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Abstract 
Blast furnace ironmaking is the largest energy-consuming and greenhouse gas-emitting process in the iron and steel indus-
try. As a key indicator of blast furnace operation status and energy consumption level, silicon content prediction has been 
very important for blast furnace operators to save energy and ensure stable ironmaking production. Traditional data-driven 
methods usually use feature selection when building models, which cannot guarantee high accuracy and generalization ability 
of the model due to the high correlation between features. To solve this problem, we propose an ensemble model based on 
multiobjective differential evolution, which consists of two stages. In the first stage, a multiobjective differential evolution is 
employed to evolve the input feature weights of each base-learner, and feature pruning is embedded in the evolution process to 
achieve sparse selection of all available features for the base-learners. In the second stage, a two-layer ensemble method based 
on autoencoder and extreme learning machine is proposed to achieve nonlinear ensemble of good candidate base-learners. 
Experimental results based on actual production data show that the developed model outperforms previous studies and can 
achieve more accurate values of silicon content, which in turn helps to reduce energy consumption in actual production.

Graphical Abstract
The modelling process of the proposed silicon content prediction model consists of two stages. In the first stage, a multi-
objective algorithm is employed to evolve the input feature weights of each base-learner. In the second stage, a two-layer 
ensemble method is proposed to achieve nonlinear ensemble the base-learners.
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Introduction

A typical blast furnace ironmaking system is shown in 
Fig. 1, which includes many subsystems such as feeding 
system, hot stove system, iron slag system, and so forth [1]. 
In the ironmaking process, raw materials containing iron ore 
are loaded from the top and move downward, while high-
temperature hot air mixed with pulverized coke is blown in 
from the bottom and moves upward [1]. After some heat and 
mass transfer, chemical reactions, and phase changes [2], the 
main product, i.e., pig iron and two by-products, namely slag 
and blast furnace gas, are obtained.

In the era of emission peak and carbon neutrality, blast 
furnace ironmaking, as one of the processes with the highest 

energy consumption and carbon dioxide emissions in iron 
&steel companies, is the key to achieving green, healthy 
and sustainable development. Many companies are there-
fore committed to intelligent blast furnace ironmaking. An 
intelligent blast furnace system based on data-driven tech-
nologies consists of components such as key indicators pre-
diction, blast furnace stability evaluation, and blast furnace 
operation optimization. The relationship of these compo-
nents is shown in Fig. 2. It can be seen that the key indicator 
prediction models are at the center, as these models can not 
only predict important indicators during the blast furnace 
operation process, but also serve as a basis for other models.

The prediction of silicon content in hot metal is a research 
hotspot in the field of key indicators prediction because of 
its close correlation with the thermal state of BF, which is 
crucial for the smooth and efficient operation of the smelting 
process [3, 4]. A decreasing [Si] indicates the blast furnace 
is cooling, which can lead to industrial accidents and blast 
furnace shutdowns; while a high [Si] indicates excessive 
generation of heat, wasting unnecessary fuels and raw mate-
rials [2]. Both result in additional CO2 emissions. If silicon 
content can be accurately predicted, blast furnace opera-
tors can take timely action to avoid fluctuations and reduce 
unnecessary greenhouse gas emissions.

Since blast furnace ironmaking is a complex industrial 
process involving many systems, building an accurate mech-
anistic model of the process is very difficult. Therefore, simi-
lar to other scenarios of modern industrial production [5–8], 
data-driven modeling approaches have been investigated 
by many scholars in the field of [Si] prediction [9]. Yang 
et al. [10] proposed a soft-sensing model based on extreme 
learning machine (ELM) that utilized a pruning algorithm to 
optimize the weights of original ELM. Considering that dif-
ferent blast furnace operational conditions may occur in the 
ironmaking process and each condition has its own charac-
teristics, Hua et al. employed hard C-means clustering [11] 

Fig. 1  A simple diagram of the blast furnace ironmaking

Fig. 2  The main components 
of an intelligent blast furnace 
system
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to separate the data into different groups and trained multi-
ple support vector machines (SVRs) as predictors on these 
data groups. To have a more comprehensive monitoring of 
molten iron quality, Zhou et al. [12] presented a multioutput 
model for the multivariate prediction of quality parameters 
of molten iron based on online sequential random vector 
functional-link networks.

A point worth noting is that all of these methods men-
tioned above, as well as many other methods [3, 13, 14], 
employ Pearson correlation coefficient (PCC) or principal 
component analysis (PCA) to pre-process the input data 
with a large number of features, both of which expect a 
subset to represent the entire original dataset (as shown in 
Fig. 3a), when modeling the variation pattern of silicon con-
tent. Normally, PCC and PCA can serve to reduce model 
complexity, speed up training, and improve accuracy [11, 
15]. However, due to the characteristics of high vanadium-
titanium blast furnaces (HVT-BFs) that differ from normal 
BFs, these feature selection strategies may not perform as 
well as usual because they only take into account the linear 
relationship between variables. In addition to PCC and PCA, 
human experience and process knowledge are also used in 
variable selection [15, 16], but these methods are not uni-
versally applicable to the data-driven models because each 
blast furnace has its own unique properties. In addition, due 
to the high TiO2 of the iron ore used in HVT-BFs, the smelt-
ing process is prone to phenomena such as slag stickiness 
and slag–iron separation issues. These issues make HVT-
BFs more prone to fluctuations compared to common blast 
furnaces.

In order to fully tap the information contained in the data 
of BF production process, this paper proposes an ensem-
ble learning method based on multiobjective optimiza-
tion, which takes neural network as its base-learner. In the 
proposed evolutionary ensemble neural networks (EENN) 

model, the weights of input features of base-learners are 
taken as decision variables in the multiobjective evolution-
ary algorithm (MOEA). In combination with the feature 
pruning strategy, a set of base-learners with different input 
features can be obtained through the optimization of the 
MOEA. Furthermore, a nonlinear ensemble method based 
on autoencoder (AE) and extreme learning machine (ELM) 
[17] is proposed to construct the ensemble model. The main 
contributions of this paper can be summarized as follows. 

1. Feature weight evolution (FWE) and feature pruning 
(FP) are proposed to deal with the input feature selec-
tion problem of [Si] prediction models in HVT-BFs. 
Through the application of FWE and FP, the derived 
ensemble model is prevented from being too redundant 
while allowing all features to play a role in it.

2. A nonlinear ensemble method based on AE and ELM is 
proposed for the integration of the base-learners gener-
ated through the co-evolutionary approach. Compared 
to linear methods such as weighted average, this method 
can better discover and exploit the connections between 
base-learners to enable better performance of the ensem-
ble model.

3. Comprehensive experiments are conducted on a real-
world industrial dataset to investigate the effects of dif-
ferent input feature selection methods on the modeling 
of [Si]. The results show that the commonly used PCC 
and PCA methods do not always perform well.

The remaining part of this paper is organized as follows. 
Section 2 provides some basic concepts about evolutionary 
ensemble learning as well as some other related work. The 
proposed prediction model is described in details in Sect. 3. 
In Sect. 4, some experiments and discussion are presented. 
Finally, Sect. 5 concludes the paper.

Related Works

Multiobjective Differential Evolution

Differential evolution (DE), proposed by Storn and Price, is 
a robust population-based global optimization method [18]. 
Because of its vector-based evolution operators, DE is par-
ticularly suitable for solving real-valued problems [19]. One 
of the most widely used DE variants is DE/rand/1/bin, which 
generates offspring individuals as follows: 

1. Mutation: For a individual xi,G (assuming it is a 
D-dimensional vector) in the G-th generation, a mutant 
vector is generated according to 

Feature selection

Modeling

Process Data

Selected Features

Abandoned features

Prediction

(a) Common modelling processes

Process Data Prediction

Evolutionary Ensemble Neural Networks

Base-learners

generation

(FWE)

Nonlinear

ensemble

(AE-ELM)

(b) Modelling processes of EENN

Fig. 3  Modeling process for EENN and common prediction models. 
EENN does not rely on a separate feature selection process and can 
use all features
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 where F is the differential weight, xp,G , xq,G , and  xr,G 
are three individuals randomly selected from the G-th 
generation population and satisfy i ≠ p ≠ q ≠ r.

2. Crossover: The offspring individual ui,G+1 corresponding 
to xi,G : 

 is generated, where 

 In Equation (3), d = 1, 2,⋯ ,D , uniform(d) returns a 
uniform random number in the range [0, 1] , CR is the 
crossover constant and rand(i) returns a random number 
∈ {1, 2,⋯ ,D}.

Multiobjective differential evolution (MODE) is an extended 
version of DE for multiobjective optimization problems [20, 
21] and has been successfully applied in many fields [22]. 
In the proposed EENN, a MODE combining the main algo-
rithmic flow of NSGA-II and the evolution operators of DE 
is adopted as the optimization method for generating base-
learners. The general flow of the utilized MODE is shown 
in Fig. 4.

Evolutionary Ensemble Learning

As a class of powerful global optimization methods, pop-
ulation-based evolutionary algorithms have been widely 
used in various practical applications [23]. Among them, 

(1)vi,G+1 = xp,G + F ⋅

(
xq,G − xr,G

)

(2)ui,G+1 =
(
u1i,G+1, u2i,G+1,⋯ , uDi,G+1

)

(3)udi,G+1 =

⎧

⎪

⎨

⎪

⎩

vdi,G+1, if(uniform(d) ≤ CR)or(d = rand(i))

xdi,G, if(uniform(d) > CR)and(d ≠ rand(i))

evolutionary ensemble learning (EEL) is a typical applica-
tion that exploits the strong search ability of evolutionary 
algorithms for constructing ensemble models and has dem-
onstrated excellent performance in many real-world prob-
lems [24, 25]. EEL usually consists of two phases: base-
learners generation and base-learners integration.

In the first phase, base-learners generation is modeled 
as a two-objective optimization problem that is solved by 
MOEAs, while base-learners are encoded as individuals 
in the algorithm population. To ensure that base-learners 
have high accuracy, the first objective of the multiobjective 
optimization problem is prediction accuracy. The second 
objective could be the diversity, complexity, or sparsity of 
base-learners.

Upon completion of the first phase, a set of base-learners 
can be obtained and used in full or in part for subsequent 
ensemble. The most common ensemble methods are simple 
average and weighted average.

Proposed Algorithm

From the modeling process shown in Fig. 3b, it can be seen 
that the proposed model does not rely on a separate feature 
selection method, but takes all available features as inputs. 
The proposed FWE takes these inputs as the basis for gen-
erating multiple base-learners using MODE combined with 
back-propagation (BP) algorithm. Thereafter, the obtained 
base-learners are combined in a nonlinear way. Several char-
acteristics of the proposed algorithm are shown below. 

1. The weights of the input features are taken as individu-
als in the MODE population to achieve the automatic 
selection of input feature weights for each base-learner.

2. Before training the base-learner, the training data are 
selected and scaled according to the corresponding fea-
ture weights. Therefore, the training data vary for each 
base-learner.

3. A nonlinear ensemble method based on AE and ELM is 
employed instead of the commonly used linear ensemble 
method. And all individuals in the final population are 
used instead of only Pareto individuals.

The rest part of this section first gives the overall framework 
of the algorithm, followed by some detailed explanations.

Algorithm Framework

Algorithm 1 presents the framework of our proposed algo-
rithm. Lines 1-16 are the base-learners generation part. The 
main process of this part is the same as that of NSGA-II 
except the Decoding operation is required before evaluating 
the prediction accuracy of individuals. The individuals in Fig. 4  Flow chart of multiobjective differential evolution
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the population are one-dimensional real vectors of length n, 
where each value represents the weight of a corresponding 
input feature. Since the individuals are vectors encoded by 
real numbers, Mutation and Crossover operations from DE/
rand/1/bin [18] are employed to generate new individuals.

After the base-learners generation part is completed, all 
the individuals in the final population P are used for subse-
quent ensemble, as shown in Line 17. These individuals are 
first decoded into neural networks; then, some key features 
of the output of these base-learners are extracted by AE and 
finally combined using ELM.

Encoding and Decoding of Individuals

The encoding and decoding of individuals in the popu-
lation are depicted in Fig. 5. As mentioned in Sect. 3.1, 
the individuals in the population are one-dimensional real 
vectors ( x in Fig. 5). In order to evaluate their prediction 
accuracy and individual diversity, they need to be decoded 
into corresponding neural networks first. The Decoding 
operation is shown in Algorithm 2.

Fig. 5  The encoding and 
decoding of an individual. In 
this example, the dataset Ω has 
6 samples and 4 input features. 
The shaded area indicates the 
features used and the Ω̂

sub
 is the 

final dataset used to train this 
network
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The first step in training a neural network is to deter-
mine its structure and the training data to be used, as well 
as some other hyperparameters, such as the learning rate 
� . In the proposed algorithm, the base-learners are all neu-
ral networks with a single hidden layer, which means there 
are three structural parameters to be determined, i.e., how 
many nodes there are in the input, hidden, and output layers, 
respectively. The number of output layer nodes equals to 
one, which is in line with the problem studied in this paper, 
while the number of hidden layer nodes is a pre-defined 
value h. As for the number of input layer nodes, it is equal 
to the number of non-zero values remaining in the individual 
x after FeaturePruning operation.

As illustrated in Fig. 5, obtaining training data for the 
individual x involves a two-step process. First, the data cor-
responding to the retained features are determined from the 
feature pruning results. In the instance illustrated in Fig. 5, 
features 2 to 4 are used. Second, the corresponding data are 
scaled to get the final data used to train this neural network. 
This increases the diversity of the base-learners at both fea-
ture and data levels.

After obtaining all the required parameters and corre-
sponding training data, a neural network model M can be 
trained using back-propagation (BP) algorithm and evaluated 
on the training set. The evaluation results for M are consid-
ered to be the evaluation results for individual x.

Performance Metrics

The optimization objectives of the base-learners, i.e., the 
two objectives of the MOEA, are prediction accuracy and 
individual diversity, respectively.

Prediction Accuracy

The mean square error (MSE) is employed to evaluate the 
accuracy of prediction results of base-learners. Therefore, 
the prediction accuracy of i-th base-learner is defined as:

where L represents the total number of samples, yl and ŷl are 
the true and predicted values of the l-th sample, respectively.

Individual Diversity

The well-tested idea, negative correlation learning (NCL) 
[26], is employed as the second objective to promote the 
diversity among base-learners. Its definition is shown below:

where yi
l
 and yj

l
 denote the predicted values of the i-th and 

j-th individuals in the population U  for the l-th sample, 

(4)PAi =
1

L

L∑

l=1

(
yl − ŷl

)2

(5)IDi =

L∑

l=1

|
||
yi
l
− yU

l

|
||

(
2N∑

j=1,j≠i

|
||
y
j

l
− yU

l

|
||

)
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respectively, and yU
l
 is the average output of all individuals 

for the l-th sample.
After evaluating all the 2N individuals in the population 

U , the best N individuals are selected from them as the next 
generation according to the GetNextPopulation operation 
(Line 16 in Algorithm 1).

Nonlinear Ensemble Method Based on AE and ELM

Most evolutionary ensemble learning algorithms use only 
Pareto individuals in the ensemble phase [27, 28], but 
because all individuals in the population are generated col-
laboratively, using only Pareto individuals for ensemble runs 
the risk of wasting information. In addition, in the ensemble 
learning scenario, since the base-learners are trained on the 
same training set, the outputs of the obtained base-learners 
are inevitably linearly correlated with each other even with 
various measures to enhance their diversities. This leads to 
a very redundant input to the final ensemble model, which 
in turn affects its accuracy and generalization ability. To 
address these issues, an ensemble approach based on AE 
and ELM (referred to as AE-ELM) is proposed in this paper.

Commonly used autoencoders usually have a three-layer 
structure, including an input layer, a hidden layer, and an 
output layer. And the number of nodes in these three lay-
ers satisfies: input layer = output layer > hidden layer. Due 
to the special structure of autoencoders, it is often used 
to reduce data dimensionality and extract key features in 
unsupervised learning. In the proposed ensemble approach, 
the output of each base-learner is taken as an input to the 
AE, which can then extract a number of key features from 
the outputs of numerous base-learners. These extracted key 

features are used as inputs to the ELM for final prediction. In 
summary, the work to be done in the second phase consists 
of the following 3 steps: 

Fig. 6  Modeling process of the 
proposed silicon content predic-
tion model

Table 1  All the candidate input features for modeling

a  This variable represents the value of the change in titanium content 
in pig iron
b  The average of temperatures measured by thermocouples installed 
in the furnace wall

Input feature type Variable name

Feeding Burden ratio
Top gas treatment Blast furnace gas [CO], Gas utilization rate

Blast furnace gas [CO
2
]

Hot blast Blast kinetic energy, Blast volume
Actual air velocity, Standard air velocity
Flow rate of oxygen, Hot air temperature
Oxygen-enriched pressure,
Gas permeability, Pressure differential
Gas volume of bosh, Bosh gas index
Hot air pressure

Coal injection Coal injection rate, Coal injection volume
Coal ratio, Ratio of coal to coke

Hearth Pig Iron [C], Pig Iron [S]
Slag [TiO

2
 ], Slag [SiO

2
 ], Slag [Al

2
O

3
]

D-value of Pig Iron  [Ti]a

Others Average top gas temperature
Range of top gas temperature
Average throat temperature
Range of throat temperature
Adiabatic flame temperature
Average hearth  temperatureb

Average shaft  temperatureb

Top pressure
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1. All individuals in the final population of the base-learn-
ers generation phases are decoded into corresponding 
BP-NNs.

2. The outputs of these BP-NNs are processed by a AE to 
extract compact and representative features.

3. The ELM is employed to model the extracted key fea-
tures and construct an ensemble model to obtain the final 
outputs.

Figure  6 illustrates the construction process of EENN, 
assuming a total of D input features. In most existing predic-
tion models, a subset of the D-dimensional input variables 
must first be selected for modeling, which means that the 
information contained in the features that are not selected 
cannot be utilized by the model. However, the model 
designed in this paper is different in that EENN accepts all 
the features and generates a set of high-quality base-learners 
using feature weight evolution. These base-learners have dif-
ferent input features and training data, which allow them to 
fully mine the knowledge in the process data (i.e., D-dimen-
sional input variables). Thus, the purpose of FWE is not to 
select a few important features, but to enhance the quality of 
base-learners. The outputs of these base-learners are further 
processed by the AE-ELM ensemble approach to obtain the 
final model. Thus, as a whole, EENN can be viewed as a 
model that takes all D features as inputs to make predictions 
about silicon content.

Supplementary Information

GetNextPopulation in Algorithm 1 is from NSGA-II with-
out any modification. Considering the limited space of the 
article, no further explanation is given in the text. Interested 
readers can find detailed information about this method in 
the literature [29].

Experimental Studies

Experiment Preparation

Dataset

The data used are taken from a blast furnace at a major iron 
&steel company in China during the first half of 2021. The 
operation of the blast furnace has been relatively stable over 
this period, so the dataset is representative of typical operat-
ing conditions of the blast furnace. This dataset contains a 
total of 1950 samples, each of them consists of one target 
variable and 34 input variables. The target variable is [Si], 
while all the candidate input features are listed in Table 1. 
There are three main sources of the data: 

1. Measured directly by sensors. For example, Hearth tem-
perature is measured by thermocouples installed in the 
furnace wall; Blast Furnace Gas [CO] is measured by 
sensors installed at the top of the blast furnace.

2. Calculated by relevant formulas or mechanism models 
embedded in the control system, e.g., Adiabatic Flame 
Temperature and Gas Volume of Bosh.

3. Obtained from assay results of molten iron samples or 
slag samples, e.g., Pig Iron [C] and Slag [Al2O3].

In addition, some variables such as Gas Utilization Rate 
are also included in the input features. Although it is deter-
mined by Blast Furnace Gas [CO] and Blast Furnace Gas 
[CO2 ], it can be viewed as a processed high-level feature. 
The use of such features can improve the richness of the 
input features and thus enhance the performance of the 
model.

As did in some literatures, those variables with a PCC 
greater than 0.3 with silicon content are selected as input fea-
tures for modeling. The variables in the dataset used in this 
paper that fulfill this condition are bolded in Table 1. Note that 
some variables that are commonly thought to have a signifi-
cant effect on [Si], such as Coal Rate, are not bolded. This is 
because each blast furnace has its own characteristics and even 
the same blast furnace cannot maintain the same smelting con-
ditions all the time. The correlation coefficients are calculated 
for the dataset used in the experiments, and variables such as 
Coal Rate have correlation coefficients less than 0.3 and are 
therefore not bolded.

It is important to note that as part of an actual project, the 
data used in this paper were determined in consultation with 
the on-site experts. And due to limitations in data collection 
capabilities, not all variables affecting [Si] can be included.

A total of 400 samples are randomly selected from the 
dataset as test data and the remaining 1550 samples are 
taken as training data. Before conducting experiments, the 
relevant data are normalized according to Equation (6).

Model Performance Evaluation

After the ensemble model is trained on the training set, its 
performance is evaluated on the test set data. Three model 
evaluation criteria, hit rate (HR), coefficient of determina-
tion (R2 ), and root mean square error (RMSE), are used, 
and their calculation formulas are shown in Equations (7), 
(8) and (9), where L is the number of samples, yl is the true 
value of the l-th sample, ŷl is the predicted value of the 
model for the l-th sample, and ȳ = 1

L

∑L

l=1
yl.

(6)xnorm =
x − xmin

xmax − xmin
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HR is a common criterion used by on-site operators to evalu-
ate the accuracy of silicon content prediction models and 
has also been used in many existing research papers. As for 
R 2 and RMSE, two commonly used criteria for evaluating 
regression models in the machine learning community are 
also employed to compare the performance of silicon con-
tent prediction models from different perspectives.

Experiments of Different Models with Different 
Inputs

This section gives the test results of some silicon content 
prediction models as well as an evolutionary ensemble 

(7)

Hl =

{
1, ||ŷl − yl

|
| < 0.1

0, others

HR =
1

L

(
L∑

l=1

Hl

)

(8)R2(y, ŷ) =1 −

∑L

l=1

�
yl − ŷl

�2

∑L

l=1

�
yl − ȳ

�2

(9)RMSE =

√√√
√1

L

L∑

l=1

(
yl − ŷl

)2

model with different input feature schemes. A brief descrip-
tion of these models is given below.

– HCM-SVRs: This model first divides the dataset into dif-
ferent groups using hard C-means clustering and then 
trains multiple SVRs on these data groups for subsequent 
prediction [11].

– Bagging-NN: The classical Bagging algorithm with neu-
ral networks as the base-learners [30].

– dGRU-RNN: An enhanced recurrent neural network that 
simplifies the update and reset gates in gated recurrent 
unit (GRU) into one disposition gate (dGRU) to achieve 
simpler structure and higher efficiency [3].

– Modified-ELM: An improved ELM algorithm that 
employs a modified pruning method to optimize the 
weights of original ELM [10].

– NEA-ANCL: A niching evolutionary ensemble algorithm 
with adaptive negative correlation learning (ANCL). The 
unique feature of this algorithm is the modified dynami-
cal fitness sharing method to preserve the diversity of 
population and ANCL to balance the accuracy and diver-
sity of base-learners [31].

The three input feature schemes used in the experiments 
are all features, PCA features, and PCC features. In PCA 
features, the original 34 features are processed by PCA. And 
10 principal components are retained as the final inputs, with 
a combined explained variance ratio of 91.25%. For PCC 
features, the correlation coefficient between each feature in 

Table 2  Test results on the 
prediction accuracy of some 
existing models when using 
different input feature schemes

1 The test results obtained when using all the input features
2 The test results obtained when using the PCA reduced-dimensional features
2The test results obtained when using some of the features selected by PCC

Prediction models Input features HR R2 RMSE

Mean Std Mean Std Mean Std

HCM-SVRs All features1 9.00e-01 5.39e-03 6.56e-01 1.15e-02 6.14e-02 1.02e-03
PCA features2 8.97e-01 2.78e-03 6.11e-01 5.91e-03 6.53e-02 4.99e-04
PCC features3 8.92e-01 3.85e-03 6.38e-01 4.19e-03 6.30e-02 3.64e-04

Bagging-NN All features 9.12e-01 1.91e-03 6.72e-01 2.24e-03 5.99e-02 2.05e-04
PCA features 8.99e-01 1.90e-03 6.45e-01 2.05e-03 6.23e-02 1.80e-04
PCC features 8.82e-01 2.63e-03 6.31e-01 1.56e-03 6.36e-02 1.35e-04

dGRU-RNN All features 9.05e-01 7.02e-03 6.54e-01 1.18e-02 6.16e-02 1.04e-03
PCA features 8.90e-01 6.74e-03 6.12e-01 7.73e-03 6.52e-02 6.50e-04
PCC features 8.83e-01 4.29e-03 6.22e-01 6.29e-03 6.43e-02 5.32e-04

Modified-ELM All features 9.27e-01 1.23e-02 6.39e-01 1.07e-01 6.30e-02 9.15e-03
PCA features 9.04e-01 1.20e-02 6.58e-01 3.46e-02 6.17e-02 2.25e-03
PCC features 9.18e-01 1.27e-02 6.77e-01 4.21e-02 5.99e-02 4.24e-03

NEA-ANCL All features 8.91e-01 5.47e-03 6.41e-01 6.58e-03 6.27e-02 5.72e-04
PCA features 7.52e-01 8.19e-03 3.58e-01 1.60e-02 8.39e-02 1.04e-03
PCC features 8.79e-01 4.86e-03 6.03e-01 7.54e-03 6.59e-02 6.26e-04
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the original dataset and the silicon content is first calculated, 
and those features with a correlation coefficient greater than 
0.3 are used as inputs (bolded in Table 1).

Each experiment is run 30 times independently to ensure 
that the results obtained are credible. Table 2 shows the 

performance of different prediction models on the test data 
with different input feature schemes, in which the mean 
(Mean) and standard deviation (Std) of each evaluation cri-
terion are calculated. The larger Mean of HR and R 2 , the 
smaller Mean of RMSE, indicating the higher prediction 

Fig. 7  Boxplots of the test 
results on the performance of 
some existing models when 
using different input feature 
schemes. In the horizontal 
coordinate of each figure, ALL 
represents the test results using 
all of the input features, PCA 
represents the test results using 
the PCA features, and PCC 
represents the test results using 
the PCC features
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accuracy of the model; the smaller Std, the better stability 
of the model. In addition, the distribution of the results of 
these 30 repeated experiments for each model is shown in 
the boxplots in Fig. 7.

The best performance of each model under different input 
feature schemes is statistically analyzed from two aspects of 
accuracy and stability, and the results are shown in Table 3. 
As can be seen, the Mean count of All feature reaches 13, 
which means that when all the features are used for mod-
eling, these models tend to achieve higher accuracy. This 
result indicates that our inference that PCC and PCA do 
not perform as well as before in the HVT-BF scenario is 
correct, because some nonlinear information implied in the 
dataset may be lost in the process of linear data dimensional-
ity reduction. However, in terms of Std count, the opposite 
is true. When modeling with PCA features or PCC features, 
most of the models exhibited better robustness. Therefore, if 
the on-site operator has high requirements for model stabil-
ity, using PCC or PCA to pre-process data is still a reliable 
method.

Validation of the Proposed Strategies

The effectiveness of the proposed strategies in this paper 
is verified in this section. All statistical results in this sec-
tion are obtained from 30 independent experiments, and the 
Wilcoxon rank-sum test is conducted at a significance level 
of 0.05 to determine whether the performance differences 
of different models are statistically significant. Symbols 
" + " and "−" denote that our proposed model is significantly 
better or worse than the rivals, respectively. Symbol " = " 
indicates that the difference between the involved models 
is not significant.

The main parameters of the proposed algorithm are set 
as follows: in the base-learners generation phase, N = 50 , 
maxIter = 80 , h = 30 , � = 0.001 , � = 0.05 , and the initial 
weights of the input features are generated by normal dis-
tribution with mean of 1 and variance of 0.5; while in the 
ensemble phase, the network structures (i.e., the number of 
nodes per layer) of AE and ELM are 50 − 35 − 5 − 35 − 50 
and 5 − 10 − 1 , respectively.

Feature Weight Evolution

To verify the validity of feature weighting evolution, an 
algorithm (denoted as non-FWE) that is identical to Algo-
rithm 1 except for the absence of FWE is developed. As 
shown in Algorithm 4, the developed algorithm retains 
the multiobjective selection mechanism and the nonlinear 
ensemble method, which makes the validation results for 
FWE convincing.

Table 3  Best performance count for each input feature scheme

Mean count Std count

All feature 13 2
PCA 0 5
PCC 2 8

Fig. 8  Correlation coefficient heat maps of the outputs of the base-
learners. a The case of Non-FWE with a VIF equal to 1464.72. b The 
case of EENN with a VIF equal to 402.08

Table 4  Statistical results of EENN and Non-FWE in terms of mean 
and standard deviation of prediction performance

HR R
2 RMSE

EENN 9.16e-01
5.02e-03

7.04e-01
9.94e-03

5.70e-02
9.55e-04

Non-FWE 9.16e-01
6.06e-03

= 6.95e-01
7.33e-03

+ 5.78e-02
6.97e-04

+
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First, in the base-learners generation phase, we exam-
ined the correlation relationship among the outputs of the 
base-learners obtained by each of these two algorithms. 
Figure 8 shows the correlation coefficient heat maps of the 
outputs of the base-learners for the two cases of absence 
and presence of FWE. As can be seen from Fig. 8, the 
application of FWE greatly reduces the correlation among 
the outputs of the base-learners, which means that the 
diversity of the obtained base-learners is greatly improved. 
More precisely, the variance inflation factor (VIF) [32] 
is reduced from 1464.72 to 402.08, indicating that FWE 
considerably alleviates the multicollinearity problem in 
the output of the base-learners.

Then, the base-learners obtained by these two algorithms 
are combined separately using the nonlinear ensemble 
method described in Sect. 3.4, and the statistical results of 
the means and standard deviations are listed in Table 4. As 
can be seen in Table 4, EENN performs similarly to non-
FWE in terms of HR, but statistically outperforms the latter 
in terms of R2 and RMSE. This indicates that the prediction 
results obtained by EENN have smaller errors with the true 
[Si] and are much closer to its actual variation pattern.

The above experimental results demonstrate the effec-
tiveness of FWE in modeling [Si]. The application of FWE 
enables the base-learners to adjust the weights of their 
input features by MOEA. And different weight combi-
nations of input features make the base-learners tend to 
acquire different aspects of the dataset, thus enhancing the 
diversity among base-learners and helping to improve the 
accuracy and generalization ability of the ensemble model.

Ensemble Method Based on AE and ELM

It can be seen from the analysis in Sect. 4.3.1 that although 
FWE has enhanced the diversity of base-learners, there is still 
a strong linear correlation between their outputs. Therefore, 
it is necessary to process the original outputs of the base-
learners before ensemble. In the experiments in this subsec-
tion, we employ an AE with three hidden layers to extract 
5-dimensional features from the output of 50 base-learners.

Table 5 gives the experimental results of the proposed 
ensemble method compared with the commonly used 
weighted average (WA) method using only Pareto individuals. 
In WA, the weight of each Pareto individual is obtained by a 
differential evolution algorithm. In addition, the experimental 
results of some variants of AE-ELM are listed in Table 5 for 
reference. Only-ELM refers to the direct ELM ensemble with-
out feature extraction via AE, where the structure of ELM is 
set to 50 − 60 − 1 . AE-ELMP refers to the ensemble with only 
Pareto individuals, and since the number of Pareto individuals 
is relatively small, an AE with only one hidden layer is used to 
extract 5-dimensional features from their outputs.

Only-ELM performs worse compared to AE-ELM, 
indicating that the redundant inputs are detrimental to the 

Table 5  Statistical results of different ensemble methods in terms of 
mean and standard deviation of prediction performance

HR R
2 RMSE

AE-ELM 9.16e-01
5.02e-03

7.04e-01
9.94e-03

5.70e-02
9.55e-04

Only-ELM 9.14e-01
6.87e-03

= 6.90e-01
1.52e-02

+ 5.83e-02
1.43e-03

+

AE-ELM
P

9.15e-01
7.69e-03

= 6.96e-01
9.58e-03

+ 5.77e-02
9.09e-04

+

WA 9.17e-01
7.09e-03

= 6.95e-01
8.87e-03

+ 5.78e-02
8.35e-04

+
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Fig. 9  Predicted curves and 
corresponding error distribution 
of each prediction model on the 
test set data

(a) EENN

(b) HCM-SVRs

(c) Bagging-NN

(d) dGRU-RNN

(e) Modified-ELM

(f) NEA-ANCL
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prediction accuracy of the final ensemble model. This result 
demonstrates the need for the AE-based feature extraction. 
In the other case, if only Pareto individuals are used for 
feature extraction and ensemble (AE-ELMP ), the perfor-
mance of the obtained model is also inferior to that of AE-
ELM, indicating that although Pareto individuals are more 
representative, other individuals in the population can also 
contribute to the ensemble model. The proposed ensemble 
method is also superior to WA as shown in Table 5.

Experimental Results of the Proposed Prediction 
Model

This section gives the experimental results of the proposed 
model in comparison with other rivals. From the results in 
Sect. 4.2, among these comparative models, HCM-SVRs, Bag-
ging-NN, dGRU-RNN, and NEA-ANCL have higher accuracy 
when using all features for modeling; for Modified-ELM, on the 
whole, the model using PCC features performs better. There-
fore, for these models, only their best results are presented.

Figure 9 shows the predicted curves and corresponding 
error distribution of each model on the test set data. From 
the curve trend of the predicted values by different mod-
els, the proposed method has stronger tracking ability for 
the changes of actual values. And the approximate error 

distribution of EENN is thinner and taller than the others, 
which indicates that the predicted values of EENN are 
closer to the practical values of silicon content.

The statistical results of thirty repeated experiments of each 
model are shown in Table 6. Comparing the results obtained by 
these models, we can see that the performance of EENN in HR 
is roughly equivalent to that of modified-ELM and superior to 
other methods. In terms of R 2 and RMSE, EENN significantly 
outperforms other comparison methods. These results prove 
that the proposed improved strategies are very effective for 
improving the accuracy of silicon content prediction.

As we know from Sect. 4.2, for some silicon content pre-
diction models, using all available features for modeling can 
fully exploit the information contained in the process data 
and thus improve the prediction accuracy. And the method 
proposed in this paper tackles the input feature issue with 
a novel ensemble modeling approach, i.e., an evolutionary 
algorithm is used to determine the input features and their 
corresponding weights for each base-learner so that each 
base-learner has a different combination of input features. 
This method can enhance the diversity among base-learners 
while ensuring that the final ensemble model utilizes all 
available input features, thus further improving the accuracy 
of silicon content prediction, which is the main reason why 
it achieves better performance than its competitors.

From a practical application point of view, the EENN 
proposed in this paper provides a new scheme for building 
silicon content prediction models that employs an evolution-
ary algorithm to search the input feature weights of base-
learners for the purpose of using all process data properly, 
avoiding the information wastage problem in PCC and PCA 
feature selection methods. And more precise silicon content 
values help on-site operators to get a more accurate indica-
tion of the thermal state of the blast furnace. In addition, 
the proposed model can be automated for modeling without 
relying on expert experience and easily extended to other 
industrial application scenarios.

Further Analysis on FWE and FP

Section 4.3.1 presents an analysis of the effect of FWE on 
the outputs of base-learners, where the threshold of FP 

Table 6  Performance 
comparison of the proposed 
ensemble prediction model with 
some existing prediction models

HR R
2 RMSE

EENN 9.16e − 01
5.02e−03 7.04e − 01

9.94e−03 5.70e − 02
9.55e−04

HCM-SVRs 9.00e − 01
5.39e−03

+
6.56e − 01

1.15e−02
+

6.14e − 02
1.02e−03

+

Bagging-NN 9.12e − 01
1.91e−03

+
6.72e − 01

2.24e−03
+

5.99e − 02
2.05e−04

+

dGRU-RNN 9.05e − 01
7.02e−03

+
6.54e − 01

1.18e−02
+

6.16e − 02
1.04e−03

+

Modified-ELM 9.18e − 01
1.27e−02

=
6.77e − 01

4.21e−02
+

5.99e − 02
4.24e−03

+

NEA-ANCL 8.91e − 01
5.47e−03

+
6.41e − 01

6.58e−03
+

6.27e − 02
5.72e−04

+

Fig. 10  Variation of prediction accuracy and FSoE with weight 
threshold �
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� = 0.05 . This section focuses on the sparsity generated 
by FWE and FP in the input of the base-learners, and the 
performance of obtained ensemble models under different 
weight thresholds.

In the FWE scenario, the sparsity of the input features of 
a base-learner (FS) can be defined as follows:

Note that the actual input features of the base-learners do not 
include these features with a weight of 0, as shown in Fig. 5.

Based on the definition in Equation(10), the feature 
sparsity of an ensemble model (FSoE) is defined as 
follows:

where N is the number of base-learners involved in 
the ensemble, and FSi is the feature sparsity of the i-th 
base-learner.

The experimental results are shown in Fig. 10, where 
the prediction accuracy of the model is represented by its 
RMSE. The RMSE and FSoE of the model under each 
weight threshold in Fig. 10 are the average results of 30 
repeated experiments. The purple polyline in Fig. 10 illus-
trates the variation of FSoE with the weight threshold � . 
From the experimental results, it is obvious that even with-
out FP strategy ( � = 1.00e − 10 in the experiments), the 
evolution of feature weights can already bring significant 

(10)FS =
Number of features with a weight of 0

Number of features in the original data
× 100%

(11)FSoE =

∑N

i=1
FSi

N

sparsity to the ensemble model. As the weight threshold � 
increases from 0.00 to 0.15, FSoE increases accordingly, 
which is in good agreement with intuition.

The prediction accuracy of the obtained ensemble model 
with different weight thresholds is shown by the red polyline 
in Fig. 10. When the weight threshold is set to 0.05, the 
prediction accuracy of the ensemble model is significantly 
improved over that without FP strategy. This result demon-
strates the effectiveness of FP strategy. The possible reason 
is that the FP filters out the features with too small weights, 
which, after scaling with tiny weights, become almost noise 
for the base-learners. However, as the threshold continues 
to increase, the model performance starts to deteriorate, 
indicating that some useful information is blocked from the 
learning process by the inappropriately large threshold.

Combining the analysis in Sect. 4.3.1 and Sect. 4.5, it is 
clear that the role of FWE and the affiliated FP is mainly in 
two aspects: 

1. Some sparsity is brought to the input of the base-learners 
by evolving and filtering the feature weights. Appro-
priate sparsity can reduce the structural complexity of 
the ensemble model and help improve its generalization 
ability, so as to better cope with the complex and vari-
able blast furnace ironmaking production process.

2. Different combinations of feature weights enhance the 
diversity among the base-learners. Each combination of 
input features prompts the corresponding base-learners 
to mine unique information about the silicon content 
variation pattern from the process data and plays an 

Fig. 11  Online running process 
of the proposed model
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irreplaceable role in the final ensemble model, greatly 
enhancing the diversity among the base-learners.

Both of the above enhancements to the base-learners are 
beneficial to reduce the structural risk of the ensemble model 
and improve its generalization ability.

Applications

In the project in which the research of this paper is carried 
out, the application of EENN can be simplified to the pro-
cess shown in Fig. 11. First, the proposed algorithm loads 
relevant data from the database and builds the prediction 
model. The obtained model can predict the silicon content 
of the molten iron during the operation of the blast furnace. 
The on-site operators can refer to the predicted values to 
assess the thermal state of the blast furnace and make timely 
adjustments in case of fluctuating trends. In addition, the 
model can be automatically updated at a pre-set frequency 
to match the latest smelting conditions. And the update does 
not rely on feature selection methods or expert experience.

In addition to helping operators assess the thermal 
state of the blast furnace, potential applications for the 
EENN include the following: 

1. Automatic fluctuation warning. In combination with 
condition monitoring methods such as T 2 and SPE [33], 
a fluctuation warning model can be established for the 
silicon content of molten iron. When the value of silicon 
content exceeds the normal range, the model can give an 
early warning.

2. Operation Optimization. Based on the accurate predic-
tion of silicon content, an operation optimization model 
of the ironmaking process can be established. When the 
silicon content needs to be stabilized within a certain 
range, the operation optimization model can be used to 
determine the appropriate operating parameter settings.

3. Application to prediction problems of other key indi-
cators. Since the proposed model does not rely on a 
specific feature selection method or expert experience 
for modeling, it can be easily applied to the prediction 
problems of other key indicators, such as blast furnace 
gas, molten iron temperature, etc.

Conclusion

This paper investigates the silicon content prediction prob-
lem in the high vanadium-titanium blast furnace (HVT-
BF) smelting process. Experimental results show that the 
commonly used Pearson correlation coefficient (PCC) 
and principal component analysis (PCA) feature selection 

methods do not always perform well in improving predic-
tion accuracy in the HVT-BF scenario, and some existing 
models achieve relatively high prediction accuracy when 
modeling with all available features. But PCC and PCA 
can enhance the robustness of these models to some extent.

In order to further improve the prediction accuracy of 
silicon content, an ensemble model based on multiobjec-
tive optimization is proposed, which contains two main 
improvement strategies, namely feature weight evolution 
(FWE) and nonlinear ensemble. And the nonlinear ensem-
ble is based on autoencoder (AE) and extreme learning 
machine (ELM). Among them, FWE and the affiliated 
feature pruning (FP) can enhance the diversity of base-
learners and alleviate the multicollinearity problem in the 
output of base-learners; AE-ELM can effectively reduce 
the redundancy of the meta-learner inputs while fully uti-
lizing the information contained in the outputs of base-
learners. The effectiveness of these two strategies and the 
performance of the overall ensemble model are verified 
on real-world production data. The superiority of the new 
scheme of using all available features to build a silicon 
content prediction model was verified.

Finally, we discuss the effect of FWE and FP on the fea-
ture sparsity of the ensemble model. The results show that 
setting a reasonable weight threshold can improve the per-
formance of the model while reducing its complexity.
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