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Abstract
In this paper, we consider an SI epidemic reaction–diffusionmodelwith logistic source
and saturation infection mechanism. We first establish the uniform boundedness and
the extinction and persistence of the infectious disease in terms of the basic reproduc-
tive number. We also discuss the global stability of the unique endemic equilibrium
when the spatial environment is homogeneous. Then we investigate the asymptotic
behavior of the endemic equilibria in the heterogeneous environment when the move-
ment rate of the susceptible and infected populations is small. Our results, together
with the other two related epidemic models , not only show that the logistic growth,
the infection mechanism, and the population movement can play an important role in
the transmission dynamics of disease, but also suggest that increasing the inhibitory
effect of the susceptible individuals instead of reducing the mobility of the populations
can control the epidemic disease modeled by the SI system under consideration.
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1 Introduction

More and more epidemic models with nonlinear incidence have been studied by many
authors to describe the spreading of disease transmission and predict the trend of epi-
demics. One of the earliest models was discussed by Kermack and Mckendrickc [25],
who used an SIR (susceptible–infected–recovered) compartmental model tomodel the
plague epidemic in Bombay. In this SIRmodel, they assumed that the infected and sus-
ceptible individualswere completelymixed so that the density-dependent transmission
βSI was used, where β > 0 is the transmission coefficient. However, the frequency-
dependent transmission function βSI/N (N is the total population) is applied in the
situation that the infected and susceptible populations are randomly mixed. For more
information about these two kinds of incidence functions, one may further refer to
[10, 11, 59]. Michaelis–Menten combined the incidence rate of the density-dependent
and frequency-dependent to derive a more general form βC(N )SI/N , where the
Michaelis–Menten contact rate can be taken as C(N ) = aN

1+bN ; see for example [63].
In particular, if we take C(N ) = 1, then the general one becomes the frequency-
dependent transmission, and if we choose a = 1 and b = 0, then it becomes the
density-dependent transmission βSI .

Capasso and Serio [5] found that the number of effective contacts between infected
and susceptible individuals did not always increase linearly by studying the cholera
epidemic propagate in Bari. Then they proposed a saturated incidence rate g(I )S into
the model, especially, g(I ) = β I

1+mI , which means that the effective contacts may
saturate at the high infective. While the incidence rate is saturated by the susceptible,
May and Anderson [2] introduced the other saturated incidence rate βSI

1+αS to study
the dynamics of host-parasite. Here, the positive number α andm are the coefficients
that measure the inhibitory effect. The more general saturated incidence rate form can
be found in [24]. Related discussion on the epidemic models with nonlinear incidence
can be referred to [6, 22, 23, 47, 52, 56, 57, 61, 62] and the references therein.

In recent decades, people have realized that environmental heterogeneity and indi-
vidual mobility can play an important role in studying the transmission of infectious
diseases. Allen et al. [1] proposed an SIS (susceptible–infected–susceptible) epidemic
reaction–diffusion model
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S

∂t
− dSΔS = −β(x)SI

S + I
+ γ (x)I , x ∈ Ω, t > 0,

∂ I

∂t
− dIΔI = β(x)SI

S + I
− γ (x)I , x ∈ Ω, t > 0,

∂S

∂ν
= ∂ I

∂ν
= 0, x ∈ ∂Ω, t > 0,

S(x, 0) = S0(x), I (x, 0) = I0(x), x ∈ Ω,
∫

Ω

(S0(x) + I0(x))dx = N > 0,

(1)

where the habitatΩ is a bounded domain inRn with the smooth boundary ∂Ω; S(x, t)
and I (x, t) represent, respectively, the densities of susceptible and infected individuals
at location x ∈ Ω and time t > 0; the positive constants dS and dI represent the diffu-
sion coefficients of the susceptible individuals and infected individuals, respectively;
the positive Hölder continuous function β(x) and γ (x) stand for, respectively, the
rates of disease transmission and recovery at x . The homogeneous Neumann bound-
ary conditions are imposed which means no flux can cross the boundary ∂Ω . Various
kinds of SIS (susceptible–infected–susceptible) epidemic reaction–diffusion systems
with standard incidence rates have been extensively studied; one may refer to [7–9,
16, 18, 21, 26, 27, 29, 31–37, 44, 46, 48, 49, 51, 53–55, 58] and the references therein.

By direct calculation, we can find that in (1) that the total population

∫

Ω

(S(x, t) + I (x, t))dx =
∫

Ω

(S0(x) + I0(x))dx = N

is fixed for all t > 0. In general, the total population number can not always keep a
constant in the real world. On the other hand, the birth date of susceptible population
and the death rate induced by disease are important factors in the evolution of disease
transmission; see [19, 20]. Then Li, Peng and Wang [35] used the recruitment term
to describe the growth of the susceptible population. Moreover, most mathematical
models imply that the logistic source seems to be a suitable choice of describing the
intrinsic growth of the susceptible individuals; see, for instance, [12, 15]. Therefore,
Li et al. [32] introduced the logistic source a(x)S − b(x)S2 in the first equation of (1)
to model the susceptible population growth. More precisely, the model proposed in
[32] reads as follows.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S

∂t
− dSΔS = a(x)S − b(x)S2 − β(x)SI

S + I
+ γ (x)I , x ∈ Ω, t > 0,

∂ I

∂t
− dIΔI = β(x)SI

S + I
− γ (x)I , x ∈ Ω, t > 0,

∂S

∂ν
= ∂ I

∂ν
= 0, x ∈ ∂Ω, t > 0,

S(x, 0) = S0(x), I (x, 0) = I0(x), x ∈ Ω,

(2)
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where a(x) and b(x) are positive Hölder continuous functions, a(x) and a(x)
b(x) rep-

resent, respectively, the birth of susceptible populations and the intrinsic carrying
capacity.

On the other hand, Huo et al. [22] discussed the following SIS epidemic model with
saturated incidence rate and the logistic sources

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S

∂t
− dSΔS = a(x)S − b(x)S2 − β(x)SI

1 + mI
+ γ (x)I , x ∈ Ω, t > 0,

∂ I

∂t
− dIΔI = β(x)SI

1 + mI
− γ (x)I , x ∈ Ω, t > 0,

∂S

∂ν
= ∂ I

∂ν
= 0, x ∈ ∂Ω, t > 0,

S(x, 0) = S0(x), I (x, 0) = I0(x), x ∈ Ω.

(3)

The models with the above-mentioned saturated incidence rate have been investigated
by many mathematicians, see [24, 52, 56, 60–62].

Motivated by the above works, in this paper, we consider the following SI epidemic
model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S

∂t
− dSΔS = a(x)S − b(x)S2 − β(x)SI

1 + αS
− μ(x)S, x ∈ Ω, t > 0,

∂ I

∂t
− dIΔI = β(x)SI

1 + αS
− (μ(x) + η(x)) I , x ∈ Ω, t > 0,

∂S

∂ν
= ∂ I

∂ν
= 0, x ∈ ∂Ω, t > 0,

S(x, 0) = S0(x), I (x, 0) = I0(x), x ∈ Ω,

(4)

where the parameters μ(x) and η(x) are the positive Hölder continuous functions
on Ω , μ(x) accounts for the rate of natural death and η(x) is the death rate caused
by the disease; α is a positive constant and measures the inhibitory effect. It is worth
mentioning that Zhang et. al [62] studied a time-delay SIR epidemic model with the
same incidence rate and the logistic source. One may further refer to [41, Chapter 15]
for the derivation of the ODE version of model (4).

As in [4, 28, 64], we introduce the following favorable set:

F+ = {x ∈ Ω| a(x) > μ(x)}

in order to reflect the feature of the heterogeneous environment. We always assume
that the favorable set F+ is nonempty through this paper. Then one can apply the
standard theory of semilinear parabolic systems to conclude that (4) has a classical
solution provided that the initial functions S0(x) and I0(x) are nonnegative continuous
functions. If additionally

∫

Ω
I0dx > 0, it follows from the strong maximum principle

and theHopf boundary Lemma of parabolic equations that S(x, t) > 0 and I (x, t) > 0
for x ∈ Ω and t > 0. The steady-state problem corresponding to (4) satisfies the
following elliptic system:
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−dSΔS = a(x)S − b(x)S2 − β(x)SI

1 + αS
− μ(x)S, x ∈ Ω,

−dIΔI = β(x)SI

1 + αS
− (μ(x) + η(x)) I , x ∈ Ω,

∂S

∂ν
= ∂ I

∂ν
= 0, x ∈ ∂Ω.

(5)

Biologically, only nonnegative solutions of (5) are of our interest. The solution
(S(x), I (x)) of (5) is called a disease-free equilibrium (DFE) if I (x) ≡ 0 for all
x ∈ Ω; and the solution (S(x), I (x)) of (5) is called an endemic equilibrium (EE)
if I (x) > 0 for some x ∈ Ω . Then we obtain that any EE satisfies S(x) > 0 and
I (x) > 0 for x ∈ Ω by the strong maximum principle and the Hopf boundary lemma
of elliptic equations.

In the present paper, our first goal is to study the extinction and persistence of the
disease via the basic reproduction number R0. Indeed, Theorem 2 tells us that the
disease vanishes if R0 < 1, whereas if R0 > 1 and I0(x) �≡ 0, the solutions of
system (4) is uniformly persistent and so the EE exists. Furthermore, we establish the
global stability of EE by constructing a suitable Lyapunov function; see Theorem 3.
As our second goal, we study the asymptotic profile of EE as the immigration rate
of susceptible or infected individuals tends to zero (see Theorems 4–5). Our results
show that the infectious disease always persists though the movement rate of suscep-
tible or infected populations is controlled to be sufficiently small. Similar conclusions
still hold with systems (2) and (3). These theoretical results imply that the control-
ling of the mobility of susceptible or infected populations in the epidemic model
with logistic sources is not an effective strategy to eradicate the disease infection.
In the discussion section, we will compare our results with those for the other two
related models (2) and (3), in order to understand the effect of the incidence rate,
the logistic sources, and the mobility of the population; see the last section for more
details.

The rest of this paper is organized as follows. InSect. 2, the dynamics of the epidemic
model (4) are analyzed in terms of the basic reproduction number. First, the uniform
boundedness of solutions to (4) is established; then, the definition and properties of the
basic reproductionnumber are studied, andfinally, the long-timebehavior of system (4)
byR0 is obtained. Section 3 is devoted to studying the global stability of EEand explor-
ing the spatial distribution of the disease if the movement of the susceptible or infected
populations is small. In the last section, the discussion of our paper and the compar-
isons of the results between our problem (4) and the related systems (2) and (3) are
given.

2 Threshold Dynamical Behaviors

In this section, we aim to establish the dynamical behaviors of (4) in terms of
the basic reproduction number R0. First of all, we study the auxiliary parabolic
problem
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂S

∂t
− dSΔS = a(x)S − b(x)S2 − μ(x)S, x ∈ Ω, t > 0,

∂S

∂ν
= 0, x ∈ ∂Ω, t > 0,

S(x, 0) = S0(x), x ∈ Ω.

(6)

The associated steady-state problem satisfies

⎧
⎨

⎩

−dSΔS = a(x)S − b(x)S2 − μ(x)S, x ∈ Ω,

∂S

∂ν
= 0, x ∈ ∂Ω.

(7)

Denote by S̃(x) the unique positive solution of (7) if it exists. Then,we use [4, Theorem
A.1] to derive the following conclusion

Lemma 1 Suppose that F+ is nonempty. Consider the eigenvalue problem with indef-
inite weight:

⎧
⎨

⎩

−dSΔϕ(x) = Λ(a(x) − μ(x)) ϕ, x ∈ Ω,

∂ϕ(x)

∂ν
= 0, x ∈ ∂Ω.

(8)

If
∫

Ω (a(x) − μ(x)) dx < 0, letΛ1(a(x)−μ(x)) be the principal positive eigenvalue
of (8), and if

∫

Ω (a(x) − μ(x)) dx ≥ 0, set Λ1(a(x) − μ(x)) = 0. Then the problem

has a unique positive steady-state S̃, which is a global attractor for nonnegative
solutions when 0 < dS < 1/Λ1(a(x)−μ(x)). When dS ≥ 1/Λ1(a(x)−μ(x)), there
is no positive steady state for (6), and all nonnegative solutions to (6) decay to 0 as
t → ∞.

2.1 The Uniform Bound of Solutions to (4)

From now on, for the sake of simplicity, let us denote

h∗ = max
x∈Ω̄

h(x), h∗ = min
x∈Ω̄

h(x),

where h(x) = β(x), a(x), b(x), μ(x), η(x).
The uniform bounds of solutions of (4) are given as follows.

Theorem 1 There exists a positive constant C independent of initial data such that

‖S(·, t)‖L∞(Ω) + ‖I (·, t)‖L∞(Ω) ≤ C, ∀t ≥ T , (9)

for some large time T > 0.
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Proof It follows from the first equation of (4) that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂S

∂t
− dSΔS ≤ a(x)S − b(x)S2, x ∈ Ω, t > 0,

∂S

∂ν
= 0, x ∈ ∂Ω, t > 0,

S(x, 0) = S0(x), x ∈ Ω.

Let W be the solution of the following problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂W

∂t
− dSΔW = a(x)W − b(x)W 2, x ∈ Ω, t > 0,

∂W

∂ν
= 0, x ∈ ∂Ω, t > 0,

W (x, 0) = S0(x), x ∈ Ω.

Applying the standard comparison principal, we get

S(x, t) ≤ W (x, t), for all x ∈ Ω and t ≥ 0. (10)

Moreover, it is well known that

lim sup
t→∞

S(x, t) ≤ lim
t→∞ W (x, t) = a∗

b∗
uniformly for x ∈ Ω.

In what follows, we use C to represent a positive constant, which is independent
of dS but allows to vary from line to line. Thus, we can find a large time T1 > 0 such
that

S(x, t) ≤ 2C, t ≥ T1, x ∈ Ω. (11)

Denote

U (t) =
∫

Ω

[S(x, t) + I (x, t)] dx .

Then, it follows from (4) that

dU (t)

dt
=

∫

Ω

a(x)S(x, t) − b(x)S2(x, t)dx −
∫

Ω

μ(x)S(x, t)dx

−
∫

Ω

(μ(x) + η(x)) I (x, t)dx

≤
∫

Ω

a(x)S(x, t)dx −
∫

Ω

μ(x)[S(x, t) + I (x, t)]dx .

123
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Due to (10), we obtain

dU (t)

dt
≤ k − mU (t), t ≥ T1,

where k = Ca∗|Ω| and m = μ∗. This yields

U (t) ≤ U (0)e−mt + k

m
[1 − e−mt ], t ≥ T1.

That is,

∫

Ω

[S(x, t) + I (x, t)] dx ≤ e−mt
∫

Ω

[S0(x) + I0(x)] dx + k

m
[1 − e−mt ], t ≥ T1.

(12)

Therefore, we have

lim sup
t→∞

∫

Ω

I (x, t)dx ≤ lim sup
t→∞

∫

Ω

[S(x, t) + I (x, t)] dx ≤ k

m
.

By setting

V (x, S, I ) = a(x)S − b(x)S2 − β(x)SI

1 + αS
,

from (11), for all x ∈ Ω, t ≥ T1, we have

|V (x, S, I )| ≤ a∗|S| + b∗|S|2 + β∗
α

|I | ≤ C + C |I |.

Now, we use [14, Lemma 2.1] (due to [30]) with σ = p0 = 1 to the system (4)
conclude that there exists a constant C > 0 independent of initial data such that

S(x, t), I (x, t) ≤ C, ∀t > T2, x ∈ Ω

for some T2 ≥ T1. This completes our proof. �

2.2 The Basic Reproduction Number

In this subsection, we will define the basic reproduction number R0 and show the
properties of R0. Linearizing the equation of I of system (4) at DFE (S̃(x), 0), we
have the following parabolic problem
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂ I

∂t
− dIΔI = β(x)S̃(x)

1 + α S̃(x)
I − (μ(x) + η(x)) I , x ∈ Ω, t > 0,

∂ I

∂ν
= 0, x ∈ ∂Ω, t > 0,

I (x, 0) = I0(x), x ∈ Ω.

As in [1], we define the basic reproduction number R0:

R0 = sup
0 �=ϕ∈H1(Ω)

⎧
⎪⎨

⎪⎩

∫

Ω
β(x)S̃(x)
1+α S̃(x)

ϕ2dx
∫

Ω
dI |∇ϕ|2 + (μ(x) + η(x)) ϕ2dx

⎫
⎪⎬

⎪⎭
. (13)

It should be noticed that the basic reproduction numberR0 defined by (13) implicitly
depends not only on the diffusion rate dI of the infected population but also on the
diffusion rate dS of the susceptible population and saturation rate α. To stress the
dependence of R0 on these parameters, we denote by R0(dI , dS, α) as the basic
reproduction number of system (4).

Let (λ1, ψ1) be the principal eigenpair of the eigenvalue problem:

⎧
⎪⎪⎨

⎪⎪⎩

dIΔψ + β(x)S̃(x)

1 + α S̃(x)
ψ − (μ(x) + η(x)) ψ + λψ = 0, x ∈ Ω,

∂ψ

∂ν
= 0, x ∈ ∂Ω.

(14)

Then, we have the following properties.

Proposition 1 Then the following statements hold.

(a) For fixed dS, α > 0, then

(a1) R0(dI , dS, α) is a monotone decreasing function of dI with

R0(dI , dS, α) → max
x∈Ω

β(x)S̃(x)

[1 + α S̃(x)](μ(x) + η(x))
, as dI → 0,

and

R0(dI , dS, α) →
∫

Ω

β(x)S̃(x)

1 + α S̃(x)
dx

/∫

Ω

(μ(x) + η(x))dx, as dI → ∞.

(a2) If
∫

Ω
β(x)S̃(x)
1+α S̃(x)

dx <
∫

Ω
(μ(x)+η(x))dx and β(x)S̃(x)

1+α S̃(x)
− (μ(x)+η(x)) changes

sign for x ∈ Ω . Then there exists a threshold value dI ∈ (0,∞) so that
R0(dI , dS, α) < 1 for dI > dI ∗ and R0(dI , dS, α) > 1 for dI < dI ∗ .

(a3) If
∫

Ω
β(x)S̃
1+α S̃

dx ≥ ∫

Ω
(μ(x) + η(x))dx, then R0(dI , dS, α) > 1 for all dI .

123
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(b) For fixed dI , α > 0, then

R0(dI , dS, α) → R∗
0 := sup

0 �=ϕ∈H1(Ω)

⎧
⎨

⎩

∫

Ω
β(x)(a(x)−μ(x))+

b(x)+α(a(x)−μ(x))+ ϕ2dx
∫

Ω
dI |∇ϕ|2 + (μ(x) + η(x)) ϕ2dx

⎫
⎬

⎭
,

as dS → 0, where

(a(x) − μ(x))+ =
{
a(x) − μ(x), a(x) > μ(x),
0, a(x) ≤ μ(x).

(c) For fixed dI , dS > 0, then R0(dI , dS, α) → 0, as α → ∞.

(d) R0(dI , dS, α) > 1 when λ1 < 0, R0(dI , dS, α) = 1 when λ1 = 0 and
R0(dI , dS, α) < 1 when λ1 > 0.

The proof of Proposition 1 is similar to that of [1, Lemma 2.3], and hence, the details
are omitted.

Remark 1 In view of [43, Lemma 3.2], the unique positive solution of (7) satisfies

S̃(x) → (a(x) − μ(x))+
b(x)

uniformly on Ω, as dS → 0.

Then the principal eigenvalue λ1 of the eigenvalue problem (14) converges to λ∗
1 as

dS → 0, where λ∗
1 is the principal eigenvalue of the eigenvalue problem

⎧
⎪⎪⎨

⎪⎪⎩

−dIΔφ = β(x)(a(x) − μ(x))+
b(x) + α(a(x) − μ(x))+

φ − (μ(x) + η(x)) φ + λφ, x ∈ Ω,

∂φ

∂ν
= 0, x ∈ ∂Ω.

(15)

Furthermore,R∗
0 > 1 when λ∗

1 < 0,R∗
0 = 1 when λ∗

1 = 0 andR∗
0 < 1 when λ∗

1 > 0.

2.3 The Extinction and Persistence of Solutions to (4)

It turns out that the long-time dynamics of solutions of (4) is completely determined
byR0. More precisely, we have

Theorem 2 Let (S, I ) be the unique solution of (4). Then the following statements
hold.

(i) IfR0 < 1, then

lim
t→∞(S(x, t) − S̃(x)) = 0 and lim

t→∞ I (x, t) = 0

uniformly for x ∈ Ω , where S̃(x) is the unique positive solution of (6).
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(ii) IfR0 > 1, then system (4) is uniformly persistent in the sense that for I (·, 0) �≡ 0,
there exists a constant ε0 > 0 independent of the initial data, such that any solution
(S, I ) satisfies

lim inf
t→∞ S(x, t) ≥ ε0, lim inf

t→∞ I (x, t) ≥ ε0

uniformly for x ∈ Ω . Furthermore, (4) admits at least one EE.

Proof By the first equation of (4), we see that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂S

∂t
− dSΔS ≤ a(x)S − b(x)S2 − μ(x)S, x ∈ Ω, t > 0,

∂S

∂ν
= 0, x ∈ ∂Ω, t > 0,

S(x, 0) = S0(x) ≥ 0, x ∈ Ω.

(16)

Then, using the standard comparison principle for parabolic equation, we obtain

S(x, t) ≤ S(x, t), ∀x ∈ Ω, t ≥ 0,

where S is the unique solution of (6). Moreover, it follows from Lemma 1 that

lim sup
t→∞

S(x, t) ≤ lim sup
t→∞

S(x, t) = S̃(x) uniformly for all x ∈ Ω. (17)

For any given small ε ≥ 0, there exists a large time T > 0 such that

S(x, t) ≤ S̃ + ε, ∀x ∈ Ω, t ≥ T . (18)

Note thatR0 < 1. Then, we use Proposition 1 to conclude that λ1 > 0. Let λ1(ε) be
the principal eigenvalue of (14) with S̃(x) replaced by (S̃(x)+ε) and letψ1(x) > 0 be
the corresponding eigenfunction. Thus,we can choose small ε > 0 such thatλ1(ε) > 0
by the continuous dependence the principal eigenvalue on the parameters. For such ε,
we apply (18) and the second equation of (4) to see that I satisfies

⎧
⎪⎪⎨

⎪⎪⎩

∂ I

∂t
− dIΔI ≤ β(x)(S̃(x) + ε)

1 + α(S̃(x) + ε)
I − (μ(x) + η(x)) I , x ∈ Ω, t > T ,

∂ I

∂ν
= 0, x ∈ ∂Ω, t > T .

Define u(x, t) = M∗e−λ1(ε)tψ1(x), where the positive constant M∗ is chosen such
that M∗ψ1(x) ≥ I (x, T ) for all x ∈ Ω . It is easily seen that u(x, t) satisfies the
following auxiliary system

123



1122 L. Dong et al.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u

∂t
− dIΔu = β(x)(S̃(x) + ε)

1 + α(S̃(x) + ε)
u − (μ(x) + η(x)) u, x ∈ Ω, t > 0,

∂u

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = M∗ψ1(x), x ∈ Ω.

It follows from the parabolic comparison principle that I (x, t + T ) ≤ u(x, t) for
x ∈ Ω , t > 0. Therefore, it holds that

I (x, t) → 0 uniformly on Ω, as t → ∞.

Using this fact, for any small ε > 0, we can find T̃ such that I (x, t) ≤ ε for x ∈ Ω ,
t ≥ T̃ and a(x) − εβ∗ − μ(x) > 0 for some x ∈ Ω . It is easily seen from the first
equation in (4) that

St − dSΔS ≥ a(x)S − b(x)S2 − εβ∗S − μ(x)S, x ∈ Ω, t ≥ T̃ .

Denote by W̃ the unique positive solution of the following problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂W̃

∂t
− dSΔW̃ = a(x)W̃ − b(x)W̃ 2 − εβ∗W̃ − μ(x)W̃ , x ∈ Ω, t > 0,

∂W̃

∂ν
= 0, x ∈ ∂Ω, t > 0,

W̃ (x, 0) = S(x, T̃ ) > 0, x ∈ Ω.

Then, we use the standard comparison principle for parabolic equations to infer that

S(x, t + T̃ ) ≥ W̃ (x, t), ∀x ∈ Ω, t ≥ 0,

which yields that

lim inf
t→∞ S(x, t) ≥ S̃ε(x) uniformly for all x ∈ Ω,

where S̃ε(x) is the unique positive solution of

⎧
⎨

⎩

−dSΔv = a(x)v − b(x)v2 − εβ∗v − μ(x)v, x ∈ Ω,
∂v

∂ν
= 0, x ∈ ∂Ω.

Here we used the fact that a(x) − εβ∗ − μ(x) > 0 for some x ∈ Ω , which ensures
the existence of the positive solution S̃ε(x). By the arbitrariness of ε, letting ε → 0,
we easily obtain

lim inf
t→∞ S(x, t) ≥ S̃(x) uniformly for all x ∈ Ω.
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Therefore, in light of (17), one can observe that

lim
t→∞ S(x, t) = S̃(x) uniformly for all x ∈ Ω.

This completes the proof of (i).
Next, we will claim that (ii) holds. Assume that R0 > 1. We make use of the

arguments of [40, Theorem 2.1]. Let X = C(Ω,R2+),

X0 = {(S0, I0) ∈ X , I0 �≡ 0}, ∂X0 = X \ X0 = {(S0, I0) ∈ X , I0 ≡ 0},

and X = X0 ∪ ∂X0. For a given (S0, I0) ∈ X , the system (4) has a semiflow, denoted
by Ψ (t), and

Ψ (t)(S0, I0) = (S(·, t), I (·, t)), ∀t ≥ 0,

where the (S(·, t), I (·, t)) is the unique solution of (4). In light of Theorem 1, Ψ (t) is
point dissipative. It also follows from the standard parabolic L p-theory and embedding
theorems that Ψ (t) is compact from X to X for any fixed t > 0.

By the uniqueness of solutions, we observe that I (x, t) ≡ 0 for all t ≥ 0. Then, by
the similar process as in the proof of assertion (i), we can get

S(x, t) → S̃(x) uniformly on Ω as t → ∞.

This proves that (S̃(x), 0) attracts (S0, I0) ∈ ∂X0.
Set M0 = (S̃(x), 0). For any given ε >, we are going to show that

lim sup
t→∞

d(Ψ (t)(S0, I0), M0) = lim sup
t→∞

‖Ψ (t)(S0, I0) − M0‖ ≥ ε, ∀(S0, I0) ∈ X0.

(19)

Suppose that

lim sup
t→∞

d(Ψ (t)(S0, I0), M0) < ε,

for some (S0, I0) ∈ X0. Without loss of generality, there exists T0 > 0 such that
d(Ψ (t)(S0, I0), M0) < ε. Then, it is clearly that

S̃(x) − ε < S(x, t) < S̃(x) + ε, for x ∈ Ω, t > T0. (20)

Due to R0 > 1, it follows from Proposition 1(d) that λ1 < 0. We can choose a
positive constant ε small enough such that λ1(ε) < 0, and (λ1(ε),Φ1) is the eigenpair
of the eigenvalue problem
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⎧
⎪⎪⎨

⎪⎪⎩

−dIΔΦ = β(x)(S̃(x) − ε)

1 + α(S̃(x) − ε)
Φ − (μ(x) + η(x))Φ + λΦ, x ∈ Ω,

∂Φ

∂ν
= 0, x ∈ ∂Ω.

Let ω(x, t) = δe−λ(ε)tΦ1(x), where the positive constant δ will be chosen below.
Then ω satisfies

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂ω

∂t
− dIΔω = β(x)(S̃(x) − ε)

1 + α(S̃(x) − ε)
ω − (μ(x) + η(x)) ω, x ∈ Ω, t > 0,

∂ω

∂ν
= 0, x ∈ ∂Ω, t > 0,

ω(x, 0) = δΦ1(x), x ∈ Ω.

(21)

It follows from (20) that the second equation of (4) satisfies

∂ I

∂t
− dIΔI ≤ β(x)(S̃(x) − ε)

1 + α(S̃(x) − ε)
I − (μ(x) + η(x)) I ,

for x ∈ Ω, t > T0. If we choose δ small enough such that δΦ1(x) < I (x, T0) for
x ∈ Ω , we obtain that I is an upper solution to the problem (21), that is, ω(x, t) ≤
I (x, t + T0) for x ∈ Ω and t > 0. It follows from λ1(ε) < 0 that I (x, t) → ∞
uniformly on Ω as t → ∞, which contradicts Theorem 1.

Finally, we can use the argument of [40, 50] to derive the desired conclusion of (ii).
The proof is complete. �

2.4 The Global Stability of EE

In this subsection, we study the global stability of the EE of problem (4) in the spatially
homogeneous environment. That is, we consider

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S

∂t
− dSΔS = aS − bS2 − βSI

1 + αS
− μS, x ∈ Ω, t > 0,

∂ I

∂t
− dIΔI = βSI

1 + αS
− (μ + η) I , x ∈ Ω, t > 0,

∂S

∂ν
= ∂ I

∂ν
= 0, x ∈ ∂Ω, t > 0,

S(x, 0) = S0(x), I (x, 0) = I0(x), x ∈ Ω,

(22)

where γ, α, β, μ, η are positive constants and a > μ. Clearly, (22) has a unique EE,
denoted by (Ŝ, Î ) if and only if R0 = β(a−μ)

[b+α(a−μ)](μ+η)
> 1.
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By elementary calculation, we have from the two equations of (22) that

Ŝ = μ + η

β − α(μ + η)
= (R0 − 1)[γ + α(a − μ)] + b

a − μ
,

Î = [a − bŜ) − μ](1 + α Ŝ)

β
= (R0 − 1)[(b + α(a − μ))(μ + η)]

[β − α(η + μ)]2 .

Now, we consider the global stability of the EE under certain conditions as follows.

Theorem 3 Assume that R0 > 1 holds, then the EE is globally asymptotically stable
if

αβ Î

1 + α Ŝ
≤ b. (23)

Proof We choose the following Lyapunov functional

V (t) :=
∫

Ω

L(S(x, t), I (x, t))dx, t > 0,

where

L(S, I ) =
∫ S

Ŝ

ξ − Ŝ

ξ
dξ + κ

∫ I

Î

ξ − Î

ξ
dξ,

with κ = 1 + α Ŝ.
For convenience, let us denote

f (S, I ) = aS − bS2 − βSI

1 + αS
− μS, g(S, I ) = βSI

1 + αS
− (μ + η)I .

Then we have

LS(S, I ) f (S, I ) = (S − Ŝ)
[ f (S, I )

S
− f (Ŝ, Î )

Ŝ

]

=
(

− b + αβ Î

(1 + αS)(1 + α Ŝ)

)
(S − Ŝ)2 − β

1 + αS
(S − Ŝ)(I − Î ),

L I (S, I )g(S, I ) = (I − Î )
[ g(S, I )

I
− g(Ŝ, Î )

Î

]
= κβ

(1 + αS)(1 + α Ŝ)
(S − Ŝ)(I − Î ),
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where we used the fact that f (Ŝ, Î ) = g(Ŝ, Î ) = 0. It follows that

d

dt
V (t) =

∫

Ω

LS(S, I )St + L I (S, I )Itdx

=
∫

Ω

( S − S∗

S
dSΔS + κ

I − I ∗

I
dIΔI

)
dx

+
∫

Ω

(
− b + αβ Î

(1 + αS)(1 + α Ŝ)

)
(S − Ŝ)2dx

−
∫

Ω

[ β

1 + αS
− κβ

(1 + αS)(1 + α Ŝ)

]
(S − Ŝ)(I − Î )dx

= −
∫

Ω

( S∗

S2
dS|∇S|2 + κ

I ∗

I 2
dI |∇ I |2

)
dx

+
∫

Ω

(
− b + αβ Î

(1 + αS)(1 + α Ŝ)

)
(S − Ŝ)2dx .

By (23), we have

V ′(t) <
∫

Ω

(
−b + αβ Î

(1+αS)(1+α Ŝ)

)
(S − Ŝ)2dx

<
∫

Ω

(
−b + αβ Î

(1+α Ŝ)

)
(S − Ŝ)2dx ≤ 0.

Moreover, V ′(t) = 0 if and only if S = Ŝ and | ∇ I |= 0. Denote

E := {x ∈ H1(Ω)|V ′(x) = 0}.

Then it is easy to see that themaximal invariant subset of E is (Ŝ, Î ). By some standard
arguments, we see that

(S, I )(·, t) → (Ŝ, Î ) in [H1(Ω)]2, as t → ∞.

Moreover, since we have the L∞ estimates of S and I in Theorem 1, by some standard
arguments, we know

‖S(x, t)‖C2(Ω̄) + ‖I (x, t)‖C2(Ω̄) ≤ C0, for all large t,

for some positive constant C0. Therefore, the Sobolev embedding theorem allows one
to assert

(S, I )(·, t) → (Ŝ, Î ) in [L∞(Ω)]2, as t → ∞,

that is, (Ŝ, Î ) attracts all solutions of (4). Furthermore, using a similar process as in
[43, Lemma 3.1], we see that the EE is globally asymptotically stable. This completes
the proof. �
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Remark 2 If α = 0, condition (23) always holds, and thus (Ŝ, Î ) is globally asymp-
totically stable as long as it exists. However, due to the appearance of the saturated
incidence rate (α > 0), (Ŝ, Î ) may be unstable. Let us denote f (S, I ), g(S, I ) as in
the proof of Theorem 3. Then the Jacobian of the system (22) evaluated at (Ŝ, Î ) can
be obtained easily as

(
fS f I
gS gI

)

=
⎛

⎝
a − 2bŜ − β Î

(1+α Ŝ)2
− μ − β Ŝ

1+α Ŝ
β Î

(1+α Ŝ)2
0

⎞

⎠ .

By checking the conditions of Turing instability [41], (Ŝ, Î ) is unstable if

dI fS + dSgI > 0 and dI fS + dSgI > 2
√
dI dS( fSgI − gS f I ),

which hold provided that

a − 2bŜ − β Î

(1 + α Ŝ)2
− μ > 0,

dI
[
a − 2bŜ − β Î

(1 + α Ŝ)2
− μ

]
> 2

√

dI dSβ2 Ŝ Î

(1 + α Ŝ)3
.

However, the above conditions fail when α = 0, because we have

a − 2bŜ − β Î

(1 + α Ŝ)2
− μ = a − 2bŜ − β Î − μ = −bŜ < 0.

3 The Asymptotic Behavior of EE

This section is devoted to the investigation of the asymptotic behavior of the EE
of (4) for the small mobility of susceptible or infected individuals in the spatially
heterogeneous environment.

3.1 The Case of dS → 0

In this subsection, we aim to establish the asymptotic profiles of any positive solution
of (4) as dS → 0 while dI > 0 is fixed. Our main result can be stated as follows.

Theorem 4 Assume that fix dI > 0 and R∗
0 > 1, let dS → 0, then every positive

solution (S, I ) of (5) satisfies (up to a subsequence of dS → 0)

(S, I ) → (S∗∗, I ∗∗) uniformly on Ω,
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where

S∗∗ =G
(
x, I ∗∗(x)

) := 1

2αb(x)

[
(αa(x) − b(x) − αμ(x))

+
√

(αa(x) − b(x) − αμ(x))2 + 4αb(a − β(x), I ∗∗(x) − μ(x))
]

where I ∗∗ is a positive solution to

⎧
⎪⎪⎨

⎪⎪⎩

−dIΔI ∗∗ = β(x)G
(
x, I ∗∗(x)

)

1 + αG
(
x, I ∗∗(x)

) I ∗∗(x) − (μ(x) + η(x)) I ∗∗(x), x ∈ Ω,

∂ I ∗∗

∂ν
= 0, x ∈ ∂Ω.

(24)

Proof We divide our proof into three steps as follows.
Step 1. The estimates of (S(x), I (x)) of (5). Let S(x1) = max

Ω

S(x). As in

[39, Proposition 2.2] (or see [45]), we have ΔS(x) ≤ 0. By the first equation of
(5), it follows that

a2(x1)

4b(x1)
≥ β(x1)S(x1)I (x1)

1 + αS(x1)
+ μ(x1)S(x1) ≥ μ(x1)S(x1).

Thus, it holds that

S(x) ≤ S(x1) ≤ (a∗)2

4b∗μ∗
:= C . (25)

Here and in what follows, the positive constant C does not depend on dS > 0 which
varies from place to place.

We rewrite the second equation of (5) as follows

⎧
⎪⎪⎨

⎪⎪⎩

ΔI +
[ β(x)S

dI (1 + αS)
− μ(x) + η(x)

dI

]
I = 0, x ∈ Ω,

∂ I

∂ν
= 0, x ∈ ∂Ω.

As
∥
∥
∥
∥

β(x)S

dI (1 + αS)
− μ(x) + η(x)

dI

∥
∥
∥
∥
L∞(Ω)

≤ β∗

αdI
+ μ∗ + η∗

dI
,

we use the Harnack-type inequality (see, e.g., [38] or [43, Lemma 2.2]) to conclude
that

max
Ω

I ≤ C min
Ω

I . (26)

123



Analysis on a Diffusive SI... 1129

In view of (5), it follows that

∫

Ω

(μ(x) + η(x)) I (x)dx =
∫

Ω

β(x)SI

1 + αS
dx =

∫

Ω

[a(x)S − b(x)S2 − μ(x)S]dx

≤
∫

Ω

a(x)S(x)dx,

which implies that

∫

Ω

I (x)dx ≤ 1

(μ∗ + η∗)

∫

Ω

(μ(x) + η(x)) I (x)dx

≤ a∗

(μ∗ + η∗)

∫

Ω

S(x)dx ≤ C .

(27)

Now, we use (27) and integrate the second equation of system (5) over Ω to get

β∗
∫

Ω

SI

1 + αS
dx ≤ (η∗ + μ∗)

∫

Ω

Idx ≤ C . (28)

In view of (26) and (27), it follows that

I (x) ≤ C min
Ω

I ≤ C

|Ω|
∫

Ω

Idx ≤ C, ∀x ∈ Ω. (29)

Suppose that I has no positive lower bound, we can find a subsequence of dS → 0,
say dn := dS,n , satisfying dn → 0 as n → ∞, and a corresponding positive solution
(Sn, In) := (SdS,n , IdS,n ) of (5) with dS = dn , such that min

Ω

In → 0. Then, we apply

(26) to obtain that

In → 0 uniformly on Ω, as n → 0.

We may choose arbitrarily small ε > 0 such that

0 ≤ In(·) ≤ ε for all large n.

This fact, together with the first equation of (5), implies that for all large n, (Sn, In)
satisfies

−dnΔSn ≤ a(x)Sn − b(x)S2n − μ(x)Sn, x ∈ Ω; ∂Sn
∂ν

= 0, x ∈ ∂Ω

and

−dnΔSn ≥ a(x)Sn − b(x)S2n − εβ∗Sn − μ(x)Sn, x ∈ Ω; ∂Sn
∂ν

= 0, x ∈ ∂Ω.
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Given any large n, consider the following two auxiliary systems:

− dnΔw = a(x)w − b(x)w2 − μ(x)w, x ∈ Ω; ∂w

∂ν
= 0, x ∈ ∂Ω (30)

and

− dnΔv = a(x)v − b(x)v2 − εβ∗v − μ(x)v, x ∈ Ω; ∂v

∂ν
= 0, x ∈ ∂Ω. (31)

Denote bywn and vn the unique positive solution of (30) and (31), respectively. Using
a simple comparison argument, we deduce that

wn ≤ Sn ≤ un on Ω, for all large n. (32)

By the similar argument to those in [13, Lemma 2.2], it is not hard to show that

wn → (a(x) − μ(x))+
b(x)

uniformly on Ω, as n → ∞

and

vn → (a(x) − μ(x) − εβ∗)+
b(x)

uniformly on Ω, as n → ∞.

Letting n → ∞ in (32) gives

(a(x) − μ(x) − εβ∗)+
b(x)

≤ lim inf
n→∞ Sn(x)

≤ lim sup
n→∞

Sn(x) ≤ (a(x) − μ(x))+
b(x)

on Ω.

(33)

Due to the arbitrary choice of small ε, one immediately gets

Sn → (a(x) − μ(x))+
b(x)

uniformly on Ω, as n → ∞. (34)

From the second equation of (5), In satisfies

− dIΔIn = β(x)Sn In
1 + αSn

− (μ(x) + η(x)) In, x ∈ Ω; ∂ In
∂ν

= 0, x ∈ ∂Ω. (35)

Define

Ĩn := In
‖In‖L∞(Ω)

.
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Then ‖ Ĩn‖L∞(Ω) = 1 for all n ≥ 1, and Ĩn solves

− dIΔ Ĩn =
[

β(x)Sn
1 + αSn

− (μ(x) + η(x))

]

Ĩn, x ∈ Ω; ∂ Ĩn
∂ν

= 0, x ∈ ∂Ω. (36)

By a standard compactness argument for elliptic equations and passing to a further
subsequence (if necessary), we may assume that

Ĩn → Ĩ in C1(Ω), as n → ∞, (37)

where Ĩ ∈ C1(Ω) with Ĩ ≥ 0 on Ω and ‖ Ĩ‖L∞(Ω) = 1. In view of (34), (36) and
(37), it follows that Ĩ satisfies

⎧
⎪⎪⎨

⎪⎪⎩

−dIΔ Ĩ =
[

β(x)(a(x) − μ(x))+
b(x) + α(a(x) − μ(x))+

− (μ(x) + η(x))

]

Ĩ , x ∈ Ω,

∂ Ĩ

∂ν
= 0, x ∈ ∂Ω.

From the Harnack-type inequality (see, [38] or [43, Lemma 2.2]), it follows that Ĩ > 0
on Ω . For the uniqueness of the principal eigenvalue, it follows that λ∗

1 = 0. This is
a contradiction with our assumption that λ∗

1 < 0. Thus, I has a positive lower bound
C , which is independent of 0 < dS ≤ 1.

Step 2. Convergence of I . Obviously, I satisfies

⎧
⎪⎨

⎪⎩

−dIΔI + (μ(x) + η(x)) I = β(x)S

1 + αS
I , x ∈ Ω,

∂ I

∂ν
= 0, x ∈ ∂Ω.

(38)

In view of (25) and (29), we have

∥
∥
∥
∥

β(x)S

1 + αS
I

∥
∥
∥
∥
L p(Ω)

≤ ‖β(x)SI‖L p(Ω) ≤ C, ∀ p > 1.

By the standard L p-estimate for elliptic equations (see, e.g., [17]), we see that

‖I‖W 2,p(Ω) ≤ C for any given p > 1.

Taking p to be sufficiently large, we see from the embedding theorem (see, e.g., [17])
that

‖I‖C1+θ (Ω) ≤ C for some 0 < θ < 1.

Therefore, there exists a subsequence of dS → 0, say dn := dS,n , satisfying dn → 0
as n → ∞, and a corresponding positive solution (Sn, In) := (SdS,n , IdS,n ) of (5) with
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dS = dn , such that

In → I ∗∗ uniformly on Ω, as n → ∞, (39)

where I ∗∗ ∈ C1(Ω) and I ∗∗ > 0.
Step 3. Convergence of S. From the first equation of (5), Sn satisfies

⎧
⎪⎨

⎪⎩

−dnΔSn = a(x)Sn − b(x)S2n − β(x)Sn In
1 + αSn

− μ(x)Sn, x ∈ Ω,

∂Sn
∂ν

= 0, x ∈ ∂Ω.

Due to (39), given any small ε > 0, we have for all large n that

a(x)Sn − b(x)S2n − β(x)Sn In
1 + αSn

− μ(x)Sn

≤ a(x)Sn − b(x)S2n − β(x)Sn(I ∗∗ − ε)

1 + αSn
− μ(x)Sn

= Sn
(a(x) − b(x)Sn) (1 + αSn) − β(x)(I ∗∗ − ε) − μ(x) (1 + αSn)

1 + αSn

=: Sn (g1,ε+ (x, I ∗∗(x)) − Sn)(Sn − g1,ε− (x, I ∗∗(x)))
1 + αSn

.

Here, g1,ε+ (x, I ∗∗(x)) and g1,ε− (x, I ∗∗(x)) are the root of the following equation with
respect to the unknown function g:

(a(x) − b(x)g) (1 + αg) − β(x)(I ∗∗ − ε) − μ(x) (1 + αg) = 0.

For large enough n, we consider the following auxiliary problem

⎧
⎪⎪⎨

⎪⎪⎩

−dnΔW = W
(g1,ε+ (x, I ∗∗(x)) − W )(W − g1,ε− (x, I ∗∗(x)))

1 + αW
, x ∈ Ω

∂W

∂ν
= 0, x ∈ ∂Ω.

(40)

In view of the bounds of S and I in the proof of step 1, we can further assume that
g1,ε+ > g1,ε− ≥ 0 on Ω . In addition, Sn is a subsolution to (40) and a sufficiently large
positive constant C is a supersolution. Hence, (40) has at least one positive solution
denoted by Wn which satisfies Sn ≤ Wn ≤ C .

By the similar argument as in proof of [13, Lemma 2.2] (or [32, Lemma 5.1]), we
find that

Wn → g1,ε+ uniformly on Ω, as n → ∞.
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Therefore, we have

lim sup
n→∞

Sn ≤ g1,ε+ , uniformly on Ω. (41)

On the other hand, by (39), for all large n we have

a(x)Sn − b(x)S2n − β(x)Sn In
1 + αSn

− μ(x)Sn

≥ a(x)Sn − b(x)S2n − β(x)Sn(I ∗∗ + ε)

1 + αSn
− μ(x)Sn

= Sn
(a(x) − b(x)Sn) (1 + αSn) − β(x)(I ∗∗ + ε) − μ(x) (1 + αSn)

1 + αSn

=: Sn (g2,ε+ (x, I ∗∗(x)) − Sn)(Sn − g2,ε− (x, I ∗∗(x)))
1 + αSn

.

Here, g2,ε+ (x, I ∗∗(x)) and g2,ε− (x, I ∗∗(x)) are the root of the following equation with
respect to the unknown function g:

(a(x) − b(x)g) (1 + αg) − β(x)(I ∗∗ + ε) − μ(x) (1 + αg) = 0.

Consider the following auxiliary problem:

⎧
⎪⎪⎨

⎪⎪⎩

−dnΔW = W
(g2,ε+ (x, I ∗∗(x)) − W )(W − g2,ε− (x, I ∗∗(x)))

1 + αW
, x ∈ Ω

∂W

∂ν
= 0, x ∈ ∂Ω.

(42)

In the same fashion, we also get g2,ε+ > g2,ε− ≥ 0. Observe that Sn and 0 is a pair of
upper and lower solution of (42). Hence, one can assert that (42) admits at least one
positive solution, and further get

lim inf
n→∞ Sn(x) ≥ g2,ε+ (x, I ∗∗(x)) uniformly on Ω. (43)

As

g1,0+ (x, I ∗∗(x)) = g2,0+ (x, I ∗∗(x)) := G(x, I ∗∗(x)),

by the arbitrariness of ε, it immediately follows from (41) and (43) that

Sn(x) → G(x, I ∗∗(x)) uniformly for x ∈ Ω, as n → ∞.

Furthermore, it is easily seen that I ∗∗ satisfies (24) by (35). �
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3.2 The Case of dI → 0

We now fix dS > 0 and analyze the asymptotic behavior of positive solution of (5)
as dI → 0. Due to mathematical difficulty, we will consider one space dimension
case by taking Ω = (0, 1). By Proposition 1 (a1) and Theorem 2 (ii), to ensure the
existence of positive solutions of (5) for all small dI , it is necessary to assume that
{β(x)S̃/(1 + α S̃) > (η(x) + μ(x)) : x ∈ [0, 1]} is nonempty.

Theorem 5 Assume that the set {β(x)S̃/(1 + α S̃) > (η(x) + μ(x)) : x ∈ [0, 1]} is
nonempty and fix dS > 0, let dI → 0 then every positive solution (S, I ) of (5) satisfies
(up to a subsequence of dI → 0) that

S → S0 uniformly on [0, 1],

where S0 ∈ C([0, 1]) and S0 > 0 on [0, 1], and ∫ 1
0 Idx → I 0 for some positive

constant I 0.

Proof It is easy to check that (25), (27) and (28) remain true for all dI > 0. Note that
S satisfies

⎧
⎨

⎩

−dSS
′′ + b(x)S2 + μ(x)S = a(x)S − β(x)SI

1 + αS
, x ∈ (0, 1),

S′(0) = S′(1) = 0.
(44)

One can use the well-known elliptic L1-theory [3] (or see [42, Lemma 2.2]) to (44) to
find that

‖S‖W 1,p(0,1) ≤ C for any given p > 1.

By taking a properly large p and using the Sobolev embedding theorem, we have

‖S‖Cθ ([0,1]) ≤ C for some 0 < θ < 1.

This tells us that there exists a subsequence of dI → 0, say dn := dI ,n , satisfying
dn → 0 as n → ∞, and a corresponding positive solution (Sn, In) := (SdI ,n , IdI ,n ) of
(5) with dI = dn , such that

Sn → S0 in C([0, 1]) as n → ∞.

On the other hand, by (27), up to a further subsequence of dn if necessary, it follows
that

∫ 1
0 Indx → I 0 as n → ∞.

In what follows, we are going to show I 0, S0 > 0. We first prove I 0 > 0. To this
end, we use a contradiction argument and suppose that I 0 = 0. By integrating (44)
from 0 to x , we have

(S0)′(x) = − 1

dS

∫ x

0

[
a(y)Sn(y) − b(y)S2n (y) − β(y)Sn(y)In(y)

1 + αSn(y)
− μ(y)Sn(y)

]
dy
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uniformly on [0, 1]. Letting n → ∞, due to
∫ 1
0 Indx → 0, one can infer that

S′
n(x)=− 1

dS

∫ x

0

[
a(y)S0(y) − b(y)(S0)2(y) − μ(y)S0(y)

]
dy uniformly on [0, 1].

By means of Sn(x) − Sn(0) = ∫ x
0 S′

n(y)dy for any n ≥ 1, it is easily seen that S0
satisfies

S0(x) − S0(0) = − 1

dS

∫ x

0

{ ∫ y

0

[
a(z)S0(z) − b(z)(S0)2(z) − μ(z)S0(z)

]
dz

}
dy,

which in turn gives

{
−dS(S

0)
′′ = a(x)S0(x) − b(x)(S0)2(x) − μ(x)S0, x ∈ (0, 1),

(S0)′(0) = 0.
(45)

Again, one can integrate (44) from x to 1 and apply a similar process as before to
deduce that (S0)′(1) = 0. Hence, by virtue of (45), we can conclude that S0 = S̃,
which means that Sn → S̃ uniformly on [0, 1] as n → ∞.

One can easily observe that λn1 = 0, ∀n ≥ 1, where λn1 is the principal eigenvalue
of the following eigenvalue problem

⎧
⎪⎨

⎪⎩

dnΔψ + β(x)Sn(x)

1 + αSn(x)
ψ − (μ(x) + η(x)) ψ + λψ = 0, x ∈ (0, 1),

ψ ′(1) = ψ ′(0) = 0.

Applying the same analysis as in [1, Lemma 2.3], it follows that

0 = λn1 →

min
x∈[0,1]

(
μ(x) + η(x)) − β(x)S̃

1 + α S̃

)
, as n → ∞.

Clearly, this leads to a contradiction because {β(x)S̃/(1 + α S̃) > (η(x) + μ(x)) :
x ∈ (0, 1)} is non-empty by our assumption. Thus, we must have I 0 > 0.

To show S0 > 0 on [0, 1], we proceed indirectly again and suppose that S0(x) = 0
for some x ∈ [0, 1]. Then, applying the Harnack inequality to the S-equation, one will
see immediately that S0(x) = 0 for all x ∈ [0, 1]. As a result, we have ∫ 1

0 Sndx → 0
as n → ∞. Integrating the second equation of (5) from 0 to 1, one gets

(η∗ + μ∗)
∫ 1

0
Indx ≤ β∗

∫ 1

0

Sn In
1 + αSn

dx → 0, uniformly as n → ∞,

which yields
∫ 1
0 Indx → 0. This arrives at a contradiction with

∫ 1
0 Indx → I 0 > 0.

The proof is complete. �
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4 Discussion

In this paper, we have studied the SI epidemic model (4) with logistic source and
saturation infection mechanism. For the parabolic problem (4), we have established
the uniform boundedness and the extinction and persistence of the infectious disease
in terms of the basic reproductive numberR0. We also obtained the global stability of
the unique endemic equilibrium when the spatial environment is homogeneous. For
the steady-state solution problem (5), we have investigated the asymptotic behavior
of the endemic equilibria in the heterogeneous environment when the movement rate
of the susceptible and infected populations is small.

In what follows, we first want to compare the influence of immigration rate, logistic
sources, and incidence rate on the basic reproduction number of models (1)–(4).

Allen et al. [1] introduced the epidemic model (1) with standard incidence rate SI
S+I

and defined the basic reproduction number

R0 = sup
0 �=ϕ∈H1(Ω)

{ ∫

Ω
β(x)ϕ2dx

∫

Ω
(dI |∇ϕ|2 + γ (x)ϕ2)dx

}

.

It is clear that the R0 defined here depends on the immigration rate of infected indi-
viduals dI , the transmission rate β(x), and the recovery rate γ (x). Then, Li et al. [32]
added the logistic source a(x)S − b(x)S2 to system (1); but the basic reproduction
number is the same as the one that without logistic source. In other words, the logistic
sources have no influence on the definition of the basic number of the epidemic model
with standard incidence rate.

As the infection mechanism changes to the saturated incidence rate SI
1+mI , Huo and

Cui in [22] defined a basic reproduction number of system (3) as

R0 = sup
0 �=ϕ∈H1(Ω)

{ ∫

Ω
β(x)Ŝ(x)ϕ2dx

∫

Ω
(dI |∇ϕ|2 + γ (x)ϕ2)dx

}

,

where Ŝ is the unique solution of (7) with μ(x) ≡ 0. It is easily seen that such R0
depends on Ŝ, which is continuously dependent on the logistic sources and parameter
dS , except the coefficients dI , β(x) and γ (x). However, the basic reproduction number
R0 of our model (4) not only depends on the parameters dS , dI , a(x), b(x), β(x) and
γ (x) but also depends on the death rate μ(x) and the saturated coefficient α.

In the spatially heterogeneous environment,we have obtained that threshold dynam-
ics in terms of the basic reproduction number, that is, the uniform persistence property
holds ifR0 > 1, and the disease extinction occurs ifR0 < 1. Based on the ultimately
uniform boundedness in Theorem 1, we established the uniform persistence property
of (4), that is, there existed at least one EE when R0 > 1. Moreover, the disease will
die out if the saturation factor α is large enough. Biologically, the epidemic will be
extinct in the long run provided that the effective prevention measures (α) are taken.
For example, people disinfected, washed, and blocked the market of infected food dur-
ing the outbreak of the COVID-19. Therefore, we know how important the effective

123



Analysis on a Diffusive SI... 1137

prevention and control strategy is in the absence of sufficient medical treatment and
vaccines.

Finally, we discussed that the global stability and asymptotic profiles of the endemic
equilibrium. When the environment is spatially homogeneous, that is, all the parame-
ters in (4) are positive constants, the global stability of endemic equilibrium has been
shown by establishing suitable Lyapunov function for the basic reproduction number
R0 > 1; see Theorem 3. By Remark 2, when α = 0, condition (23) always holds.
Hence, (Ŝ, Î ) is globally asymptotically stable as long as it exists. However, if the
saturated incidence rate α > 0, (Ŝ, Î ) may be unstable.

Furthermore, in the case of dS → 0, Theorem 4 shows that the disease exists in the
entire habitat. On the other hand, Theorem 5 suggests that the susceptible population is
positivewhile the total infected population tends to a positive constant as dI → 0 in the
one-dimensional interval. The results have suggested that the density of the infected
population will not vanish when the mobility of the susceptible or infected population
goes to zero. The above discussion reveals that more effective measures α should be
taken to control the sources of infection and cut off the channels of transmission so as
to eradicate the disease.

Indeed, [22, Theorems 4.2 and 4.3], [32, Theorems 4.1–4.2] and Theorems 4–5
here have shown that the infectious disease does not die out for the low diffusion
rate of susceptible or infected individuals, and thus the epidemic disease cannot be
eliminated by controlling the mobility of individuals. Combined with the discussion
in [22, 32], we can conclude that the logistic source enhances the persistence of the
disease, and the infectious disease will become threatening and harder to control. Our
results here, together with the other two related epidemic models [22, 32], show that
the logistic growth, the infection mechanism, and the population movement play an
important role in the transmission dynamics of disease.

In summary, our discussion above shows that, in order to eradicate the disease mod-
eled of the susceptible individuals, instead of reducing the mobility of the populations.
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