W
_‘__1 (\/7)_(1—W) ﬁ—glnu‘}dudW,
00 00 n W u n )
Vo (x) :/ / ww—nt2 <1_[x,-) ug_lexp{—EZ(Wxi)W
o Jo i=1 i=1
1 2 vz W
_‘z_m <\/;) —(1=W) ™G —Elnu‘}dudW,
and
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Since

Vix) < —/ / Wt (l_[x,) uz- expl—gZ(Wxi)&/}dudW,

i=1

00 n
Vo (x) 5/ = -nt2 (Hx> uglexp{—gZ(Wxi)VzV du dw,
0 Jo i=1
L
V3(x) < / / w2 (Hx ) u? ' Inulexp {—— > (Wx;) W } dudw,
i=1 i=1

one can easily show that V(x) and V> (x) are finite, respectively forn > 3 and n > 4
by the same procedures of B(x) in (12). Also, similar to C(x) from (13), the quantity

V3(x) is finite for n > 4. So, the proof is completed. O

By (41), it can be shown that the marginal MDI posterior of W can be rewritten as

JTMDI(W|X) 104 (—) ( Xi) - exp{ 2 (1— W)}
v ’l] Z?:lxi% V2
W
W2 (S~ @ =W Ign 2 e
X Z_W(ig]:xi ) F( 7 ,E;(Wxi)vv)exp{ 7 (1 - )}
w 1 1<
+ F(n—z )FG <I,E(H+W),§§(Wxi)v%/>:|, W > 0, (43)

where I'(a, b) is the upper incomplete gamma function defined as I'(a,b) =
f boo 1o~ dr. Also, Fg(a, b, ) is the CDF of gamma distribution with shape param-
eter b and rate parameter c, at point a. Moreover, the conditional MDI posterior of H
can be obtained as

H 1 .
HMDI(H|W,X) o exp {—HW — 583”‘, Z(Wxi)% — |H|} , H e (—o00,00).
i=1

(44)
3 Metropolis-Hastings Algorithm
For the various non-informative priors discussed in the previous section, the joint
posterior distributions of (H, W) are not tractable and the computation of the BEs will
be impossible. Consequently, we opt for stochastic simulation procedures, namely,

the Metropolis—Hastings (M—H) samplers, to generate samples from the posterior
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distributions. It is worth mentioning that the BEs of W are not interesting because it
is used as an auxiliary parameter to conduct the Jacobian transformation.

For each non-informative priors discussed early, the joint posterior distribution of
(H, W) is decomposed into the marginal posterior distribution of W and the condi-
tional posterior distribution of H given W = w. Based on this decomposition, the
M-H algorithm is adopted to generate samples from the joint posterior distribution of
(H, W). A non-negative random variable U is inverse gamma (IG) distributed if its

PDF is given by
A1\ A
8 B2 = £ (u) exp{ u}

where B > 0 is the shape parameter and A > 0 is the scale parameter. Hereafter,
it will be denoted by /G (B, 1). Let v = In (x(n)/x(1)) . In the €-th iteration of M-
H algorithm we choose 1G(v/W =D 4 1, v) as a proposal distribution to generate
random sample from the marginal posterior distribution of W. It is noteworthy that
the shape and scale parameters of /G distribution are selected in a such way that the
mean of /G is W1 We also choose the normal distribution, N(H(Z_l), 02), asa
proposal distribution to generate sample from the conditional posterior distribution of
H. The mode of the marginal posterior distribution of W is used as initial value, say
WO For example, let us consider the case of Jeffreys prior. On taking the natural
logarithm of (20), differentiating with respect to W and equating to zero, we have the
following non-linear equation:

2
"oy &
(o nyw = PR NG S (45)
2im1 X i=l

The mode of posterior 7/ (W x), say W can be computed by solving equation (45).
Moreover, on taking the natural logarithm of (21), differentiating with respect to H
and equating to zero, the initial value for H can be obtained as

i -
A=l_m(/2 —W(Z)(l—vT/)—Kln S —
2 & 2v2 2 Z?:l(ﬁ’xi)w

The initial values for W and H in the cases of reference, probability matching and
MDI priors can be obtained in a similar way. The M—H algorithm needed to generates
samples from (8) can be described as follows:

Algorithm 1: M-H algorithm within Gibbs

Step 1. Set wO = W HO — Handv =1In ();E—'l';) .

Step 2. Set £ = 1.

Step 3. Generate W* from the proposal distribution /G (v JWED 4, v) .

Step 4. Calculate the acceptance probability

, { ol (WHx) g (WD v/WH + 1, 0) }
Ty = min {1 ) .

T (WED|x) g (W v/WED 4+ 1w
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Step 5. Generate U from the standard uniform distribution.
Step 6. If U < 11, accept W* and set W© = W*. Otherwise reject W* and set
w® — W=D,
Step 7. Generate H* from the proposal distribution N (H“~, 52).
! (H* W x)
Step 9. Generate U; from the standard uniform distribution.
Step 10. If U, < 12, accept H* and set H®) = H*. Otherwise reject H* and set
HO — g=1
Step 11. Set £ = £ + 1.
Step 12. Repeat Steps 3-11, N times.

Step 8. Calculate the acceptance probability 7o = min {1,

Based on the resulting generated samples obtained using Algorithm 1, the BE of H
under SEL function can be computed as

7o 1 i 7O
N=M 57

where M is burn-in period. In addition, for constructing the credible interval (Crl) of
H,wesortallthe HO ¢ = M +1,M +2,...,N, in an ascending sequence, as
Hquy, Hpy, ..., Hn—p). Then, for 0 < € < 1, a 100(1 — €)% Crl of H is specified
by

(Hwy» HpaN—M—|(N—pye41)), k=1,2,..., [(N — M)e],

where | x] is the largest integer less than or equal to x. Therefore, the 100(1 — €)%
HPD Crl of H can be obtained as the k.-th one satisfying

Hio e N—M—|(N-M)e+1)) — Hik) < HktN—M—|(N—M)e+1]) — Hkys

forallk =1,2,..., |[(N — M)e]. For the reference prior, probability matching prior
and MDI prior, the BEs and HPD Crls of H can be obtained in a similar way.

4 Numerical Comparisons and Data Analysis

Here we perform a comprehensive simulation study to examine the performances
of the sample-based estimates developed in the previous sections and conduct the
analysis of two practical data sets with GHN fitting distribution. All the computations
are performed using R Software package (R x64 4.0.3) and the R code can be obtained
on request from the authors.

4.1 Numerical Comparisons

Here, a simulation study is mainly conducted to compare the performance of MLEs
and BEs of the differential entropy measure H under the different non-informative
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priors discussed in previous sections. For this purpose, we first briefly mention how
to obtain the MLE of H. The natural logarithm of LF given in (2) may be written as

E(HWx)o<(W—n)1nW—W(H—§+1n\/7 (1— wf/;)
l — 1 " 2
+ W Zlnxi - ES%HV Z(Wxi)W .
i=1

i=1

By setting the derivatives of £(H, W; x) with respective to H and W to zero, the MLE
of W, say W, can be obtained from the equation U (W) = 0, where

2
nx ¥ (Inx; 1<
vowy = w - 2= (00 Ley,
Z?:lxtw ni:l

Since U(W) = 0 does not admit an explicit solution, we propose a simple iterative
scheme to compute W. Start with an initial guess of W, say W@ Then, obtain wh =
U (W(O)). Continue this process until convergence is achieved. Once W is obtained,
H can be obtained as follows:

o 2 v o W "2
H:H(W):E—ln\/;—(l— W ?<lnn—ln<§xi ))

(46)

Since the MLEs of H and W are not obtained in closed form, it is not possible to
derive the exact distributions of the MLEs. Now, the asymptotic confidence interval
(CI) for H is obtained based on the asymptotic distributions of the MLEs Hand W.
Therefore, by applying the property of the asymptotic normality of MLEs, we have

((ﬁ —H), (W — W))T = Ny (0, V),

where V is the asymptotic variance-covariance matrix of the MLEs H and W. That
isV = IZ 1(H Ww). Consequently, the approximate 100(1 — €)% two sided CI for

H is ( — Ze2 V1 JH + z¢/24/ V11 ) where 0 < € < 1, z¢/2 is the upper (¢/2)th
percentile of the standard normal distribution and

w2 n? n 1\?

Vil=———|——-14+2| 7 — = .

n (n_z _ ) 4 2 W
2

It is clearly noticed that as o changes for a fixed 6, the PDF and hazard rate function

of GHN have different properties. Hence, a simulation study based on various shapes

of the PDF and hazard rate function of GHN distribution was carried out. We consider
= 0.5,0.75,1.5,2.17,3 and 6 = 0.25,2,5. According to Cooray and Ananda
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[11], for 0 < o < 2.17, GHN distribution is positively skewed and for « = 2.17
and o > 2.17 it is symmetric and negatively skewed, respectively. The hazard rate
function of GHN decreases monotonically, concave up and approaches to 1/(2 scale
parameter) as lifetime goes to oo, for @ = 0.5. Also, it is bathtub shape for o« = 0.75.
It increases monotonically, concave down and approaches oo as lifetime goes to oo,
for « = 1.5. Moreover, for « = 2.17, 3 it increases monotonically, concave up and
approaches oo as lifetime goes to co. To compute the BEs of the differential entropy
measure H using the M-H algorithm, we considered o = 0.25 and also ran the
iterative process up to N = 5500 iterations by discarding the first M = 500 iterations
as burn-in-period. It was considered a thin parameter of 5 to diminish significant auto-
correlation among sample draws. Moreover, to solve equation (45), Broyden Secant
method of nleqslv package was used. The biases and mean squared errors (MSEs) of
MLEs and BEs of the differential entropy measure H are computed for sample sizes
n = 10, 20, 30, 40, 50, 70 using 5000 simulated samples for different combinations
of o and 0 and are given in Tables 1, 2, 3, 4 and 5. The 95% asymptotic CIs and HPD
ClIs for the differential entropy measure H were also obtained. The average lengths
(ALs) and coverage probabilities (CPs) of the so obtained Crls are presented in Tables
6,7,8,9,and 10.

These results for MLEs and BEs under priors, Jeffreys, reference, probability match-
ing and maximal data information are shown in tables with labels H s a’ ) H R HPM
and HMPI, respectively. Since the CI is constructed based on the asymptotic nor-
mality of the MLE H, the corresponding AILs and CPs are reported for sample sizes
greater than n = 10.

By taking 6 to be fixed and changing the shape parameter «, we can observed from
these tables that the BEs perform well when compared to the MLEs in the sense of bias
and MSE criteria. The performance of all estimates behaves the same for large sample
sizes. It is also observed that for « < 1, the BEs based on Jeffreys prior compete
other BEs for small sample sizes. In this case, the BEs under MDI prior are the worse
one. For « > 1, all BEs perform similarly. It is evident that for « < 1, the HPDs
under PM prior work well in terms of the AIL and for o > 1, the CIs are shorter. By
considering the CP criterion, the asymptotic CIs and HPDs are most valid intervals in
the sense that the corresponding CPs tend to be high and close to the true confidence
level 1 — € = 0.95, especially for o > 1.

In Fig. 1, the performance of the proposed M—H algorithm under different posterior
distributions of the differential entropy is monitoring by inspecting the value of average
acceptance rate(AAR). Figure 1 provides a limited summary when the parameters are
a =0.5,0.75,1.5,2.17,3 and 6 = 5. In the cases where o = 0.5, 0.75, the ARRs
are very good and high for all sample sizes. In the cases of « = 1.5, 2.17, 3 the ARRs
lie within the intervals of 0.28 — 0.61, 0.27 — 0.53 and 0.21 — 0.45, respectively.
For o = 0.5, 2.17, 3, there is no a significant difference between the AARs of M—H
algorithm when sample size n is greater than 10. Figure 1 also demonstrates how
the ARR changes by changing sample size n. We observe that AAR decreases when
sample size n increases. Three such plots would be required to consider full collections
of AARs for all combinations of the parameters o and 6 (6 = 0.25, 2) that are omitted
for the brevity’s sake, but it is worth mentioning that we get similar results for them.
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4.2 Data Analysis

In this subsection, the proposed methods are illustrated by two real data sets. For both
data sets, we apply Algorithm 1 to generate samples from the posterior densities and
then compute the BEs. The simulation process is repeated 5500 iterations and initial
500 iterations are discarded as a burn-in period.

Data Set 1: First we discuss the analysis of real life data representing the lifetimes of
Kevlar 49/epoxy strands which were subjected to constant sustained pressure at the
90% stress level until all had failed. The data set was initially reported by Barlow et
al. [31]. It has been analyzed by many authors, among them, Cooray and Ananda [11]
and Ahmadi et al. [13]. The failure times in hours are as follows:

0.01, 0.01, 0.02, 0.02, 0.02, 0.03, 0.03, 0.04, 0.05, 0.06, 0.07, 0.07, 0.08, 0.09, 0.09,
0.10, 0.10, 0.11, 0.11, 0.12, 0.13, 0.18, 0.19, 0.20, 0.23, 0.24, 0.24, 0.29, 0.34, 0.35,
0.36, 0.38, 0.40, 0.42, 0.43, 0.52, 0.54, 0.56, 0.60, 0.60, 0.63, 0.65, 0.67, 0.68, 0.72,
0.72, 0.72, 0.73, 0.79, 0.79, 0.80, 0.80, 0.83, 0.85, 0.90, 0.92, 0.95, 0.99, 1.00, 1.01,
1.02, 1.03, 1.05, 1.10, 1.10, 1.11, 1.15, 1.18, 1.20, 1.29, 1.31, 1.33, 1.34, 1.40, 1.43,
1.45, 1.50, 1.51, 1.52, 1.53, 1.54, 1.54, 1.55, 1.58, 1.60, 1.63, 1.64, 1.80, 1.80, 1.81,
2.02, 2.05, 2.14, 2.17, 2.33, 3.03, 3.03, 3.34, 4.20, 4.69, 7.89.

Based on the above observed data, we obtain the MLE of H as well as the corresponding
BEs under Jeffreys, Reference, probability matching and maximal data information
priors. The MLEs of H is computed numerically using Broyden Secant method to be
H = 0.9867. The asymptotic 95% Cl of H is (0.777, 1.196). We have generated 5500
observations to compute the BEs of H based on M—H samplers after discarding the
initial 500 burn-in samples. Note that, for computing BEs and Crls, we assume that
the above four objective priors. The M—H algorithm with inverse gamma and normal
proposal distributions(see Algorithm 1) is used to generate numbers from the target
probability distribution. Here, we assume the initial value of H to be its MLE, H.To
check the convergence of M—H algorithm, graphical diagnostics tools involving the
auto-correlation function (ACF) and trace plots are used. Figure 2 displays ACF and
trace plots of the simulated draws of H, under different posterior distributions. It is
checked that the ACF plots show that chains are dissipating rapidly from sampling
lag 8, for all posterior distributions. Hence, to eliminate high auto-correlations, we
considered a thinning interval equal to 8 iterations. It is evident that the chains have
very low autocorrelations. From the trace plots, we can easily observe a random scatter
about some mean value represented by a solid line with a fine mixing of the chains
for the simulated values of H. As a result, these plots indicate the rapid convergence
of the M—H algorithm based on the proposed normal distribution of H. The results of
the BEs of H using M—H samplers under different objective priors are computed to
be

H’ =0.9815, HR =0.9871, H'M = 0.9997, HMP! — 0.9745.

and the corresponding 95% HPD Crls of H under Jeffreys, reference, PM and MDI
priors are also obtained and computed, respectively, as

(0.769, 1.183), (0.789,1.199), (0.777,1.211), (0.745, 1.210).
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Fig.1 Average acceptance rate of M—H algorithm under different posterior distributions of the differential
entropy: 7/ (H|x), n R (H|x), 7 "M (H|x), 7™M P! (H|x)

Further, Geweke diagnostics (Geweke [32]) are used to confirm the convergence of
chains under a confidence level of 95%. Its values under the difference priors are,
respectively,

G’ =0.8352, GR =1.9351, G"M =0.4349, GMPT = (.3041.

Since the differential entropy of a system shows the degree of irregularity and ran-
domness of that system, the small values of Bayesian point estimation of entropy
H, H = 0.9815 and H"™ = 0.9997 with 95% HPD Crls (0.769, 1.183) and

(0.777, 1.211) demonstrate good performance and stability in the production system.
Data Set 2: The COVID-19 pandemic has affected almost every country in the world.
The monthly mean number of deaths from the pandemic of coronavirus disease in
Iran since March, 1, 2020 till August, 29, 2021, based on the National Vital Statistics
System (https://ourworldindata.org/coronavirus/country/iran) are as

92.0968, 104.3333, 57.0645, 100.6667, 191.9032, 155.0000, 153.2667, 280.4839, 446.0667,
225.0645, 88.2581, 75.5000, 83.6129, 303.1000, 270.9032, 136.9333, 205.3548, 546.6207.

The Ljung-Box test is used to ensure that observations over time are independent. The
values of its chi-squared statistic with one degree of freedom and p-value measure
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are 1.4709 and 0.2252, respectively. The p-value indicates that observations over time
are independent. Here, we show that the GHN distribution is a correct fitting distribu-
tion. The MLEs of the unknown parameters « and 6 are computed numerically to be
& = 1.22019 and & = 251.704. The Kolmogorov-Smirnov (K-S) distance between
the fitted and the empirical distribution functions is K — S = 0.1355, and the corre-
sponding p value is 0.8527. Therefore, these values indicate that the two-parameter
GHN distribution fits the data set well. The MLE of differential entropy measure is
H = 6.1803 and the corresponding asymptotic 95% CI of H is (5.908, 6.453). Based
on 5500 iterations with discarding a burn-in period of 500 iterations, the ACF and trace
plots of the generated samples using M—H algorithm are displayed in Figure 3. Under
four posterior distributions, a thinning interval equal to 11 iterations was considered
to obtain independent samples. From these plots, a rapid convergence of the M—H
algorithm based on the proposed normal distribution can be observed clearly. For this,
the BEs and 95% HPD CrIs under Jeffreys, reference, PM and MDI priors using M—H
algorithm are given by

H’ =6.2011, HX =6.2038, H'M = 6.2165, HMP! = 6.1797.
and
(5.892, 6.442), (5.877, 6.487), (5.966, 6.564), (5.710, 6.561).

The Geweke diagnostics are also computed, respectively, 0.4354, 0.2235, 1.2793,
1.2982. It worth mentioning that the point BEs H and corresponding Crls tend to be
relatively high. This shows that the available information content in this data is low.
Therefore, it is suggested to further monitor the daily deaths for necessary decisions
and actions.

5 Discussion and Conclusion

In the previous sections, we obtained the objective priors when H was the parameter
of interest and W was a nuisance parameter. Now, by transforming back (H, W) into
original parameters («, ), the Jeffreys prior (7), reference prior (23) and probability
matching prior (31) are respectively equivalent to

; |
! (@.0) o . 47)
1
2 212
P T LY , (48)
* ab | 4 2

=

1 2 n 2 2
0Ca—n) [HT_]"‘Z(E_O‘)] o=

7P (a, 0)
1 2
a0(—2a) [%_1"‘2(%_“) ] 0<a< %

(49)

S}
D=
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A natural question is : “Are the priors (47)—(49) respectively Jeffreys, reference and
probability matching priors for the original parameters («, #) of GHN distribution?”
To answer this question, we first consider the following theorem.

Theorem 11 Assume that a and 6 are the parameters of interest.

1. The Jeffreys prior for the parameters of GH N distribution is JT*J* (o, 0) (%.

2. The probability matching prior for the parameters of GHN distribution is
P (o, 0) o L.

3. The reference prior for the parameters of GHN distribution is 1R (a, ) o %.

Proof (i): It is sufficient to calculate the square root of the determinant of Z(«, 0) as
is reported in (3).

(ii): Assume « is the parameter of interest and 6 is a nuisance parameter. The
second-order probability matching prior 72 (a, ) can be obtained by solving the
partial differential equation

2 <M>_i<m> ~0 (50)
30 IV 0 da vo ) o
where
12 der T, o)) = o (T =2
0 =15, det(I(a, ))—m(j_ )

Equation (50) becomes

% (e)an(a, 9)) n <2_h2+_y> % (anof’M(a, 9)) —0. (5D

Then, by applying Lemma A.1 of Sun [33], it follows that

1 21n6 1
PM
)= —hy (—2 0, 52
o (0= ‘(2—1n2—y+a> 2)

where h1(.) is some continuously differentiable function. Similarly, when 6 is the
parameter of interest and « is a nuisance parameter, the second-order probability
matching prior 7Y (, 0) is the solution of the partial differential equation

0 [ pu 22— In2—y) 3 ey ~
ﬁ(eng (a,e))+<%2_2+(2_1n2_y)2>a(ane (@.6)) =0. (53)

It follows that

1 22 —In2—y)In6 1
2 (@, 0) = —hy [ =2 v) +-), (54)
of T —24Q2-mh2—y)?2 «
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where h;(.) is some continuously differentiable function. Now, we assume that o and
0 are simultaneously the parameters of interest. Since second-order jointly matching
priornPM(a, 0) should satisfy two Egs. (51) and (53), it follows that 21 (.) = ha() = 1
in (52) and (54).

Now, let Z7 (e, 6) = (k; ;) be the inverse of the expected Fisher information
Kij ..
I(z, 0).Define M = (m;;), wherem;; = \/#T“, i,j=1,2.Wegetm;; =mp =1
an

1

ﬂ2 )
m12:m21:(2—1n2—y)|:7—2—|—(2—ln2—y)2:| )

According to Datta [34], since matrix M does not depend on « and 6 it follows
that 77M(a, 0) o # is the probability matching prior for the parameters of GHN
distribution.

(iii) See Remark 3 of Kang et al. [12]. O

It is observed that the prior in (47) is Jefferys prior for the original parameters (¢, 6),
i.e. 71*1 (a,0) = 71*1* (o, 0). This is to be expected, because the Jefferys prior is invariant
with respect to one-to-one transformation. Part (ii) of Theorem 11 implies that nf M
in (49) is not the probability matching prior for the GHN distribution parameters.
For sufficient small and large o, 7™ are only equivalent to 72 . According to part
(iii) of Theorem 11, it is obvious that nf in (48) is not the reference prior for the
original parameters («, @) of GHN distribution. For sufficient large o, 78 and 7%
are approximately similar and for sufficient small «, nf converges to 7T*J . Thus, it is
recommended to adopt the objective priors which obtained directly instead of non-
informative priors based on the original parameters of GHN distribution in order to
compute the BEs of the differential entropy H. In addition, based on the simulation
results in Sect. 5, it can be said that such BEs are better than MLE in terms of biases
and MSE:s.

In this paper, we have discussed the estimation of differential entropy of the GHN
distribution in a complete sample case. However in many practical situations, due to
time constraint and cost reduction, censored samples may arise naturally. There are
various schemes of censoring such as Type-I censoring, Type-II censoring, hybrid or
progressive censoring. It may be mentioned, although we have provided the results
mainly for complete samples but our method can be applied for other censoring mech-
anism also. More work is needed along these directions. Additionally, one may extend
the work to include other non-informative priors such as copula prior, moment match-
ing prior, and etc.
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