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Abstract
In the present paper, the estimate of the third Hankel determinant

H3,1( f ) =
∣
∣
∣
∣
∣
∣

a1 a2 a3
a2 a3 a4
a3 a4 a5

∣
∣
∣
∣
∣
∣

for the class of starlike functions, i.e., for the class of analytic functions f standardly
normalized such that Re(z f ′(z)/ f (z)) > 0, z ∈ D := {z ∈ C : |z| < 1}, is improved.

Keywords Univalent functions · Starlike functions · Carathéodory functions · Hankel
determinant · Fourth coefficient

Mathematics Subject Classification Primary 30C45

1 Introduction

Let H be a class of analytic functions in D := {z ∈ C : |z| < 1} and let A be its
subclass normalized by f (0) := 0, f ′(0) := 1, i.e., of the form
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f (z) =
∞
∑

n=1

anz
n, a1 := 1, z ∈ D. (1.1)

Let S∗ denote the class of starlike functions, namely, the subclass of A consisting of
functions f such that

Re
z f ′(z)
f (z)

> 0, z ∈ D. (1.2)

Given q, n ∈ N, the Hankel determinants Hq,n( f ) of Taylor’s coefficients of func-
tions f ∈ A of the form (1.1) are defined as

Hq,n( f ) :=

∣
∣
∣
∣
∣
∣
∣
∣
∣

an an+1 · · · an+q−1
an+1 an+2 · · · an+q

...
...

...
...

an+q−1 an+q · · · an+2(q−1)

∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Particularly, the third Hankel determinant H3,1( f ) is given by

H3,1( f ) :=
∣
∣
∣
∣
∣
∣

a1 a2 a3
a2 a3 a4
a3 a4 a5

∣
∣
∣
∣
∣
∣

= a3(a2a4 − a23) − a4(a4 − a2a3) + a5(a3 − a22). (1.3)

To find the growth of the Hankel determinant Hq,n( f ) dependent on q and n for the
whole class S ⊂ A of univalent functions as well as for its subclasses is an interesting
problem to study. For the class S some important result was shown by Pommerenke
[13]. For fixed q and n the growth problem can be reduced to an estimate of the Hankel
determinant for the selected subclasses of A. Recently many authors examined the
Hankel determinant H2,2( f ) = a2a4 − a23 of order 2 (see, e.g., [3,4,6,8,12]). Note
also that H2,1( f ) = a3 − a22 . Thus the Hankel determinant H2,1( f ) reduces to the
well-known coefficient functional which for S was estimated in 1916 by Bieberbach
(see, e.g., [5, Vol. I, p. 35]).

The problem to find the upper bound of the Hankel determinant H3,1( f ) of order 3
is more sophisticated if we expect to get sharp result. From (1.3) by using the triangle
inequality we get at once the following inequality

|H3,1( f )| ≤ |a3||H2,2( f )| + |a4||a4 − a2a3| + |a5||H2,1( f )|. (1.4)

This simple observation allowed to estimate of |H3,1( f )| for compact subclasses F
of A by various authors (see, e.g., [2,15–18]). However, these results are far from
sharpness. If case when a given subclass F of A has a representation with using the
Carathéodory class P , i.e., the class of functions p ∈ H of the form

p(z) = 1 +
∞
∑

n=1

cnz
n, z ∈ D, (1.5)
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having a positive real part in D, the coefficients of functions in F have a suitable
representation expressed by the coefficients of functions in P. Therefore to get the
upper bound of each term in (1.4) cited authors based their computing on the well-
known formulas on coefficient c2 (e.g., [14, p. 166]) and on the formula c3 due to
Libera and Zlotkiewicz [9].

In order to improve the bound of |H3,1( f )| we have to use directly formula (1.3),
where we need to apply a formula for c4, similar to the formulas (2.1) and (2.2). In
a recent paper [7] the authors found such a formula for c4. According to the authors’
knowledge, formulas for the coefficients cn for n ≥ 5 analogous to the formulas (2.1)
and (2.2) are not known.

Basing on the formulas for c2, c3 and c4, we improve the known estimate of
the Hankel determinant H3,1( f ) in the class S∗ of starlike functions. We show that
|H3,1( f )| ≤ 8/9. Estimating each term of the right hand of (1.4) Babalola [1] showed
that |H3,1( f )| ≤ 16. In [19] Zaprawa by a suitable grouping and using Lemma 1 due
to Livingston [11] proved that |H3,1( f )| ≤ 1.

2 Main Result

The basis for proof of the main result is the following lemma. It contains the well-
known formula for c2 (e.g., [14, p. 166]), the formula for c3 due to Libera and
Zlotkiewicz [9,10] and the formula for c4 found by the authors [7].

Lemma 2.1 If p ∈ P is of the form (1.5) with c1 ≥ 0, then

2c2 = c21 + (4 − c21)ζ, (2.1)

4c3 = c31 + (4 − c21)c1ζ(2 − ζ ) + 2(4 − c21)(1 − |ζ |2)η (2.2)

and
8c4 = c41 + (4 − c21)ζ

[

c21(ζ
2 − 3ζ + 3) + 4ζ

]

− 4(4 − c21)(1 − |ζ |2)
[

c1(ζ − 1)η + ζη2 −
(

1 − |η|2
)

ξ
] (2.3)

for some ζ, η, ξ ∈ D := {z ∈ C : |z| ≤ 1}.
Now, we will estimate the third-order Hankel determinant H3,1( f ) for f ∈ S∗. To

this end, the following propositions are required.

Proposition 2.2 Let � : [0, 3] × [0, 1] → R be a function defined by

�(t, x) := 96θ1(x) − 8θ2(x)t + 3θ3(x)t
2, (2.4)

where for x ∈ [0, 1],

θ1(x) := 2 + 8x − x2 − 6x3,

θ2(x) := 16 + 67x − 34x2 − 53x3 + 2x4
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and

θ3(x) := 12 + 19x − 21x2 − 17x3 + 3x4.

Then �(t, x) > 0 for 0 ≤ t ≤ 3 and 0 ≤ x ≤ 1.

Proof At first, note that the polynomial θ3 has a unique zero x =: x1 ≈ 0.9314 in
(0, 1). Since x1 ∈ (0.92, 0.95) and for x ∈ (0.92, 0.95),

θ2(x) > 16 + 67 · (0.92) − 34 · (0.95)2 − 53 · (0.95)3 + 2 · (0.92)4

= 2.94691092 > 0,

it follows that

∂

∂t
�(t, x1) = −8θ2(x1) �= 0.

For x �= x1, (∂/∂t)�(t, x) = 0 occurs at

t = 4θ2(x)

3θ3(x)
=: t0(x).

We have

∂

∂x
�(t, x)

∣
∣
∣
t=t0(x)

= 16θ4(x)

9θ23 (x)
,

where

θ4(x) := 54θ ′
1(x)θ

2
3 (x) − 6θ ′

2(x)θ2(x)θ3(x) + 3θ ′
3(x)θ

2
2 (x)

= −3
(

128 + 31896x − 18709x2 − 133828x3 − 3737x4 + 198602x5

+74185x6 − 91136x7 − 54071x8 − 2774x9 + 668x10

+48x11
)

, x ∈ (0, 1).

The polynomial θ4 has exactly two zeros in (0, 1), namely, x =: x2 ≈ 0.533701 and
x =: x3 ≈ 0.811327. We will now show that

t0(x) > 3, x ∈ [0.5, 0.9]. (2.5)

Since x1 > 0.9, so θ3(x) > 0, for x ∈ [0.5, 0.9] and the inequality (2.5) is equivalent
to

4θ2(x) − 9θ3(x) > 0, x ∈ [0.5, 0.9].
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The above one can be equivalently written as

19x4 + 59x3 − 53x2 − 97x + 44 < 0, x ∈ [0.5, 0.9].
As the polynomial on the left hand of the above inequality has a unique zero x ≈
0.40928 in [0, 1], the above inequality is true, so is the inequality (2.5). Thus the
function � has no critical point in (0, 3) × (0, 1). Hence it is sufficient to show that
� > 0 on the boundary of [0, 3] × [0, 1]. We can easily check that the following
inequalities hold:

�(t, 0) = 4(48 − 32t + 9t2) ≥ 704

9
, t ∈ [0, 3],

�(t, 1) = 4(72 + 4t − 3t2) ≥ 228, t ∈ [0, 3],
�(0, x) = 96(2 + 8x − x2 − 6x3) ≥ 192, x ∈ [0, 1],

and
�(3, x) = 3

(

44 − 109x + 51x2 + 79x3 + 11x4
)

= 3
(

44(1 − x)3 + x(23 − 81x + 123x2) + 11x4
)

≥ 3

(

44(1 − x)3 + 1585

164
x + 11x4

)

> 0, x ∈ [0, 1].
Thus the proof of the proposition is completed. �
Proposition 2.3 Let � : [1, 4] × [0, 1] → R be a function defined by

�(t, x) := 16ψ1(x) + 8ψ2(x)t + 3ψ3(x)t
2, (2.6)

where for x ∈ [0, 1],
ψ1(x) := −2 + 27x + 21x2 − 37x3 + x4,

ψ2(x) := 10 − 12x − 9x2 + 20x3 + x4

and

ψ3(x) := x(3 − 5x − x2 − x3).

Then �(t, x) > 0 for 1 ≤ t ≤ 4 and 0 ≤ x ≤ 1.

Proof At first, note that the function ψ3 has a unique zero x =: x1 ≈ 0.51839 in
(0, 1). Since x1 ∈ (0.5, 0.6) and for x ∈ (0.5, 0.6),

ψ2(x) > 10 − 12 · (0.6) − 9 · (0.6)2 + 20 · (0.5)3 + (0.5)4 = 2.1225 > 0, (2.7)

it follows that

∂

∂t
�(t, x1) = 8ψ2(x1) �= 0.
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For x �= x1, (∂/∂t)�(t, x) = 0 occurs at

t = −4ψ2(x)

3ψ3(x)
=: t0(x).

We have
∂

∂x
�(t, x)

∣
∣
∣
t=t0(x)

= 16ψ4(x)

3ψ2
3 (x)

,

where
ψ4(x) := 3ψ ′

1(x)ψ
2
3 (x) − 2ψ ′

2(x)ψ2(x)ψ3(x) + ψ ′
3(x)ψ

2
2 (x)

= 300 − 1000x + 1737x2 − 4912x3 + 2009x4 + 13706x5 − 17777x6

+ 6596x7 − 1541x8 + 546x9 − 184x10 + 16x11, x ∈ (0, 1).

The polynomial ψ4 has a unique zero x =: x2 ≈ 0.388025 in (0, 1). Since x1 > 0.5,
so ψ3(x) > 0, for x ∈ (0, 0.5). Additionally, since ψ2 has no zero in (0, 1), the
inequality (2.7) is true on [0, 1]. Thus t0(x) < 0 for x ∈ (0, 0.5) and in consequence,
the function � has no critical point in (1, 4) × (0, 1). Hence it is sufficient to show
that � > 0 on the boundary of [1, 4] × [0, 1]. We can easily check that the following
inequalities hold:

�(t, 0) = −32 + 80t ≥ 48, t ∈ [1, 4],
�(t, 1) = 160 + 80t − 12t2 ≥ 228, t ∈ [1, 4],
�(4, x) = 96(3 + 2x − 2x2) ≥ 288, x ∈ [0, 1],

and �(1, x) = 3
(

16 + 115x + 83x2 − 145x3 + 7x4
)

= 3
(

16 + 53x2 + 7x4 + 115x(1 − x2) + 30x2(1 − x)
)

≥ 48, x ∈ [0, 1].
Thus the proof of the proposition is completed. �
Proposition 2.4 Let 
 : [3, 4] × [0, 1] → R be a function defined by


(t, x) := 48φ1(x) + 8φ2(x)t − 3φ3(x)t
2, (2.8)

where for x ∈ [0, 1],

φ1(x) := 1 + 7x + x2 − 3x3,

φ2(x) := 5 − 19x + 10x2 + 5x3 + x4

and

φ3(x) := x(−3 + 5x + x2 + x3).

Then 
(t, x) > 0 for 3 ≤ t ≤ 4 and 0 ≤ x ≤ 1.
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Proof Since φ3 = −ψ3, by the part of proof of Proposition 2.3, we at once have

∂

∂t

(t, x1) = 8φ2(x1) �= 0.

For x �= x1, (∂/∂t)
(t, x) = 0 occurs at

t = 4φ2(x)

3φ3(x)
=: t0(x).

We have

∂

∂x

(t, x)

∣
∣
∣
t=t0(x)

= 16φ4(x)

3φ2
3(x)

,

where

φ4(x) := 9φ′
1(x)φ

2
3(x) + 2φ′

2(x)φ2(x)φ3(x) − φ′
3(x)φ

2
2(x)

= 75 − 250x + 59x2 + 532x3 − 893x4 + 558x5 − 269x6 + 844x7

− 366x8 + 16x9 − 46x10 + 4x11, x ∈ (0, 1).

The polynomial φ4 has exactly two zeros in (0, 1), namely x =: x2 ≈ 0.414034
and x =: x3 ≈ 0.663886. We have t0(x2) ≈ 3.59845 and t0(x3) = −2.95522.
Therefore the function 
 has a unique critical point (t0(x2), x2) in (3, 4)× (0, 1). For
(t, x) ∈ [3.58, 3.61] × [0.39, 0.43] by simple computing, we show that 
(t, x) > 0.
Thus, particularly 
(t0(x2), x2) > 0. Therefore it is sufficient to show that 
 > 0
on the boundary of [3, 4] × [0, 1]. We can easily check that the following inequalities
hold:


(t, 0) = 8(6 + 5t) ≥ 168, t ∈ [3, 4],

(t, 1) = 4

(

72 + 4t − 3t2
)

≥ 160, t ∈ [3, 4],

(4, x) = 16

(

13 − 8x + 8x2 − 2x3 − x4
)

≥ 16(2 + 8x2) ≥ 32, x ∈ [0, 1],

and


(3, x) = 3
(

56 − 13x + 51x2 − 17x3 − x4
)

≥ 3(25 + 51x2) ≥ 75, x ∈ [0, 1].

Thus the proof of the proposition is completed. �
Finally, we estimate now the third-order Hankel determinant H3,1( f ) for f ∈ S∗.

Theorem 2.5 If f ∈ S∗ is the form (1.1), then

|H3,1( f )| ≤ 8

9
. (2.9)
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Proof Let f ∈ S∗ be of the form (1.1). Then by (1.2) we have

z f ′(z) = f (z)p(z), z ∈ D, (2.10)

for some function p ∈ P of the form (1.5). Since the class P is invariant under the
rotations, we may assume that c := c1 ∈ [0, 2] (e.g., [5, Vol. I, p. 80, Theorem 3]).
Putting the series (1.1) and (1.5) into (2.10) and by equating the coefficients we get

a2 = c, a3 = 1

2

(

c2 + c2
)

, a4 = 1

6

(

c3 + 3cc2 + 2c3
)

and

a5 = 1

24

(

c4 + 6c2c2 + 8cc3 + 3c22 + 6c4
)

.

Hence

H3,1( f ) = −a33 + 2a2a3a4 − a24 − a22a5 + a3a5

= 1

144

(

−c6 + 3c4c2 − 9c32 + 8c3c3 + 24cc2c3 − 16c23

+18c2c4 − 9c2c22 − 18c2c4
)

.

Now using the equalities (2.1)–(2.3), by straightforward algebraic computation we
have

H3,1( f ) = 1

1152
(c2 − 4)

[

γ1(c, ζ ) + γ2(c, ζ )η + γ3(c, ζ )η2 + (c, ζ, η)ξ
]

,

(2.11)
where for ζ, η, ξ ∈ D,

γ1(c, ζ ) := c2ζ
[

−3c2 +
(

44 − 5c2
)

ζ +
(

40 − c2
)

ζ 2
]

− c2
(

4 − c2
)

ζ 4,

γ2(c, ζ ) := −4c
(

1 − |ζ |2
) [

3c2 + 4
(

5 + c2
)

ζ −
(

4 − c2
)

ζ 2
]

,

γ3(c, ζ ) := 32
(

4 − c2
)

− 28|ζ |2
(

4 − c2
)

− 36c2ζ
(

1 − |ζ |2
)

− 4
(

4 − c2
)

|ζ |4,

and

(c, ζ, η) := 36
[

c2 +
(

c2 − 4
)

ζ
] (

1 − |ζ |2
) (

1 − |η|2
)

.
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Hankel Determinant of the Third Kind for Starlike... 775

Setting x := |ζ | ∈ [0, 1], y := |η| ∈ [0, 1] and taking into account that |ξ | ≤ 1, from
(2.11) we get

|H3,1( f )|
≤ 1

1152

(

4 − c2
) [

|γ1(c, ζ )| + |γ2(c, ζ )||η| + |γ3(c, ζ )||η|2 + |(c, ζ, η)|
]

≤ 1

1152
(4 − c2)F(c, x, y),

(2.12)
where

F(c, x, y) := f1(c, x) + f2(c, x)y + f3(c, x)y
2 + f4(c, x)

(

1 − y2
)

, (2.13)

with

f1(c, x) := c2x
[

3c2 + (44 − 5c2)x + (40 − c2)x2
]

+ c2(4 − c2)x4,

f2(c, x) := 4c(1 − x2)
[

3c2 + 4(5 + c2)x + (4 − c2)x2
]

,

f3(c, x) := 32(4 − c2) + 28x2(4 − c2) + 36c2x(1 − x2) + 4(4 − c2)x4

and

f4(c, x) := 36
[

c2 + (4 − c2)x
]

(1 − x2).

Now, we will show that
(4 − c2)F(c, x, y) ≤ 1024 (2.14)

for c ∈ [0, 2], x ∈ [0, 1] and y ∈ [0, 1].
I. Assume first that c ∈ [1, 2]. Then by (2.13) we have

F(c, x, y)

≤ f1(c, x) + c f2(c, x)y + f3(c, x)y
2 + f4(c, x)

(

1 − y2
)

= f1(c, x) + f4(c, x) + c f2(c, x)y + ( f3(c, x) − f4(c, x))y
2

=: F1(c, x, y).

(2.15)

(a) Consider the case f3(c, x) ≥ f4(c, x) in [1, 2] × [0, 1]. Let

�1 := {(c, x) ∈ [1, 2] × [0, 1] : f3(c, x) ≥ f4(c, x)} .

By (2.15) we get

F1(c, x, y) ≤ F1(c, x, 1)

= f1(c, x) + c f2(c, x) + f3(c, x), (c, x) ∈ �1, y ∈ [0, 1].

123



776 O. S. Kwon et al.

Set t := 4 − c2. Clearly, t ∈ [0, 3]. Define

F̃1(t, x) := t F1(
√
4 − t, x, 1), (

√
4 − t, x) ∈ �1.

A simple computing yields

F̃1(t, x) = t
{

(4 − t)x
[

12 − 3t + (24 + 5t)x + (36 + t)x2
]

+ t(4 − t)x4 + 32t + 28t x2 + 36(4 − t)x(1 − x2) + 4t x4

+4(4 − t)(1 − x2)
[

12 − 3t + 4(9 − t)x + t x2
]}

= 96(2 + 8x − x2 − 6x3)t − 4(16 + 67x − 34x2 − 53x3 + 2x4)t2

+ (12 + 19x − 21x2 − 17x3 + 3x4)t3, (
√
4 − t, x) ∈ �1.

Hence and by Proposition 2.2 we have

∂

∂t
F̃1(t, x) = �(t, x) > 0, (

√
4 − t, x) ∈ �1,

where the function � is defined by (2.4). Thus the function [0, 3] � t �→ F̃1(t, ·) is
increasing, and therefore we have

F̃1(t, x) ≤ F̃1(3, x) = 9
(

36 + 45x + 41x2 − 31x3 + x4
)

< 1024, x ∈ [0, 1].
(2.16)

Indeed, the last inequality is true since, as easy to verify the inequality

−700 + 405x + 369x2 − 279x3 + 9x4 < 0, x ∈ [0, 1],

holds. Thus the inequality (2.16) confirms the inequality (2.14).
(b) Consider the case f3(c, x) < f4(c, x) in [1, 2] × [0, 1]. Let

�2 := {(c, x) ∈ [1, 2] × [0, 1] : f3(c, x) < f4(c, x)} .

Since f2(c, x) ≥ 0 in [1, 2] × [0, 1], so

σ := −c f2(c, x)

2( f3(c, x) − f4(c, x))
≥ 0, (c, x) ∈ �2.

If σ ≥ 1, i.e., if c f2(c, x) + 2( f3(c, x) − f4(c, x)) ≥ 0, then

F1(c, x, y) ≤ F1(c, x, 1)

= f1(c, x) + c f2(c, x) + f3(c, x), (c, x) ∈ �2, y ∈ [0, 1].

and repeating the argumentation of Part (a) we get the inequality (2.14).
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If σ < 1, i.e., if c f2(c, x) + 2( f3(c, x) − f4(c, x)) < 0, then

F1(c, x, y) ≤ F1(c, x, σ ) = −c2 f 22 (c, x)

4( f3(c, x) − f4(c, x))
+ f1(c, x) + f4(c, x)

≤ [−2( f3(c, x) − f4(c, x))]2

4( f3(c, x) − f4(c, x))
+ f1(c, x) + f4(c, x)

≤ f1(c, x) + f3(c, x) + 2 f4(c, x) =: F2(c, x), (c, x) ∈ �2.

Set t := c2. Clearly, t ∈ [1, 4]. Define

F̃2(t, x) := (4 − t)F2(
√
t, x), (

√
t, x) ∈ �2.

A simple computing yields

F̃2(t, x) = (4 − t)
{

t x
[

3t + (44 − 5t)x + (40 − t)x2
]

+ t(4 − t)x4

+ 32(4 − t) + 28x2(4 − t) + 36t x(1 − x2) + 4(4 − t)x4

+72 [t + (4 − t)x] (1 − x2)
}

= −
{

−64
(

8 + 18x + 7x2 − 18x3 + x4
)

+ 16
(

−2 + 27x + 21x2 − 37x3 + x4
)

t

+ 4
(

10 − 12x − 9x2 + 20x3 + x4
)

t2

+x
(

3 − 5x − x2 − x3
)

t3
}

, (
√
t, x) ∈ �2.

Hence and by Proposition 2.3 we have

∂

∂t
F̃2(t, x) = −�(t, x) < 0, (

√
t, x) ∈ �2,

where the function � is defined by (2.6). Thus the function [1, 4] � t �→ F̃2(t, ·) is
decreasing, and therefore we have

F̃2(t, x) ≤ F̃2(1, x) = 9
(

56 + 85x + 17x2 − 71x3 + 5x4
)

< 1024, x ∈ [0, 1].
(2.17)

Indeed, the last inequality is true since, as easy to verify the inequality

−520 + 765x + 153x2 − 639x3 + 45x4 < 0, x ∈ [0, 1],

holds. Thus the inequality (2.17) confirms the inequality (2.14).
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II. Assume that c ∈ (0, 1). Then by (2.13) we have

F(c, x, y)

≤ f1(c, x) + 1

c
f2(c, x)y + f3(c, x)y

2 + f4(c, x)
(

1 − y2
)

= f1(c, x) + f4(c, x) + 1

c
f2(c, x)y + ( f3(c, x) − f4(c, x))y

2

=: F3(c, x, y).

(2.18)

(a) Consider the case f3(c, x) ≥ f4(c, x) in (0, 1) × [0, 1]. Let

�3 := {(c, x) ∈ (0, 1) × [0, 1] : f3(c, x) ≥ f4(c, x)} .

By (2.18) we get

F3(c, x, y) ≤ F3(c, x, 1)

= f1(c, x) + 1

c
f2(c, x) + f3(c, x), (c, x) ∈ �3, y ∈ [0, 1].

Set t := 4 − c2. Clearly, t ∈ (3, 4). Define

F̃3(t, x) := t F3(
√
4 − t, x, 1), (

√
4 − t, x) ∈ �3.

A simple computing yields

F̃3(t, x) = t
{

3(4 − t)2x + (4 − t)(24 + 5t)x2 + (4 − t)(36 + t)x3 + (4 − t)t x4

+ 4(1 − x2)
[

12 − 3t + 4(9 − t)x + t x2
]

+32t + 28t x2 + 36(4 − t)x(1 − x2) + 4t x4
}

= 48
(

1 + 7x + x2 − 3x3
)

t + 4
(

5 − 19x + 10x2 + 5x3 + x4
)

t2

− x
(

−3 + 5x + x2 + x3
)

t3, (
√
4 − t, x) ∈ �3.

Hence and by Proposition 2.4 we have

∂

∂t
F̃3(t, x) = 
(t, x) > 0, (

√
4 − t, x) ∈ �3,

where the function 
 is defined by (2.8). Thus the function (3, 4) � t �→ F̃1(t, ·) is
increasing, and therefore we have

F̃3(t, x) ≤ 512 + 320x + 512x2 − 320x3 ≤ 1024. (2.19)
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Indeed, the last inequality is true since so is the following one

−512 + 320x + 512x2 − 320x3 = (1 − x2)(320x − 512) ≤ 0, x ∈ [0, 1].

Thus the inequality (2.19) confirms the inequality (2.14).
(b) Consider the case f3(c, x) < f4(c, x) in (0, 1) × [0, 1] which is equivalent to

32 − 8c2 + 28x2 − 7c2x2 + 9c2x − 9c2x3 + 4x4 − c2x4

< 9c2 − 9c2x2 + 36x − 9c2x − 36x3 + 9c2x3
(2.20)

for c ∈ (0, 1) and x ∈ [0, 1]. Note that

17 − 18x − 2x2 + 18x3 + x4 > 0, x ∈ [0, 1].

Thus the inequality (2.20) can be written as

c2 >
32 − 36x + 28x2 + 36x3 + 4x4

17 − 18x − 2x2 + 18x3 + x4
, c ∈ (0, 1), x ∈ [0, 1]. (2.21)

However,
32 − 36x + 28x2 + 36x3 + 4x4

17 − 18x − 2x2 + 18x3 + x4
≥ 1, x ∈ [0, 1]. (2.22)

Indeed, the above inequality is equivalent to

32 − 36x + 28x2 + 36x3 + 4x4 ≥ 17 − 18x − 2x2 + 18x3 + x4, x ∈ [0, 1],

which by simplifying is equivalent to the true inequality

(x − 1)4 + 10x3 + 4(x − 1)2 + 6x ≥ 0, x ∈ [0, 1].

Thus by (2.21) and (2.22) it follows that c ≥ 1 which contradicts the assumption.
III. At the end assume that c = 0. Then by (2.13) we have

F(0, x, y) = 16
(

(8 − 9x + 7x2 + 9x3 + x4)y2 + 9x(1 − x2)
)

≤ 16(8 + 7x2 + x4) ≤ 256, x ∈ [0, 1], y ∈ [0, 1].

Summarizing, from all considering cases it follows that the inequality (2.14) holds
which together with (2.12) shows (2.9). �
Remark 2.6 Although the constant 8/9 improves essentially the estimates found in [1]
and [19], it is not the best possible. To find the sharp estimate of theHankel determinant
H3,1( f ) for starlike functions is still an open problem.
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