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Abstract
With the vigorously growing demand of the steel industry, corrosion resistance alloys, clean energy industries, and a variety 
of engineered infrastructure or technology, high-grade nickel ores are being exhausted gradually in the world. This review 
outlines metallurgical processes for nickel production from various nickel sulfide ores resources, particularly focusing on 
recent developments in metallurgical processes to identify potential trends and technical requirements in nickel metallurgy. 
The main methods have been extensively reviewed for nickel extraction from nickel sulfide ores which maybe are poten-
tially applicable to provide new ideas for smelting technology innovation of nickel and even other similar metals. The main 
metallurgical methods include pyrometallurgical and hydrometallurgy, containing smelting, leaching, and purification. The 
advantages and disadvantages of each typical process have been analyzed and compared in this review, and a special emphasis 
is put forth. Biological metallurgy is highly selective for recovery of nickel and the most promising method recommended 
for future research and development. Moreover, ion exchange offers useful method for extraction and purification of nickel. 
In addition, many of the typical new methods involved are also introduced in this article.
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Introduction

Nickel is one of the metals with extremely high strate-
gic value in the development of national economy. Nickel 
has attracted continuous attentions owing to its superior 
performances such as good ductility, corrosion resistance, 
high-temperature resistance, and high strength, which 
have been considered as an essential basic material for 
high-temperature and high-strength alloys, heat-resistant 
materials, and stainless steel. Its application involves many 
fields such as metallurgy, machinery manufacturing, trans-
portation, defense, and aerospace [1–3]. In addition, with 
the emergence of ecological and environmental problems, 
developing clean energy and achieving sustainable eco-
nomic and social development have become the main-
stream in current world. In terms of the emerging strategic 
industry of power batteries, ternary cathode materials con-
taining nickel are replacing lithium iron phosphate as the 
key development direction of anode materials for power 
batteries because of their high capacity density [4–6]. 
Moreover, global photovoltaic, wind power, and other 
new energy sources and the need for large-scale energy 
storage in microgrids are increasing [7, 8]. Nickel, as an 
indispensable key material in the fields mentioned above, 
is expected to have explosive growth in demand, which 
will make the development of the nickel industry more 
imaginative. In order to gain an edge in emerging indus-
tries, the research and development of new technologies 
for further low-cost and efficient production of nickel have 
become one of the most concerned research hotspots in the 
field of nickel technology.

Keeping in view of the widespread data on resources 
of nickel and status of different technologies for nickel 
extraction, this article presents a brief overview about 
nickel sulfide ore characteristics and summarizes the 

different types of upgradation metallurgical processing 
used to enhance diverse kinds of nickel sulfide ores found 
in different parts of world. An overview about the future 
trends of nickel industry observed in the field of metal-
lurgy techniques has also been discussed along with the 
challenges and gap areas associated with conventional ore 
processing methods.

Characteristics of Nickel Sulfide Ore 
Resources

The world reserves of nickel are estimated at 94 million tons 
of nickel metal content, which is rich in resources [9]. The 
regional distribution of global nickel reserves is relatively 
concentrated. The top three countries, Indonesia, Australia, 
and Brazil, all account for more than 10%, which together 
account for about 60% of the global nickel reserves. The 
land-based resources available for the preparation of nickel 
mainly include nickel sulfide ore and nickel oxide ore, and 
the sulfide-oxide ratio in current nickel reserves is believed 
to be about 4:6.

Sulfide ores originated from hydrothermal processes 
related to volcanic areas. Nickel, copper, cobalt, iron, and 
other precious metals such as gold or platinum group met-
als contained in magma crystallized and precipitated in 
the form of sulfide, which eventually evolved into a nickel 
sulfide deposit [10, 11, 13]. The forms and distribution 
of main nickel-bearing minerals in nickel sulfide depos-
its are shown in Table 1. In addition to the mentioned, 
other associated nickel-free minerals such as chalcopyrite 
(CuFeS2), pyrrhotite (Fe7S8), chromite [(Mg, Fe)·Cr2O4], 
and gangue compositions (ferric oxide, silicon diox-
ide, magnesium oxide, calcium oxide, and aluminum 
oxide, etc.) also are contained in nickel sulfide depos-
its [14–16]. For some low-grade nickel sulfide ore from 

Table 1   The forms and distribution of main nickel-bearing minerals in nickel sulfide deposits [10–12]

Mineral name Chemical formula Location Ni content (wt%)

Heazlewoodite Ni3S2 USA, Australia  ~ 73
Millerite NiS Australia, Canada, USA 64–65
Polydymite Ni3S4 Germany  ~ 58
Maucherite Ni11As8 Germany  ~ 52
Niccolite/Nickeline NiAs Switzerland, Germany, Canada, Australia  ~ 44
Violarite Ni2FeS4 Canada  ~ 39
Gersdorffite NiAsS Australia, Morocco  ~ 35
Pentlandite (Ni,Fe)9S8 Russia, South Africa, Canada, Australia, Norway  ~ 34
Breithauptite NiSb Canada, Norway, Australia, Italy, India 32–33
Annabergite Ni3(H2O)8[AsO4]2 Germany 29–30
Siegenite (Co,Ni)3S4 Germany, Czech Republic, USA, Zaire 28–29
Rammelsbergite NiAs2 Canada, Germany  ~ 28
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lean ore regions, for example, a sulfide mine in Shaanxi, 
China, due to the grade of nickel sulfide raw ore gener-
ally between 0.3 and  3.0%, it is necessary to enrich the 
ore by mineral processing before smelting. Sulfide ores 
are crushed and ground in order to liberate nickel miner-
als by selective flotation, in place of, or in conjunction 
with magnetic separators. After that, nickel concentrate 
(containing 6–20% Ni) can be collected. The enriched 
concentrate contains fuel composition in the form of iron 
sulfide, which can reduce the energy consumption of 
smelting and facilitate the comprehensive utilization of 
resources. Coupled with the mature smelting technolo-
gies, nickel sulfide ore is currently the most important 
source of mineral production in the nickel industry, which 
contributes approximately 70% of nickel production [17].

However, with the long-term mining of nickel sulfide 
ore and none major breakthroughs in the exploration of 
new resources, its reserves are declining gradually. Relat-
edly, the difficulty of traditional mines mining, beneficia-
tion, and smelting also increases. Therefore, it is of great 
significance to further develop low energy consumption 
and sustainable technologies to extract nickel from dif-
ferent types of nickel sulfide ores.

Main Metallurgical Process

Extracting nickel from sulfide ore generally refers to the 
process of melting nickel from nickel sulfide ore into 
low-nickel matte or leaching nickel into solution. Its 
metallurgical technologies are primarily concerned with 
pyrometallurgy and hydrometallurgy. The overall process 
flowchart of nickel extraction from nickel sulfide ores is 
shown in Fig. 1.

Pyrometallurgy

Extracting nickel from nickel sulfide ore by the pyrometal-
lurgical as the main production process of nickel at present, 
its core step is matte smelting. The major chemical reac-
tions of the matte-producing process could be described as 
follows [18]:

The matte (eutectic melts) with low melting point formed 
by different metal sulfide (MS) and ferrous sulfide can be 
interfused completely in liquid state. However, the matte 
is mutual incoherence with slag because of different densi-
ties. Therefore, different MS can be effectively enriched in 
the matte during the melting process, while the impurity 
oxides can be separated by combining with silicon dioxide to 
form slag. The low-grade nickel matte obtained by the matte 
smelting process should be further enriched by converter 
blowing. Blowing air into the furnace and adding quartz as 
a flux, iron, ferrous sulfide, and other impurities in the low-
grade nickel matte make slag with quartz after oxidized. As 
a result, the high-grade nickel matte with a higher content of 
the valuable metal (such as nickel, cobalt and copper, etc.) 
and slag with low valuable metal levels can be collected. 
Meanwhile, part of the matte and other volatile impurities 
maybe discharged with flue gas after oxidized, resulting in 
partial loss.

Currently, the main smelting processes of nickel sulfide 
ore involve flash smelting and pool smelting [19–22]. Spray-
ing the deeply dehydrated powder concentrate from the top 

(1)2FeS + 3O2 = 2FeO + 2SO2

(2)Slagging reaction ∶ 2FeO + SiO2 = 2FeO ⋅ SiO2

(3)Matte producing ∶ xFeS + yMS =
[

xFeS ⋅ yMS
]

Fig. 1   Overall flowchart for nickel extraction from nickel sulfide ores
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into the reactor at 1450–1550 °C during flash smelting. The 
advantage of flash smelting is that the decomposition, oxi-
dation, and melting of sulfide can be accomplished quickly, 
generally in 2–3 s. The time efficiency and reaction comple-
tion of matting process are improved synchronously. In con-
trast, matte producing as an intermediate process is under-
gone in bath smelting. The mixture of sulfide concentrate, 
calcine of partial oxidation, nickel-bearing revert, and fluxes 
is smelted at 1200–1300 °C. Finally, metal sulfides (nickel 
matte) and oxide (slag) can be generated after a series of 
chemical reactions, melting and dissolving process. The 
low-grade nickel matte produced by flash smelting and bath 
smelting needs further converting to produce the high-grade 
nickel matte to meet the treatment requirements of refin-
ing process. The typical production process of high-grade 
nickel matte is shown in Fig. 2. Then, after grinded, copper 
and nickel contained in the high-grade nickel matte can be 
separated preliminarily by flotation, and the concentrate of 
copper and nickel can be obtained, respectively. The nickel 
concentrate is smelted and blown to prepare nickel sulfide 
electrode, and electrodeposition nickel can be produced by 
electrorefining finally.

However, the results indicated that the nickel content in 
slag is high in the above both smelting methods. Therefore, 
it is necessary to dilute the slag before recovering, which 
undoubtedly increases the cost of treatment. To sum up, 
although realizing large capacity and high efficiency, there 

are still some defects existing in the extracting nickel pro-
cess from sulfide ore by the pyrometallurgical, such as high 
energy consumption, serious nickel loss, high emission 
intensity of smelting process waste gas, and high risk of sec-
ondary pollution to the environment. Simultaneously, with 
the increasing mining intensity of nickel sulfide ore in the 
world, mineral grade is decreasing year by year. However, 
the traditional pyrometallurgical matte smelting has higher 
requirements on the grade of nickel concentrate, so it is no 
longer suitable for the treatment of complex nickel sulfide 
ore containing multimetals.

Wang et al. [23, 24] proposed a one-step extraction pro-
cess of nickel from nickel sulfide concentrates by iron addi-
tion. The mixture of concentrate and iron after roasted at 
800 °C for 240 min, ~ 96.8% of nickel could be extracted in 
the form of ferronickel alloy. In this solid-state nickel extrac-
tion process, it can be achieved that recovered nickel values 
into alloy and simultaneously retained the bulk of sulfur of 
the nickel sulfide concentrate in the solid iron sulfide, thus 
mitigating the potential sulfur dioxide emissions.

Hydrometallurgy

Hydrometallurgical process for nickel sulfide ore was devel-
oped in 1970s, which is to transfer valuable metals to liq-
uid phase from solid ore by chemical leaching, and then 
extracts valuable metals by solvent extraction, chemical 

Fig. 2   The typical flowchart of high-grade nickel matte production
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precipitation, crystallization, and other means [25–27]. Gen-
erally during a hydrometallurgical process of nickel sulfide 
ore, high-grade nickel matte or nickel concentrate is used 
as raw material.

Pressure Leaching

Considering that the most phases of nickel sulfide ore have 
stable crystal structure, in order to further strengthen the 
mass transfer process between leaching agent and mineralog-
ical phase, pressure leaching is usually used to improve the 
extraction rate of nickel. According to the different leaching 
agents, there are two ways of pressure leaching: pressure 
ammonia leaching and pressure acid leaching.

Pressure Ammonia Leaching  Under a certain E-pH condi-
tion, nickel and cobalt in mineralogical phase can enter into 
the solution by forming ammine complexes in ammonia—
ammonium solution while other impurity metals remained 
in the residue, so as to realize the selective leaching of 

nickel and cobalt from nickel sulfide concentrate [28–30]. 
The complexation reactions during this process are as fol-
lows [31]:

Aqueous ammonia and air are used as oxidants, and two-
stage leaching is carried out at ~ 80 °C and ~ 900 kPa. After 
that, the leaching residue is washed by counter current fil-
ter. The leach solution is boiled to recover the ammonia, 
while the thiosulphates and thiosulfonates are dismutated 
for precipitating to copper of high purity [32, 33]. The flow 
of pressure ammonia leaching is shown in Fig. 3.

The recovery rate of nickel, cobalt, and copper can reach 
90%, 50%, and 88%, respectively, through ammonia leach-
ing process. It can be realized that the resource utilization 

(4)NiS + 2O2 + 6NH3 = Ni
(

NH3

)

6
⋅ SO4

(5)
4CoS + 9O

2
+ 20NH

3
+ 2

(

NH
4

)

2
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4
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(
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Fig. 3   Typical flowchart of pressure ammonia leaching process
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of sulfur in nickel sulfide concentrate by pressure ammonia 
leaching. Meanwhile, it indicates that ammonia leaching 
process is suitable for the treatment of refractory polym-
etallic ore. However, high equipment requirements and low 
efficiency of precious metal extraction limit the application 
of ammonia leaching process in industrial production, which 
also causes it has been gradually replaced.

Pressure Acid Leaching (PAL)  In consideration of the special 
mineralogical characteristics of nickel sulfide ore, oxygen 
is regarded as a common oxidant in nickel extraction from 
nickel sulfide ores. According to Henry's law, the extraction 
velocity can be significantly increased with the increasing of 
oxygen partial pressure. Thus, oxygen pressure acid leach-
ing has getting more and more attention in recent years.

Oxygen and acid are used as oxidant and leaching agent, 
respectively, valuable metals can be extracted from nickel 
sulfide concentrate into the solutions by pressure acid leach-
ing, which is used as a prominent hydrometallurgical process 
industrially for the production of nickel. By controlling the 
leaching conditions, it can be realized that the leaching rate 
of nickel and cobalt is higher than 85%, while the leaching 
of copper and other heavy metals is inhibited [25, 34]. The 
main reactions during the pressure acid leaching process are 
shown as following [31, 34]:

Nickel sulfide leaching reactions are as follows:

Under a hypoxia condition, copper in the solution can 
enter into the slag as follows:

The PAL process was applied for the first time in industry 
at Outokumpu Harjavalta Refineny [35]. Valuable metals 
were leached from the high-grade nickel matte by three-
stage of atmospheric pressure leaching and one-stage of 
pressure leaching. The leaching rates of nickel and cobalt 
were up to 98% and 97%, respectively. Based on this, the 
process had been improved by Fukang Smelting Plant in 
Xinjiang of China. The technical route of one-stage atmos-
pheric pressure leaching combine with one-stage pressure 

(6)2Ni + O2 + 2H2SO4 = 2NiSO4 + 2H2O

(7)2Cu + O2 + 2H2SO4 = 2CuSO4 + 2H2O

(8)2Ni3S2 + O2 + 2H2SO4 = 2NiSO4 + 4NiS + 2H2O

(9)8NiS + O2 + 2H2SO4 = 2Ni3S4 + 2NiSO4 + 2H2O

(10)NiS + CuSO4 = CuS + NiSO4

(11)
4Ni3S4 + 9CuSO4 + 8H2O = Cu9S5 + 9NiS + 3NiSO4 + 8H2SO4

(12)Ni3S2 + 2CuSO4 = NiSO4 + NiS + Cu2S

leaching was carried out successfully for solving the prob-
lem of difficult separation of nickel and cobalt during the 
leaching process of high-grade nickel matte. Furthermore, 
significant shortening of the process flow was achieved in 
the new route though eliminating the electrolytic deposition 
process for copper removal [36]. In addition, according to 
the different properties of raw materials, a typical sulfuric 
acid leaching process adopting two stages of high pressure 
leaching of copper and nickel matte was proposed by Sher-
ritt Gordon Mines of Canada, and its process flow is shown 
in Fig. 4.

The total recoveries of nickel, cobalt, copper, and sul-
fur were more than 99.9% after the two-stage pressure acid 
leaching. The mechanisms of leaching are as follows [27, 
37]:

Part of the sulfur can be converted into sulfuric acid 
for sustaining to react with minerals, which is favorable 
for reducing the total acid consumption and improving the 
purity of the product effectively [27]. However, coating layer 
formed by another part of sulfur potentially covers valuable 
metals resulting in a decrease in metal leaching rate. The 
disadvantage of this process is that it has poor adaptability 
to raw materials and is only suitable for leaching high-grade 
ores. Furthermore, this process also possesses some defects 
as high requirements on equipment and poor continuous 
production capacity.

McDonald et al. [25] treated a high iron–low nickel con-
centrate by pressure oxidation at 250 °C, and the extrac-
tion of base metals from such nickel sulfide concentrates 
is rapid. The controlled oxidation of feed sulfide minerals 
demonstrated that the hydrothermal oxidation of pentlan-
dite occurs via violarite and subsequently vaesite. Under 
the conditions employed, the oxidation of pyrrhotite gener-
ates both pyrite and marcasite as intermediates while chal-
copyrite was noted to oxidize via a covellite intermediate. 
Furthermore, the oxidation of nickel sulfides, iron sulfides, 
and copper sulfides occurs at different rates. Muszer et al. 
[38] defined the behavior of complex copper mineral phases 
by studying the pressure leaching process of copper sulfide 
concentrate. Provis et al. [39] presented a semi-empirical 
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(16)
FeCuS2 + 2H2SO4 + O2 = FeSO4 + 4CuSO4 + 2S0 + 2H2O
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mathematical model for the acid-oxygen pressure leaching 
of nickel–copper matte; the primary controlling factor in 
the leaching process is found to be galvanic inhibition of 
the more highly oxidized copper and nickel sulfide species 
by less oxidized species, particularly nickel alloy and nickel 
subsulfide. Huang et al. [27] investigated the recovery of 
copper, nickel, and cobalt from the acidic pressure leach-
ing solutions of a low-grade sulfide flotation concentrates. 
The technique proposed by Huang et al. [27] included four 
main steps: acidic pressure leaching—solvent extraction 
separation of copper—high-temperature hydrolysis precipi-
tation removing of iron- selectively precipitated of nickel 
and cobalt using sodium sulfide. It was reported that the 
total percent recovery of copper could reach 95% or more 
and that of nickel and cobalt was all more than 99%. In the 
processing, the percent removal of impurities, such as iron, 
magnesium, and calcium, was all also near to 99%.

Atmospheric Leaching

Atmospheric Acid Leaching (AL)  Atmospheric acid leaching 
is considered as a potential technological route because it 
is conducted at a low temperature and requires open ves-
sels avoiding the need of expensive autoclaves and has the 

advantages of simple process, low energy consumption, and 
simple operation. AL process generally uses nickel sulfide 
concentrate as raw material, the main phases of which are 
nickel subsulfide, cuprous sulfide, and nickel–cobalt alloy 
[40, 41]. In the presence of sulfuric acid and oxygen, the 
solubility of metallic nickel, nickel subsulfide, and cuprous 
sulfide is different, as completely dissolved, partially dis-
solved, and undissolved, respectively. The following reac-
tions take place during the leaching [42]:

AL process has the advantages of simple process, 
low energy consumption, less equipment investment, 
and easy control of operating conditions [43, 44], but its 

(17)
3MS + 8HNO3 = 2NO + 3M

(

NO3

)

2
+ 3S0 + 4H2O

(18)FeS + 4HNO3 = Fe
(

NO3

)

3
+ NO + S0 + 2H2O

(19)M
(

NO3

)

2
+ H2SO4 = MSO4 + 2HNO3

(20)S0 + 2 HNO3 = H2SO4 + 2NO

(21)2NO + O2 + H2O = HNO3 + HNO2

Fig. 4   Schematic diagram of two-stage pressure acid leaching
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disadvantages, such as low leaching rate, difficult separa-
tion of leaching solution, high nickel content in leaching 
residue and large amount of waste water, also increase in 
cost of production.

Water Leaching  A pyrometallurgical pretreatment followed 
by hydrometallurgical processing plays an important role in 
the treatment of nickel sulfide ore. Water leaching is a typi-
cal combination process of hydro- and pyrometallurgy.

•	 Chloridizing Roasting–Water Leaching

In recent years, due to its good adaptability to feedstock 
and pollution-free treatment of sulfur, chloridizing roast-
ing–water leaching as an alternative low-energy technology 
has attracted wide attention in the processing of sulfide min-
erals [45, 46]. Generally, chlorine-containing reagents char-
acterized with variety and low price of origin materials, such 
as chlorine, hydrogen chloride, calcium chloride, sodium 
chloride, magnesium chloride, and aluminum chloride, are 
widely used as chlorinating agents in the process of roasting. 
Raw mineral materials are mixed with chlorinating agents 
and roasted at 300 ~ 450 °C. After that, nickel and cobalt in 
the roasted product are existed in the form of soluble chlo-
rides, which easily dissolve into the solution during water 
leaching. Because of high reactivity and leaching efficiency, 
chlorination roasting–water leaching possesses unique 
advantages for the treatment of low-grade nickel sulfide ore.

Kershner et al. [47] roasted nickel sulfide ore with sodium 
chloride at 450 °C for 2 h and then leached the roasted prod-
uct with dilute hydrogen chloride. When the pH value was 
1, the leaching rates of nickel and cobalt reached ~ 90% 
and ~ 95%, respectively. Mukherjee et al. [48] used sodium 
chloride as chlorinating agent for the chloridizing roast of 
sulfide concentrate. The results showed that the extraction 
rates of nickel and copper were all up to 99% by water leach-
ing after roasted at 350 °C for 4 h. V. A. Imideev et al. [49] 
optimized the roasting process of nickel sulfide concentrate 
with sodium chloride. The product obtained after being 
roasted with the mass ratio of sodium chloride to concen-
trate was 1:2 at 400 °C for 1.5 h, was carried out by water 
leaching, the leaching rates of nickel, copper and cobalt 
could reach 84.3%, 87.7% and 92.9%, respectively. Li et al. 
[50] proposed a novel temperature-programmed ammonium 
chloride roasting–water leaching process to extract nickel 
from polymetallic sulfide minerals. The results indicated that 
sulfide chlorination occurred because of ammonium chlo-
ride and the formed intermediates, including metal chlo-
rides and chlorine, and the final extraction rate of nickel can 
reach ~ 97%. Cui et al. [51] reported a new selective chlo-
rination roasting and water leaching process to treat complex 
nickel sulfide ore using anhydrous aluminum chloride as 
the solid chlorination agent. The chlorination mechanism 

analysis showed that the predominant matters contributing 
to the chlorination of talc, lizardite, and magnetite were 
aluminum chloride (both solid or gas) and the generated 
hydrogen chloride: however, the chlorination of metal 
sulfide (pentlandite, chalcopyrite, and pyrite) was mostly 
contributed by the generated chlorine. However, chlorina-
tion has strong corrosiveness to equipment, which reduces 
the economic benefits of this process.

•	 Sulfating Roasting—Water Leaching

The sulfating roasting process of nickel sulfide ore is 
essentially a process of selective oxidation of metals in min-
erals. In this process, air or oxygen-enriched air is gener-
ally used as oxidant, and a multiphase reaction takes place 
between solid phase and gas phase. After roasting, valuable 
metals such as nickel, cobalt, and copper are converted into 
sulfate, while iron is converted into ferrous oxide, so as to 
realize the separation of nickel and iron by water leaching. 
The involved main reactions of valuable metals taking place 
in roasting are as follows [52]:

The saturated vapor pressure of ferric sulfate at roast-
ing temperature (generally at 500–700 °C) is much higher 
than that of the sulfate of valuable metals (nickel, copper, 
and cobalt). Thus, iron mainly exists in the form of ferric 
oxide in the calcine. Theoretically, the effective separation 
of cobalt, nickel, copper, and iron can be achieved by water 
leaching. However, the gas phase reaction rate of Eqs. (23) is 
slow in the actual mineral reaction system, and the surface of 
mineral particles is easy to be coated by products during the 
sulfation as shown in Eqs. (24), resulting in the low extrac-
tion rates of cobalt, nickel, and copper. In order to optimize 
the process of sulfating roasting, Thornhill et al. [53] used 
sodium sulfate as roasting agent to improve the leaching 
rate of nickel. The reason is that sodium sulfate can destroy 
the stable structure of nickel ferrite (NiFe2O4) and make it 
transform into nickel sulfate. Yu et al. [54] also discussed 
the influence mechanism of sodium sulfate on the sulfating 
roasting of nickel sulfide concentrate. The sulfating reac-
tion interface can be moistened by composite sulfate melt, 
leading to an increase in activation sites of the interface. 
Meanwhile, the melt coated by the reaction interface acts 
as the medium for sulfur trioxide diffusion into the inner 
unreacted sulfide core, which realizes the efficient trans-
portation of sulfur trioxide through the chemical balance 
between sulfate ion and thiosulfate ion and further promotes 

(22)2MS + 3O2 = 2MO + 2SO2

(23)2SO2 + O2 = 2SO3

(24)MO + SO3 = MSO4
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the sulfate formation of nickel. Mu et al. [55] reported a pro-
cess for synchronous extraction of nickel and copper from a 
mixed oxide-sulfide nickel ore in a low-temperature roast-
ing system. In this process, sodium sulfate was used as an 
additive for improving the extraction of nickel by converting 
into Na-pyrosulfate, and more than 97% of nickel could be 
extracted after roasting at 450 °C for 4 h. Liu et al. [56] used 
ammonium sulfate roasting–water leaching process to treat 
low-grade nickel sulfide ore. Firstly, ammonium sulfate and 
nickel sulfide ore were mixed according to the mass ratio of 
4:5, and then roasted at 400 °C for 2 h for water leaching. 
The leaching rates of nickel, copper, iron, and magnesium 
were 83.48%, 76.24%, 56.43%, and 62.15%, respectively. 
Cui et al. [57] reported a two-stage roasting–water leaching 
process for extracting valuable metals from copper–nickel 
sulfide concentrate. In the first stage, ammonium sulfate was 
added and roasting was carried out at 500 °C for 2 h; in 
the second stage, sodium sulfate was added for roasting at 
680 °C for 2 h; finally, the leaching rates of nickel, copper, 
and cobalt were 92.1%, 97.6%, and 99.3% by leaching for 
2 h in water at 95 °C.

In conclusion, the sulfate roasting of nickel sulfide ore 
has the advantages of high efficiency, short process, and 
strong adaptability to raw materials, but there are also some 
disadvantages such as high energy consumption, high cost, 
and waste gas.

Other Leaching  There are other two routes in hydrometal-
lurgical process for nickel extraction: (i) electrolysis refin-
ing/electrolysis (using soluble anode, crude nickel anode, 
and nickel sulfide anode) and (ii) selective leaching—elec-
trolyte purification—electrodeposition. Among them, the 
second route has been developed rapidly and applied more 
widely. Electrolyte can also be used as one of the criteria 

for system selection, such as chlorination and sulfuric acid 
systems. Figure 5 shows a typical technological flow chart 
of chloridizing leaching—electrolyte purification—electro-
deposition process. In this process, due to high chemical 
activity of chlorine, high solubility of generated chloride 
and strong complexing ability to impurities, nickel, cobalt, 
and copper in high-grade nickel matte can dissolve into the 
solution at normal temperature and pressure. Moreover, by 
adjusting the feeding rate of chlorine and raw materials, the 
redox potential in the leaching process can be controlled 
to realize continuous leaching. In addition, the system of 
ammonia, acid, and water can be selected as medium for 
leaching process.

Eksteen et al. [58] reported the outcomes of exploratory 
research relating to the atmospheric pressure and ambient 
temperature leaching of nickel and cobalt from a Western 
Australian low-grade, disseminated, nickel–cobalt sulfide 
ore, and the subsequent recovery by ion exchange (IX) using 
alkaline glycine solutions in mildly oxidizing environments. 
The study showed that even though glycine-based leach rates 
for nickel and cobalt are slow, no passivation was observed 
and about 83.5% nickel and 76.3% cobalt were extracted 
at room temperature using conventional bottle rolls over 
a 672 h period using a multistage extraction (i.e., leachate 
decant and reagent refresh with either new reagent or recy-
cled barren raffinate). Amilton et al. [59] reported commer-
cial chelating resins that can be applied in leach solutions 
with different compositions, and also possible innovations 
for uses of chelating resins to recover metals from mining 
process and mining tailings.

Fig. 5   The flowchart of chlorid-
izing leaching process
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Other Metallurgical Processes

At present, the resources of high-grade and easy to treat 
nickel ore are diminishing, and more refractory low-grade 
nickel sulfide ore, oxidized ore, and mixed ore will even-
tually become the main source of nickel. Therefore, many 
methods with wider adaptability to raw materials have been 
developed, aiming at the efficient use of various existing 
nickel resources.

Bioleaching Process

Bioleaching is generally considered to be one of the effective 
technologies to directly extract metals and replace the tradi-
tional beneficiation and metallurgy process. Due to its char-
acteristics of low investment, low cost, simple process flow, 
and environmental-friendly, bioleaching is suitable for treat-
ing low-grade and other refractory mineral resources and 
is considered to be the most promising process to replace 
the traditional leaching technology [60–62]. Its application 
in metallurgical industry has involved a variety of metals, 
among which the extraction of copper, uranium, and gold, 
etc. from ore has been industrialized. The bioleaching pro-
cess of nickel and cobalt is still in the experimental stage. 
Bioleaching uses the oxidation or reduction of microorgan-
isms to soak nickel and cobalt out of ore (or deposit) and 
make them enter the solution [63, 64]. The valuable com-
ponents can be separated from the original minerals in the 
form of soluble or precipitation, which is the direct effect of 
bioleaching process. Moreover, the process of obtaining val-
uable components through the reaction of biological metabo-
lites and minerals is the indirect effect of the bioleaching 

process. The schematic diagram of biological leaching of 
sulfide ores is shown in Fig. 6.

According to the characteristics of nickel ore resources 
in China [65], the research on bioleaching mainly focuses 
on low-grade nickel sulfide ore. The current research results 
show that low-grade nickel ore resources (lean ore and tail-
ings) had good bioleachability, and tailings were easier to 
leach than lean ore. But currently, the mechanism of the 
bioleaching process is undefined in addition to the slow 
bioleaching kinetics. Furthermore, the bio-oxidation process 
is an exothermic process, and each kind of bacteria can only 
adapt to a certain temperature range. Consequently, when the 
bio-oxidation process reaches a certain temperature, engi-
neering problems such as overheating in the reactor have 
become the bottleneck of application.

New Metallurgical Processes

Wang et al. [66, 67] proposed a new process route for treat-
ment of nickel complex minerals. Ionic liquids were used as 
solvents to selectively dissolve the reconstituted products, 
and then electrolysis/molten salt electrolysis is performed 
to obtain valuable metals and precious metals, respectively. 
The specific process flow is shown in Fig. 7.

In general, the content of iron in nickel sulfide ore is high, 
and it is rich in precious metals and other refractory met-
als. Ionic liquid can achieve selective extraction of copper, 
cobalt, and nickel [68, 69]. The remaining slag mainly con-
tains iron oxide and preliminarily enriched precious met-
als and refractory metals. Iron oxide contained in the slag 
can be electrolyzed in alkaline aqueous solution to prepare 
micro–nano-iron. However, it is still very difficult to realize 
the extraction, separation, and refining of precious/refractory 
metals through the current process, and new methods need to 

Fig. 6   Schematic diagram on biological leaching of sulfide ores
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be further sought. In recent years, the development of molten 
salt electrolysis process continues to attract attention, the 
most typical of which are FFC Cambridge process [70, 71] 
and SOM method [72, 73]. Numerous studies [74–77] have 
shown that a variety of refractory metals such as tantalum, 
niobium, titanium, and some superalloys can be successfully 
prepared by molten salt electrolysis. It verifies the feasibil-
ity of treatment complex multicomponent composite ore 
using molten salt electrolysis. Simultaneously, a new idea 
can be provided that precious metals and refractory metals 
can be separated and produced from multicomponent slag 
by molten salt electrolysis.

Conclusion and Prospect

By comparing the main methods of extracting nickel from 
nickel sulfate ore listed above, it can be found that the typical 
pyrometallurgical process is simple, large in ore throughput, 
and easy to realize an industrial application. However, its 
disadvantages, such as high energy consumption, low added 
value of products, large loss of nickel, and the necessary 
waste-gas treatment, limit its development. Hydrometallurgy 
has become the mainstream technology for extracting nickel 
from nickel sulfide ores, with the advantages of high recov-
ery rate and high product purity. Nevertheless, the high cost 
of wastewater treatment increases the capital investment of 
hydrometallurgical technology. Biometallurgy is regarded 
as the most promising clean technology in future because 
of its advantages of low energy consumption, low cost, and 
high metal recovery rate, but its shortcomings such as long 
leaching cycle, difficult to cultivate required bacteria, and 

susceptibility to pollution in the treatment process hindered 
its large-scale industrial application.

In recent years, with the depletion of global nickel 
sulfide concentrate resources and the rapid growth of nickel 
demand, the contradiction between nickel supply and 
demand has become increasingly prominent. Therefore, 
the efficient and clean extraction of nickel resources from 
nickel sulfide ore has important strategic significance for 
ensuring its supply safety and promoting the sustainable 
and healthy development of strategic emerging industries 
such as new energy vehicles. Based on the above analysis of 
nickel extraction technology from nickel sulfide ore and its 
advantages and disadvantages, the development trends and 
relevant suggestions for further strengthening the research 
on nickel extraction technology from nickel sulfide ore are 
put forward as follows:

(1)	 Atmospheric acid leaching will still be the preferred 
process for hydrometallurgical treatment of low-grade 
nickel sulfide ore. Although collaborative leaching can 
effectively shorten the process flow and reduce energy 
consumption and production costs, it is still in the labo-
ratory research stage. Therefore, how to further expand 
the processing scale and increase the nickel recovery 
rate are the focus and difficult point that urgently needs 
to be broken. Moreover, the selective extraction of 
valuable metals cannot be achieved in the atmospheric 
leaching of nickel sulfide ore. It should be recom-
mended to further strengthen the basis and application 
of selective extraction of nickel from nickel sulfide ore.

(2)	 Chlorination roasting process provides a cost-effective 
way to deal with low-grade nickel sulfide ore and tail-
ings. With the development of new materials, the corro-

Fig. 7   New route for compre-
hensive extraction of valuable 
metals/alloys from complex 
mineral phases
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sion problem of reaction equipment has been alleviated, 
but how to efficiently separate and purify the different 
metal components in the leachate is still the focus of 
attention.

(3)	 Nickel extraction technology from nickel sulfide 
ore based on “sulfated roasting–water leaching” can 
achieve high efficiency and clean extraction of nickel, 
but how to improve the utilization efficiency of sulfur 
in sulfated roasting is a bottleneck problem that needs 
to be solved urgently.

(4)	 Bioleaching has significant advantages in the treatment 
of low-grade nickel sulfide ore, but how to shorten the 
leaching period, improve the leaching efficiency, and 
develop strains that are easy to cultivate and adapt to 
different environments are still the bottleneck problems 
restricting its large-scale and extensive application.

On the other hand, with the decrease of high-grade and 
easily treatable nickel sulfide ore resources, the production 
of nickel increasingly depends on low-grade and refractory 
nickel oxide ore and nickel mixed ore. The development 
of related smelting technologies has promoted the energy 
saving and emission reduction of nickel industry to a large 
extent and has a broad development prospect. Furthermore, 
the waste brought from the industrial production process, 
such as spent Ni-based super alloys, batteries, solutions, 
and catalysts, can be used as the secondary resource of 
nickel, and it is also one of the important resources for the 
extraction of nickel in the nickel industry at present [10]. 
In the United States, even in the context of deadly COVID-
19 global pandemic, the secondary recovery and refining 
of nickel scrap produces about one hundred thousand tons 
of nickel in 2020, which overshoots the metal gross from 
ore processing and matte refining sources combined [9]. 
Nickel production from the secondary materials has a great 
potential because only ~ 40% of the available nickel-bearing 
scrap is currently being recycled. Based on the demand for 
effective use of resources, strengthening the comprehensive 
utilization of secondary resources and developing material 
recycling technology can further promote the sustainable 
development and the energy saving and emission reduction 
of the metallurgical industry.
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