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Abstract
It is important to clarify the behavior of elements in the reaction between molten CaO–SiO2–FetO–Al2O3 slag and liquid 
metal during the remelting of Cu scrap. To estimate the desirable slag composition for retaining Sn in metal, the effects of 
the slag basicity and the concentrations of  FetO and  Al2O3 on the SnO activity coefficient were investigated. Molten CaO–
SiO2–FetO slag (with optional  Al2O3 addition) was reacted with liquid Pb–Sn alloy in a pure Fe crucible at 1573 K for 5 h 
while blowing the CO–CO2 mixture. From the activity coefficients of Sn, Pb, and Fe oxides in the slag, which were calcu‑
lated using the PCO/PCO2 ratio during heating and the chemically analyzed compositions of slag and metal, their behaviors 
in slag/metal reaction were discussed. The order of reducibility was PbO > SnO >>  FetO. Finally, it was suggested from 
the thermodynamic and industrial smelting perspectives that the slag condition favorable to SnO reduction is high basicity, 
around 50 mass%  FetO, and low  Al2O3 content.

The contributing editor for this article was Adam Clayton 
Powell.
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Introduction

The consumption of metal resources in the world is grow‑
ing rapidly [1]. In the next few decades, the demand for 
natural resources is expected to be several times higher than 
the current reserves [2, 3]. In such global situation, since 
natural resources are scarce in Japan, Japanese industries 
have constantly faced supply risks [4–6]. Moreover, since 
the mining and refining of raw natural resources require a 
large amount of energy in response to the expansion of those 
demands, the global environment faces the challenge of mas‑
sive  CO2 and other greenhouse gas emissions [7, 8]. On the 
other hand, Japan could have accumulated a large amount of 
metal resources [9–11]. Those resources, which are present 
in the form of substrates and household appliances, have the 
potential to have apparent reserves and higher grades than 
natural ores [12, 13]. With increasing resource accumula‑
tion, which is called an ‘urban mine (UM)’, the recycling 
of those resources has come to play a crucial role in the 

circular economy [3]. It will be advantageous for energy 
and the economy if spent valuable metals can be recovered 
efficiently from UM [10, 14]. In addition, the global envi‑
ronment, which is affected by the exploitation of natural 
resources, can be protected by recovering [15]. Therefore, 
recovering and recycling of metal elements is a key tech‑
nology for the construction of a sustainable society. For 
example, there is a typical high‑temperature process where 
scrap material is melted, oxidized, and reduced to separate 
metal phase, which contains valuable elements such as gold, 
silver, lead, and tin [16]. This metal phase is divided into 
each metallic element by electrorefining and/or multistage 
extraction [17].

The minable reserve of Sn is so small [18] that Sn is one 
of the valuable metals whose recovery from scrap mate‑
rials is being attempted [19]. To recycle Sn from scrap 
materials, especially Waste from Electrical and Electronic 
Equipment (WEEE) used mainly as solder, they are fed 
to copper smelter and then the furnace specialized for 
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recycling [20, 21]. When recovering Sn by the process, 
Sn is distributed to Cu‑based metal phase and slag phase. 
In the latter, Sn is dissolved in the form of SnO. For the 
efficient recovery of Sn in this process, it is required to 
maximize the Sn distribution to the metal phase. In con‑
trast, Fe, which is an impurity in the metal phase, should 
be removed by its distribution to the slag phase. When 
the slag reduction is simply enhanced, FeO is reduced 
simultaneously with SnO, and the Fe concentration in the 
metal phase increases [22] and eventually metallic iron is 
solidified and suspended. This leads to poor fluidity and 
workability. Therefore, the reduction of only SnO in the 
slag phase is preferred in practical operation. For this spe‑
cific reduction, it is necessary to evaluate the optimum 
conditions concerning slag composition, temperature and 
oxygen partial pressure by using the activity coefficient 
of SnO in slag.

Distribution behavior and thermodynamic data of Sn 
in ordinary Sn and Pb smelting process are well studied 
[23–30]. In WEEE recycling, CaO–SiO2–FetO(–Al2O3) 
slag system is applied for operating [31]. Some of 
researchers have reported a Sn distribution between copper 
metal and slag and activity coefficient of SnO in the slag. 
Takeda et al. investigated using the slags saturated with 
calcium ferrite or iron silicate [32]. Anindya et al. also 
studied using this slag system under the flow of CO–CO2 
mixture [33]. Nagamori et al. reported the Sn distribution 
between FeO–Fe2O3–SiO2–Al2O3–CuO0.5 slag and copper 
[34]. In all of those studies, slag liquids equilibrated with 
molten Cu‑based metal, and the activity coefficient of SnO 
was calculated using the data of Sn activity coefficient in 
Cu metal [35, 36].

To discuss a Sn migration from slag to metal without 
Fe‑oxide reduction, the elucidation of Sn distribution 
behavior between slag and metal under the saturation of 
solid Fe is required, because it is the most reducible condi‑
tion suitable for the deposition of solid Fe. However, there 
is currently insufficient research investigating the effect of 

slag composition on Sn distribution under this experimen‑
tal condition.

Against those backgrounds, this study measured the activ‑
ity coefficients of SnO and  FetO in CaO–SiO2–FetO(–Al2O3) 
molten slag saturated with solid Fe at 1573 K by equilibrium 
experiments. Moreover, the activity coefficient PbO was 
also measured by using Pb–Sn alloy as metal phase, since 
Pb is contained in WEEE along with Sn and the recovery 
of Pb is also required. From the results obtained as func‑
tions of slag basicity,  FetO and alumina concentrations in 
CaO–SiO2–FetO slag, and oxygen potentials, the operation 
condition suitable for reducing SnO and PbO but not FeO 
was discussed.

Experimental

Slag Preparation

Table 1 shows the target compositions of slag and Pb–Sn 
alloy used in this equilibrium experiment.

In this table, to simplify the description of the slag com‑
positions, the symbols C/S and RF, which are defined by 
Eqs. (1) and (2), respectively, are introduced, referring to a 
previous report [37].

herein C/S is called ‘slag basicity’, and RF is the  FetO mass 
ratio in CaO–SiO2–FetO pseudo‑ternary system, where 
(mass%  FetO) is the FeO mass concentration calculated 
assuming that all Fe oxides in slag is present as FeO.

Using the No. 1 sample as the reference, the follow‑
ing three experimental conditions with varying C/S, 
RF, and  Al2O3 concentrations were chosen to achieve 

(1)C∕S = (mass% CaO) ∕
(

mass% SiO2

)

(2)
RF =

(

mass% FetO
)

∕
{(

mass% FetO
)

+ (mass% CaO) +
(

mass% SiO2
)}

Table 1  Target composition 
of this study's synthetic slags 
(mass%) and gas conditions

Sample no Content in slag (mass%) C/S RF PO2 ×  1012

(atm)
PCO/PCO2

CaO SiO2 FetO Al2O3

1 15.5 34.5 50.0 ‒ 0.45 0.50 4.05 6.39
2 21.3 30.4 48.3 ‒ 0.70 0.48 7.03 4.85
3 24.6 27.4 48.0 ‒ 0.90 0.48 11.3 3.82
4 27.1 24.6 48.3 ‒ 1.1 0.48 11.4 3.80
5 18.6 41.4 40.0 ‒ 0.45 0.40 1.84 9.47
6 12.4 27.6 60.0 ‒ 0.45 0.60 6.59 5.01
7 15.3 34.1 45.6 5.0 0.45 0.48 3.71 6.68
8 14.5 32.3 43.2 10.0 0.45 0.48 3.34 7.03
9 13.7 30.5 40.8 15.0 0.45 0.48 2.99 7.44



1447Journal of Sustainable Metallurgy (2023) 9:1444–1455 

1 3

slag compositions applicable to actual operations. As an 
actual WEEE recycling slag composition, C/S, RF, and 
mass%Al2O3 are 0.53, 0.28, and 31.6, respectively [31]. 
However, depending on adapted process, operability, feed 
stock, and so on, the contents of CaO,  SiO2, FeO, and  Al2O3 
vary. Therefore, by changing those variables, their effects 
were evaluated in this study.

 (I) The values of C/S were changed to 0.45, 0.7, 0.9, 
and 1.1 with RF ≈ 0.5 (Nos. 1 to 4). Since RF is 
automatically determined in equilibrium with CO–
CO2 gas, PCO/PCO2 ratio was adjusted so that the 
equilibrium composition became RF ≈ 0.5.

 (II) The values of RF were changed from 0.5 (No. 1) to 
0.4 and 0.6 (Nos. 5 and 6) with C/S = 0.45.

 (III) The  Al2O3 content was increased from 0 mass% 
(No. 1) to 5, 10, and 15 mass% with C/S = 0.45 and 
RF ≈ 0.5 (Nos. 7 to 9).

From the phase diagram of the CaO–SiO2–FetO system [37] 
and that of the CaO–SiO2–Al2O3 pseudo‑ternary system at 
RF = 0.5, which were drawn by the thermodynamic equilib‑
rium calculation software ‘FactSage 8.1’ [38], all experi‑
mental points listed in Table 1 are in the range of liquid 
phase.

Reagents  CaCO3 (99.5% up, FUJIFILM Wako pure chem‑
ical),  SiO2 (99.9% up, FUJIFILM Wako pure chemical), FeO 
(99.5% up, HAYASHI pure chemical), and  Al2O3 (99% up, 
KANTO chemical) were applied for slag preparation. In this 
study, a CaO–SiO2–FetO master slag was first prepared as 
follows:  CaCO3 and  SiO2 reagents were mixed and pressed 
to a cylindrical shape by applying a pressure of 2 tons  cm−2. 
Then, the mixture was calcined by holding it in a Pt crucible 
at 1273 K under an air atmosphere for more than 10 h to 
remove  CO2 and pre‑sinter the mixture of CaO and  SiO2. 
This pellet was crushed, mixed with FeO, and melted in a Fe 
crucible at 1573 K under an Ar (G1 grade, TAIYO NIPPON 
SANSO JFP) atmosphere. By using a Fe crucible during the 
pre‑melting of slag, it is possible to suppress the  Fe2O3 gen‑
eration as much as possible due to the Fe/FeO equilibrium. 
After melting, the crucible was taken out of the furnace, 
and poured the molten slag onto a stainless steel plate for 
quenching with He gas blowing. The obtained master slag 
was crushed to less than 0.1 mm and mixed with  SiO2, FeO, 
and  Al2O3 reagents to achieve the respective composition. 
Finally, the mixture was pressed to a cylindrical shape by 
applying a pressure of 2 tons  cm−2.

Procedure

The CaO–SiO2–FetO slag containing the respective  Al2O3 
concentration (12 g) was equilibrated with Pb–Sn alloy 
(18 g), which was prepared by granular Pb (99.5% up, 

KANTO chemical) and Sn (99.5% up, FUJIFILM Wako pure 
chemical), in a pure Fe crucible (ϕ32 × ϕ27 × 50 mm) at 
1573 K for 5 h while blowing CO–CO2 mixed gas (300 mL 
 min−1) on the surface of molten slag. The reason for using 
Pb–Sn alloy is its low solubility in Fe crucible. Copper alloy 
and pure Sn cannot be used because they would melt Fe 
crucible. Furthermore, by using the Pb–Sn alloy, the activity 
coefficients of SnO and PbO in the slag can be simultane‑
ously measured. This experimental temperature (1573 K) 
is close to the actual operating conditions and the same as 
previous research [39]. Kato et al. reported that the equi‑
librium of Fe crucible/slag melt/Pb melt/CO–CO2 gas was 
achieved in 5 h and the change of slag composition was not 
observed [40]. Based on this report, the holding time at high 
temperature was determined to be 5 h in this study.

In equilibrium experiments, Fe crucible containing metal 
and slag was inserted to the soaking zone of a vertical fur‑
nace with silicon carbide heating element under an Ar flow 
(500 mL  min−1) using Mo rod. After then, the Ar flow was 
stopped, and the mixture of CO and  CO2 gases was blown 
on the surface of molten slag to control the partial oxygen 
pressure, PO2. The flow rates of CO (G1 grade, TAIYO NIP‑
PON SANSO JFP) and  CO2 (G1 grade, TAIYO NIPPON 
SANSO JFP) gases were fixed by separate mass flow con‑
trollers, which were calibrated with a soap film flow meter. 
The CO/CO2 equilibrium and its standard Gibbs free energy, 
∆G°, are written by Eqs. (3) and (4), respectively [41].

where T is absolute temperature [K]. From Eq. (4), PCO/PCO2 
ratio is represented by Eq. (5), where PCO and PCO2 are CO 
and  CO2 partial pressure [atm], respectively.

The following method was applied to maintain the desired 
FeO concentration in slag. When the FeO in slag equilibrates 
with solid Fe according to Eq. (6), the FeO activity, aFeO, is 
derived from Eqs. (7) and (8) [41].

where R is the gas constant [J  K−1  mol−1]. Since the Fe cru‑
cible was used in this experiment, the Fe activity is unity. 
The FeO activity, aFeO(s), can be expressed by Eq. (9) using 

(3)CO(g) + 1∕2 O2(g) = CO2(g)

(4)ΔG◦

(3)
= −282580 + 86.015 T [Joule] (298 − 3000 K)

(5)log
(

PCO∕PCO2

)

= −14761∕T + 4.493 − 1∕2 logPO2

(6)Fe(s) + 1∕2 O2(g) = FeO(s)

(7)ΔG◦

(6)
= −264330 + 64.73 T [Joule] (298 − 1650 K)

(8)= −RTln
{

(

aFeO(s)

)

∕
(

aFe(s) ⋅ P
1∕2

O2

)}
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the activity coefficient, γFeO(s), and mole fraction, XFeO, of 
FeO.

From Eqs. (7) to (9), the relationship between XFeO and 
PO2 is given by Eq. (10).

The values of γFeO(s) are evaluated from γFeO(l) reported 
by Kudo et al. [37], whose standard state was liquid, after 
converting from liquid to solid using ∆G°(11) [42].

The PCO/PCO2 ratio to achieve the desired  FetO concen‑
tration can be estimated by Eqs. (5) and (10). The calcu‑
lated PO2 and PCO/PCO2 ratio for each slag sample are also 
given in Table 1. It is expected that more accurate γFeO will 
be obtained in this study.

After 5 h, the Fe crucible was quickly removed from 
the furnace using Mo rod and immersed in water to cool 
the sample from the outside of the Fe crucible. Simultane‑
ously, the surface of the slag, which covered metal phase, 
was cooled by He gas blowing. After confirming a solidi‑
fication of the slag surface, the Fe crucible was completely 
immersed in water and rapidly cooled.

After cooling, the Fe crucible was cut vertically along 
with slag and metal. A cross‑sectioned surface of cut piece 
was mirror‑polished and observed by Scanning Electron 
Microscope and Electron Probe Micro Analyzer (JEOL, 
JXA‑8200) to confirm the absence of the micro metal 
particles dispersed in slag phase and the micro slag par‑
ticles in metal phase. From the cross‑sectioned sample 
of another cut piece, approximately 1 g of slag and metal 
samples were taken for chemical analysis. After dissolv‑
ing 0.1 g of them with hot 0.2 v/v% HF‑mineral acids, the 
compositions of slag and metal phases were determined 
using Inductively Coupled Plasma‒Atomic Emission 
Spectroscopy (SPECTRO, ARCOS EOP system). Three 
to four standard solutions with various concentrations 
of Sn, Pb, Si, Ca, Fe, and Al were prepared by diluting 
1000 mg/L elemental standard solutions [Sn in 3 mol/L 
HCl, Pb(NO3)2 in 0.1 mol/L  HNO3,  Na2SiO3 in 0.2 mol/L 
 Na2CO3,  CaCO3 in 0.1 mol/L  HNO3, Fe in 0.2 mol/L 
 HNO3, and Al in 0.2 mol/L  HNO3, FUJIFILM Wako pure 
chemical].

(9)aFeO(s) = �FeO(s) ⋅ XFeO

(10)
logPO2 = −27615∕T + 6.762 + 2 log �FeO(s) + 2 logXFeO

(11)FeO(l) = FeO(s)

(12)ΔG◦

(11)
= −22110 + 13.5T

Results and Discussion

Observation of Samples

The photos of the sample after quenching are shown in 
Fig. 1. It is found from Fig. 1a that the surface of Pb–Sn 
alloy in the Fe crucible is covered with the slag layer. In 
Fig. 1b, the slag phase is observed at the upper part and 
the metal phase at the lower part. Although Pb and Sn in 
molten metal are thermodynamically less oxidizable, and the 

Fig. 1  Photos of the sample after equilibrium experiments: a slag sur‑
face, b cross‑section
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equilibrium vapor pressures of Pb, Sn and their compounds 
are higher than iron, it is believed that only a small amount 
of Pb and Sn evaporated, but enough remained due to slag 
covering.

Because of the possibility of spinel  (FeAl2O4) formation 
in sample No. 9, whose  Al2O3 concentration is highest in the 
samples given in Table 1, SEM and EPMA observations were 
made at the area of slag/metal boundary and that away from 

the boundary. Figure 2a shows an SEM image of the slag 
phase away from the slag/metal boundary. It is confirmed that 
there is no spinel formation and undissolved reagents, and the 
slag phase is homogeneous. No significant particle suspension 
was also observed in the metal phase. An SEM image near 
the slag/metal boundary is shown in Fig. 2b. Suspension of 
fine Fe particles is observed in the metal phase. Fe particles, 
which are considered to generate by the reaction (13) between 
Pb metal and FeO in slag, are suspended in the Pb phase near 
the interface.

It is suggested that the equilibrium compositions of slag and 
metal could be obtained by sampling at the areas away from 
the slag/metal interface.

Activity Coefficients of SnO, PbO, and  FetO

The analyzed chemical compositions after equilibrium experi‑
ments are listed in Table 2. The same sample solution was 
measured three times by ICP‑AES, and additional sample 
solutions for Nos. 1, 5, and 9 in Table 2 were prepared and 
measured. As a result, the analytical errors (relative values) 
were ± 3% for Sn and Pb and ± 2% for the other elements. The 
values of C/S and RF after the equilibrium experiment are 
only slightly different from those in Table 1. Therefore, it can 
be said that the PCO/PCO2 ratios evaluated from Eqs. (5) and 
(10) were appropriate, and the equilibrium experiments were 
performed under the predicted conditions, although Pb, Sn, 
and their compounds are volatile and susceptible to PO2.

Although the tin oxide in slag is mainly composed of tin 
monoxide, with a small amount of tin dioxide, it is assumed in 
this study that all tin oxide is present as SnO [43]. The Sn(l)/
SnO(l) equilibrium is written by Eq. (14) [41].

(13)Pb(l) + (FeO) = (PbO) + Fe(s)

(14)Sn(l) + 1∕2 O2(g) = SnO(l)
Fig. 2  SEM images of the cross‑section of the slag phase away from 
the slag/metal interface (a) and that of the interface (b) in sample No. 
9

Table 2  Analyzed chemical 
compositions of samples after 
equilibration

Sample No Content in slag (mass%) C/S RF Sn in Pb
(mass%)

CaO SiO2 FetO Al2O3 SnO PbO

1 15.2 33.7 51.4 ‒ 0.28 0.11 0.45 0.51 2.86
2 20.4 29.9 51.7 ‒ 0.26 0.07 0.68 0.51 2.93
3 23.4 25.1 53.0 ‒ 0.33 0.08 0.93 0.52 2.98
4 25.7 22.7 52.1 ‒ 0.33 0.02 1.13 0.52 2.93
5 18.7 39.9 42.0 ‒ 0.26 0.12 0.47 0.42 3.02
6 11.3 27.5 59.6 ‒ 0.33 0.05 0.41 0.61 2.78
7 16.6 33.5 48.2 4.9 0.29 0.22 0.50 0.49 3.01
8 14.4 31.5 45.0 9.9 0.29 0.21 0.46 0.49 2.98
9 13.8 30.2 43.0 14.6 0.32 0.39 0.46 0.49 2.98
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The effective temperature range of ∆G°(14) is 
1250–1500 K, but it is assumed in this study that ∆G°(14) can 
also be valid at 1573 K. The activity of SnO in slag, aSnO(l), 
and that of Sn in metal, aSn(l), are expressed by Eqs. (16) 
and (17), respectively, using activity coefficient, γi, and mole 
fraction, Xi, of i.

The values of XSnO and XSn are calculated from the com‑
positions of slag and metal given in Table 2. Therefore, 
γSnO(l) can be obtained by Eq. (18).

The value of aSn(l) in Pb–Sn melt has been reported at 
1173 K by Goto and Pierre [44], as shown by data points 
and a broken line in Fig. 3. By applying a regular solution 
approximation to their γSn(l) value, that at T is derived by 
Eq. (19).

The Sn activity in Pb–Sn melt at 1573 K is shown by a 
solid line in Fig. 3.

Since Pb–Sn liquid was equilibrated with the molten slag 
containing SnO, PbO, and  FetO in a pure Fe crucible, the 
activity coefficients of PbO and  FetO can also be obtained.

The Pb(l)/PbO(l) equilibrium is written by Eq. (20) [41].

(15)
ΔG◦

(14)
= −258195 + 77.08 T [Joule] (1250 − 1500 K)

(16)aSnO(l) = �SnO(l) ⋅ XSnO

(17)aSn(l) = �Sn(l) ⋅ XSn

(18)
log �SnO(l) = 13487∕T − 4.026 + 1∕2 logPO2 − logXSnO + log aSn(l)

(19)log �Sn(l) atT[K] = 1173∕T ⋅ log�Sn(l) at 1173 K

From ∆G°(20), γPbO(l) can be obtained by Eq. (22).

The Pb–Sn metal phase in this study contains a small 
amount of Sn, as shown in Table 2. Therefore, it is possible 
to assume γPb(l) = 1 by applying Raoul’s Law. From ∆G°(6), 
γFetO(s) can be calculated by Eq. (23).

Figure 4 shows the activity coefficients of SnO, PbO, 
and  FetO of CaO–SiO2–FetO slags with RF = 0.51 to 0.52 
at 1573 K plotted against the C/S value. The activity coef‑
ficients of PbO and  FetO increased with the C/S value. On 
the other hand, SnO increased up to C/S = 0.7 but remained 
constant above it. Kudo et al. [37] reported that the PbO 
activity coefficient at 1573 K increased with C/S in the same 
slag system saturated with Fe. The trend shown in Fig. 4 

(20)Pb(l) + 1∕2 O2(g) = PbO(l)

(21)
ΔG◦

(20)
= −184440 + 69.79 T [Joule] (1159 − 1897 K)

(22)
log �PbO(l) = 9635∕T − 3.646 + 1∕2 logPO2

− logXPbO + log �Pb(l) + logXPb

(23)
log �FetO(s) = 13808∕T − 3.381 + 1∕2 logPO2 − logXFetO

Fig. 3  Activity of Sn in Pb–Sn liquid at 1573 K plotted against XSn

Fig. 4  The relationships between γSnO(l), γPbO(l), γFetO(s), and C/S at 
1573 K
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is consistent with it. It can be said that the higher basicity, 
the easier SnO, PbO, and  FetO contained in the slag are 
reduced. Higher γSnO(l) and γPbO(l) are necessary to distribute 
Sn and Pb in the metal phase, while lower γFetO(s) to prevent 
FeO reduction. Therefore, a C/S value around 0.7 might be 
appropriate from Fig. 4.

It can be seen from Fig. 4 that the present γPbO(l) and 
γFetO(s) values are different from those estimated using the 
data reported by Kudo et al. [37] The major difference in 
experimental methods is that they used  ZrO2–MgO solid 
electrolyte to measure the oxygen potential of the system, 
whereas CO–CO2 mixed gas was used to determine the 
oxygen potential in this study. There may be other causes, 
but the reason for those differences of γPbO(l) and γFetO(s) is 
not clear from this study, so it will be a subject of future 
investigation.

To obtain the  FetO concentration that favors SnO reduc‑
tion, some experiments have been performed with varying 
the RF value, as described in (II) of Sect. “Slag Preparation”. 
The activity coefficients of SnO, PbO, and FeO in the slag 
with C/S = 0.41 to 0.47 at 1573 K are plotted against RF 
value in Fig. 5. It is found that those activity coefficients 
increase with RF value. According to Eq. (10), a decrease 
in  FetO concentration corresponds to that in PO2. There‑
fore, this trend suggests that SnO and PbO become difficult 

to be reduced as PO2 decreases in the reduction process, 
although such phenomena in actual operation had not been 
reported. Conversely, the activity coefficients of PbO and 
SnO become higher with  FetO concentration, so it can be 
said that the higher  FetO concentration is, the easier SnO and 
PbO reduction becomes. For comparison, the activity coef‑
ficients of PbO and FeO at 1573 K obtained by Kudo et al. 
[37], whose slag was also a CaO–SiO2–FetO system with 
C/S = 0.42 to 0.45, are plotted against RF value by closed 
circles in the same figure. Their trend, similar to this study, 
is observed in the relations between γPbO(l) and RF, but their 
γFetO(s) becomes almost constant at high RF. The reason for 
the different trends in γPbO(l) and γFeO(s) is thought to be that 
the slag in this study contained SnO, but currently under 
investigation.

Finally, to investigate the effect of alumina addition on 
the activity coefficients of SnO, PbO, and FeO in slags was 
investigated using CaO–SiO2–FetO slag containing 5 to 15 
mass%  Al2O3. The activity coefficients of SnO, PbO, and 
 FetO in the slags with C/S = 0.45 to 0.50 and RF = 0.49–0.51 
at 1573 K are plotted against the mole fraction of alumina, 
XAl2O3, in Fig. 6. They tend to decrease with increasing 
XAl2O3. Therefore, it is suggested that a lower alumina con‑
centration is advantageous for SnO and PbO reduction.

Fig. 5  The relationships between γSnO(l), γPbO(l), γFetO(s), and RF at 
1573 K

Fig. 6  The relationships between γSnO(l), γPbO(l), γFetO(s), and XAl2O3 at 
1573 K
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Although the slag composition range in this study is 
narrow, an empirical equation was derived by multiple 
regression analysis for the effects of C/S, RF, and XAl2O3 on 
each activity coefficient. They are represented by Eqs. (24) 
to (26), where r is the correlation coefficient.

The relations between the activity coefficients obtained 
by Eqs.  (18), (22), and (23) and those calculated by 
Eqs. (24) to (26) are shown in Figs. 7, 8 and 9, respec‑
tively. Both are considered to be in good agreement from 
each figure and correlation coefficient. It is clear from 
these equations that C/S and RF affect positively and 
 Al2O3 concentration negatively on the activity coefficients 
of SnO, PbO, and  FetO. From the coefficients of each func‑
tion, the factor that most affects the activity coefficient is 
 Al2O3 concentration for γSnO(l), γPbO(l), and RF for γFetO(s). 
These trends can be explained by the following character‑
istics and interactions: In the experimental composition 
range of slag, it is considered that Sn, Pb and Fe behave 
as basic elements and Al behaves as an acidic element. 
Focusing on the variables in the regression equation, C/S 
and RF are related to slag basicity, and XAl2O3 to slag acid‑
ity. Therefore, the basic elements such as Sn, Pb and Fe 
are repelled under a more basic slag and attracted under 
a more acidic slag. Comparing three variables, Pb seems 

(24)
log �SnO(l) = 0.31C∕S + 0.62RF−1.29XAl2O3 + 0.004 (r = 0.912)

(25)
log �PbO(l) = 1.07C∕S + 3.69RF−6.86XAl2O3−2.062 (r = 0.970)

(26)
log �FetO(s) = 0.37C∕S + 0.62RF− 0.35XAl2O3− 0.444 (r = 0.973)

to be the most basic element from the coefficients of the 
regression equation.

Preferential Reduction of SnO and PbO

For the efficient recovery of valuable metals such as Sn 
and Pb in Cu recycling, it is important to suppress the FeO 
reduction as much as possible to prevent the Fe transfer 
to the metal phase.

Fig. 7  The relation between the activity coefficient of SnO(l) 
obtained by Eq. (18) and calculated by Eq. (25)

Fig. 8  The relation between the activity coefficient of PbO(l) 
obtained by Eq. (22) and calculated by Eq. (25)

Fig. 9  The relation between the activity coefficient of  FetO(s) 
obtained by Eq. (23) and calculated by Eq. (26)
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The equilibrium reaction of Sn/SnO/Fe/FetO is indi‑
cated by Eq. (27), whose ∆G°(27) is calculated by ∆G°(6) 
and ∆G°(14).

The relation between the distribution ratio of Sn between 
metal and slag, aSn(l)/XSnO, and that of Fe, aFe(s)/XFetO, at 
1573 K is represented by Eq. (30) using Eqs. (24), (26) and 
(29), and shown in Fig. 10 as functions of C/S and XAl2O3, 
whose variation range is 0.4–1.2 and 0–0.1, respectively, from 
Figs. 4 and 6.

Comparing aSn(l)/XSnO values at the same aFe(s)/XFetO value, 
aSn(l)/XSnO decreases with increasing C/S and XAl2O3. However, 
since aSn(l)/XSnO value is much larger than aFe(s)/XFetO value, 
it can be said that Sn moves more easily from slag to metal 
than Fe.

From ∆G°(31) of Eq. (31), which is the equilibrium reac‑
tion of Pb/PbO/Fe/FetO, the relation between the distribution 
ratio of Pb between metal and slag, aPb(l)/XPbO, and that of Fe, 
aFe(s)/XFetO, at 1573 K is represented by (34) using Eqs. (25), 
(26) and (33), and shown in Fig. 11 as functions of C/S, RF, 
and XAl2O3.

(27)Sn(l) + Fe
t
O(s) = SnO(l) + Fe(s)

(28)ΔG◦

(27)
= ΔG◦

(14)
− ΔG◦

(6)
= 6135 + 12.35 T [Joule]

(29)
= −RTln

{(

�
SnO(l) ⋅ X

SnO
⋅ a

Fe(s)

)

∕
(

a
Sn(l) ⋅ �

FetO(s) ⋅ X
FetO

)}

(30)
log

(

aSn(l)∕XSnO
)

= log
(

aFe(s)∕XFetO
)

+ 1.296
− 0.06C∕S − 0.94XAl2O3

When comparing aPb(l)/XPbO values at the same aFe(s)/XFetO 
value, aPb(l)/XPbO increases with C/S and RF, while that 
decreased with increasing XAl2O3. However, since aPb(l)/XPbO 
value is extremely larger than both aSn(l)/XSnO and aFe(s)/XFetO 
values, it is expected that PbO is reduced more easily than 
SnO and  FetO.

In this study, the slag composition suitable for reducing 
SnO and PbO was thermodynamically discussed using activ‑
ity coefficients. However, in practical operation, in addition 
to the equilibrium reduction degree of target oxides, their 
mass transfer rates in the slag, which are affected by slag 
viscosity, also influence the reduction rate. The relation‑
ship between SnO reduction rate and slag viscosity will be 
reported in a separate paper.

(31)Pb(l) + Fe
t
O(s) = PbO(l) + Fe(s)

(32)ΔG◦

(31)
= ΔG◦

(18)
− ΔG◦

(6)
= 79890 + 5.06 T [Joule]

(33)
= −RTln

{(

�
PbO(l) ⋅ X

PbO
⋅ a

Fe(s)

)

∕
(

a
Pb(l) ⋅ �

FetO(s) ⋅ X
FetO

)}

(34)

log
(

aPb(l)∕XPbO
)

= log
(

aFe(s)∕XFetO
)

+ 1.299
+ 0.70C∕S + 3.08RF − 6.51XAl2O3

Fig. 10  Relationships between the distribution ratio of Sn between 
metal and slag and that of Fe at 1573 K as functions of C/S and XAl2O3

Fig. 11  Relationships between the distribution ratio of Pb between 
metal and slag and that of Fe at 1573 K as functions of C/S, RF, and 
XAl2O3
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Conclusions

Activity coefficients of SnO, PbO, and  Fe tO in 
CaO–SiO2–FetO–Al2O3 slag were determined at 1573 K 
with varying slag basicities and the concentrations of  FetO 
and  Al2O3. The results obtained can be summarized as 
follows.

(1) The activity coefficients of PbO and  FetO increased 
with the C/S value. On the other hand, SnO increased 
to C/S = 0.7 but remained constant above it.

(2) The activity coefficients of SnO, PbO, and  FetO 
increased with increasing  FetO concentration and 
decreasing  Al2O3 concentration.

(3) The activity coefficients were represented by the fol‑
lowing empirical equations.

(4) The order of reducibility was PbO > SnO >>  FetO when 
comparing aSn(l)/XSnO, aPb(l)/XPbO and aFe(s)/XFetO.

(5) The slag condition favorable to SnO and PbO reduction 
is higher basicity, around 50 mass%  FetO, and lower 
 Al2O3 content.

It is expected that this slag composition can help opti‑
mizing the WEEE recycling process in the Sn and Pb 
recovery from the slag.
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