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Abstract 
The world of stainless steel production was 52 Mt in 2019, and the annual amount of slags including electric furnace, AOD 
converter, ladle, and casting tundish, was estimated at 15–17 Mt. Nowadays, only a minor fraction of slags from stainless 
steel production is utilized and a major part goes to landfilling. These slags contain high-value elements (Cr, Ni, Mo, Ti, 
V…) as oxides or in metallic form, some of them being environmentally problematic if dumped. Thus, any approach toward 
circular economy solutions for stainless steel slags would have great economic and environmental impacts. This contribution 
examines the slags from different process stages, and the available and new potential means to increase internal recycling and 
to modify slags composition and structure by optimizing their properties for reclaiming in high-value applications. Eventual 
methods are, e.g., fast controlled cooling and modifying additives. Means to recover valuable metals are discussed as well 
as potential product applications to utilize various slags with different chemical, physical, and mechanical properties. By 
integrating the treatments and steering of slags′ properties to the total process optimization system, the principles of circular 
economy could be achieved.
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Introduction

Stainless steel is the most rapidly growing metal with an 
annual growth rate of 5.33% (1980–2019) [1]. That num-
ber matches well with Fig. 1 which shows the recent pro-
gress from the year 2005: the production has doubled in 
15 years and approached 52 Mt in 2019 belonging to the 
same category with aluminum and copper as to the volume 
and value. The overall world steel production was 1869 
Mt/2019 [2]. The iron and steel production together gener-
ated a massive quantity of slags (≈ 600 Mt/year). Such vol-
umes cannot be landfilled for environmental and economic 
reasons, and various treatments and applications have been 
intensively developed. Nowadays, a high percentage is either 
recycled, reused, or valorized in different applications. The 
total amount of slags from stainless steel production was 
estimated as 15–17 Mt/year including slags from different 
process stages, EAF melting, AOD & VOD converting, 
ladle operations, and casting [3]. The present situation of 

slags from stainless steel production is different: on aver-
age, only a minor fraction is utilized, and a major part goes 
to landfilling. The utilization degree varies from zero to 
100% depending on the plant′s course of action. An appar-
ent reason is that stainless steel plants are small compared 
to carbon steel plants, and the amount of slags are minor, 
respectively. Hence, landfilling has been a simple means 
and permitted thus far, but problems may arise in the long 
run. Another reason is the complexity of these slags, which 
makes the treatment and utilization more demanding. It also 
needs investments in equipment. Consequently, the slag 
processing has not been considered economically attractive 
enough, and many steel plants have settled down to steel 
production and marginalized secondary functions. But there 
are several positive grounds as well which are highlighted 
through this article.

Differing from blast furnace and converter slags, stainless 
steelmaking slags contain high-value elements (Cr, Ni, Mo, 
Ti, V) as oxides or in metallic form. An efficient recovery 
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of these metals is an economic driver and an environmental 
target for saving the use of natural resources. Another envi-
ronmental aspect is that some components in slags can be 
environmentally problematic if dumped. Cr (VI) is a well-
known risk, and its formation should be eliminated. Cr and 
Ni are also carcinogens [4, 5]. Fluorspar  (CaF2) is commonly 
used as flux in stainless steel slags causing an environmen-
tal risk. Dusting is a further problem characteristic to slags 
with high basicity. To summarize the foregoing aspects, all 
actions towards circular economy solutions will have a great 
economic and environmental potential. The aim of this con-
tribution is to review available and new feasible means to 
increase internal recycling, and to modify slags composi-
tion and structure as objectives to optimize their properties 

for reclaiming in different high-value applications. Eventual 
methods are, e.g., modifying additives and fast controlled 
cooling. Different means to maximize the recovery of valu-
able metals are reviewed as well as potential product appli-
cations to utilize various slags.

Slags from Different Unit Processes

An overall scheme of stainless steelmaking is shown in 
Fig. 2. The process starts with melting stainless scrap, ordi-
nary recycled steel charging, and alloying additions (FeCr, 
FeMo, FeNi) in an electric arc furnace (EAF). The aim is to 
prepare a liquid   steel charge close to the final composition 
as for the main alloying elements and proper carbon and 
silicon contents for the subsequent AOD (Argon Oxygen 
Decarburization) or alternatively VOD (Vacuum Oxygen 
Decarburization) converter. Melting with arcs assisted by 
oxygen blowing results in a partial oxidation of [C] and most 
of [Si] to final contents about 1–1.5% C and 0.1–0.2% Si. 
The Cr oxidation is strived to restrict and to avoid too high 
 Cr2O3 content in the slag via these residual contents, espe-
cially [%Si]. In the case of direct VOD treatment (without 
AOD process), lower [C] is required after the EAF.

In the AOD converter, carbon is oxidized to low contents 
(≤ 0.05%) by  O2 + Ar  (N2) blowing starting with 100%  O2 
and by stepwise lowering  pO2 from 100% to zero and increas-
ing  pAr from zero to 100%, in tandem. Carbon oxidation is 
preferred to Cr oxidation when  pCO is decreased by neutral 
gas (Ar,  N2) dilution. In VOD converter,  pCO is reduced by 

Fig. 1  The growth of world stainless steel production in the years 
2005–2019 [1]

Fig. 2  The scheme of different 
unit processes in stainless steel-
making and formation of slags

Table 1  Approximate compositions and amounts of slags from stainless steelmaking

a Even higher when the slag is reduced, and steel deoxidized with Al- or Ca-aluminate added into the slag

Unit process CaO SiO2 MgO Al2O3 Cr2O3 CaO/SiO2 CaO + MgO/SiO2 Amount kg/t steel Minor other components

EAF 40–45 25–30 5–12 5–10 3–7 1.5–1.8 1.7–2.0 100–150 Fe, Mn, Ti, V, Ni
AOD 55 25–30 5–10 1–5a 0.5–1 2 2.5 100–120 CaF2

LF-CC 55–60 20–30 5–10 1–5a 1–5 2–3 2.2–3 15–20 CaF2, Ti, Nb, V…
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low pressure, i.e., vacuum. Anyway, towards very low [C], 
some [Cr] is oxidized, and quite high  Cr2O3 contents about 
25% can be found in AOD slag after the decarburization 
period. Therefore, the next necessary stage is slag reduction 
done by adding FeSi or eventually Al into the steel melt and 
stirring with argon gas. After the slag reduction stage, the Cr 
content in the slag is aimed at low contents e.g., 0.5%  Cr2O3. 
Then the slag is tapped to a slag pot, and lime and fluorspar 
are added into the converter to form basic liquid slag for a 
short desulfurization treatment with intensive Ar stirring. 
In addition to the composition of AOD slag in Table 1, the 
slag after reduction can contain several percent fluorspar.

After tapping into the ladle, CaO and  CaF2 are added 
again to form a basic slag to protect the steel from the 
influence of air, to absorb deoxidation products from the 
steel, and to improve steel cleanliness via ladle metallurgi-
cal (LM) treatments under Ar stirring. Trimming alloying 
is performed as well. It is common that the LM treatments 
take place in a ladle furnace (LF) which makes tempera-
ture adjustment easy. The LF slag follows on the ladle to 
continuous casting (CC), and after the cast end, the slag 
is poured into a slag pot. An adjunct slag used in the CC 
tundish is typically more acidic. Its function is thermal 
insulation and protecting steel during casting. The amount 
is minor and was not presented separately in Table 1. It 
can be incorporated in other slags. As a general comment, 
MgO (dolomitic lime) is added into slags to protect mag-
nesia-based refractory linings. It influences the properties 
of the slag, e.g., basicity, Cr solubility, melting tempera-
ture, and viscosity as well as the mineralogical structure 
after solidification and cooling.

In Table 1, the main three types of slags are described. 
The figures are approximate composition ranges based on 
Nordic steel plants. They refer to slag compositions in situ 
at the end of each process stage and do not include eventual 
large metal lumps. Of course, slags are factory specific and 
can differ substantially due to various raw materials, process 
operation, and steel grades to be produced. In Table 1, the 
slags from different unit processes differ both in basicity, Cr 
content, and minor impurities. Except for the oxide form-
ing components in the slag, also less-oxidizable metals like 
Ni and Mo can be found but mostly in metallic particles 
ejected from the bulk steel or endogenously formed inside 
the slag via the reduction process. In addition, slags can 
retain macroscopic metal particles, splashes, skulls, tapping 
remains, etc., which are not included in the slags´ composi-
tions above. Their removal and recovery in an early stage 
of a treatment process is essential. Nowadays, a typical 
slag processing route in a stainless steel plant consists of 
wet grinding and metal separation. It is emphasizing metal 
recovery but has quite restricted ability to slag recycling 
and productization. Depending on slag composition, cooling 
method (slag pit vs. intensified water cooling), and grinding, 

the basic slag material is delivered to purposes such as road 
and infrastructure construction. Unfortunately, most slags 
from stainless steelmaking still go to landfilling which needs 
space, causes loss of valuable resources, and is hazardous 
to human health and the environment. As mentioned ear-
lier, the main risk is the eventually high Cr content which 
can lead in contamination of soil and water in the form of 
leachable Cr (VI). Cr and Ni are also carcinogens. Avoiding 
negative impacts is a strong motivation for emphasized slags 
utilization, but there is also a great economic potential via 
improved recovery and slags valorization. In the following 
chapters feasible treatments for improved metals, recovery 
and valorized utilization of slags are surveyed. Both estab-
lished methods and new innovative solutions are discussed. 
In many cases, the references are from carbon steel produc-
tion, whereupon the special features of slags from stainless 
steel making should be considered when contemplating 
potential applications.

Metals Losses in Slags

Metals as dispersed fine particles or dissolved as oxides in 
slags are difficult to recover. Let us consider our primary 
interest, Cr as an example to examine which factors influ-
ence its presence in the slag. The content of oxidized Cr 
“Cr2O3” in the end slag of the EAF process or the slag from 
the AOD reduction stage depends on the oxygen potential 
(defined as  pO2 or  a[O]), which is determined by the ambient 
contents (activities) of [Cr] and the controlling solutes [Si] 
and eventually [C] in the EAF. Hitherto, the ambient tem-
perature as well as the slag and liquid metal compositions 
influence via the activity of  Cr2O3 and  a[Cr], respectively. 
Thermodynamic and kinetic aspects were investigated and 
discussed, e.g., by M. Guo et al. [6, 7]. The equilibrium Cr 
distribution between the slag and steel (%Cr)slag/[%Cr]steel 
can be derived from the reaction equation:

Chromium oxide was simplified here as 3-valent oxide 
 Cr2O3, although it is well known that in low  pO2 conditions, 
also 2-valent oxide CrO exists [8, 9]. In a process with oxy-
gen blowing,  pO2 or  a[O] is controlled by carbon oxidation 
reaction,  a[O] increases, and the equilibrium is approached 
from left to right. The ambient top slag can become even 
supersaturated with oxygen via Cr oxides, especially when 
 O2 top blowing is applied. In a reduction stage,  a[O] is con-
trolled and pressed down by adding silicon or aluminum, and 

(1)2[Cr] + 3[O] ↔
(

Cr2O3

)

,

(2)K1 =
aCr2O3

a
2
Cr

⋅ a
3
O

.
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the reaction should go backwards. The gross reactions can 
be written as follows:

According to several researchers, a primary reduction 
mechanism is the reaction between the metal bath and the 
emulsified slag droplets due to the large surface area of the 
droplets as well as efficient mass transfer due to the inten-
sive stirring conditions in a side-blown converter [10–12]. 
When the reaction takes place at the slag/metal interface, the 
formed metal can easily merge into the bulk metal. However, 
when reduction occurs inside the slag-metal emulsion, the 
formed metal can end up in the bulk slag and remain there as 
fine droplets or precipitates. Then the settling rate depends 
on several factors like the droplet size, slag′s viscosity, as 
well as the density difference and interfacial tension between 
slag and metal. In an AOD converter, the slag composition, 
its properties, and the process parameters, like temperature 
and gas flow rate, are relatively well controlled, and con-
sequently, the reduction rate and the final reduction degree 
can be reasonably predicted [12]. The situation in the EAF 
smelting is different. As seen in Table 1, the  Cr2O3 content 
is much higher in the EAF slag than in the AOD reduc-
tion slag. Also, the scatter can be quite high (up to 10–15% 
 Cr2O3 [6]), and the control of final  Cr2O3 is difficult due to 
the complexity of the process with varying raw materials 
and melting efficiency, injected additions, slag’s behavior 
(eventual foaming), and more or less contradictory targets 
when trying to reconcile the final [C] and [Si] contents on 
the one hand and metals losses into the slag (Cr, Mn, Mo, 
Ni…) on the other. When optimizing the operation of the 
total EAF–AOD integrate, metallurgical and productivity 
aspects are of primary concern. In addition, maximizing 
metals recovery and minimizing losses and steering of slags 
properties for subsequent treatments and final applications 
should be inevitable issues as well.

Metals Separation and Recovery: Pyro‑ 
and Hydrometallurgical Treatments

Metals recovery from slags can be done via physical and 
chemical means. Physical separation is applicable for large 
metallic particles; the slag should be first properly commi-
nuted to liberate the metals after which metal is removed by 
gravimetric and/or magnetic methods [13–16]. EAF slags 
have the best potential in good metal recovery due to the 
highest metal content. Conventionally, slags are merged for 
treatments, but it would be possible to handle each slag type 

(3)
(

Cr2O3

)

+ 3∕2[Si] = 2[Cr] + 3∕2
(

SiO2

)

,

(4)
(

Cr2O3

)

+ 2[Al] = 2[Cr] +
(

Al2O3

)

.

independently, even by considering slags from production 
of different steel grades (e.g., Ni, Mo, Ti, V). Then each 
slag type could get its own specific post-treatment without 
getting blended into the big bulk. The recovered metals can 
be recycled as reverts to process. The quantity is typically 
several percent of the slag weight. In the case of stainless 
steel, the value of Cr is the leading factor; its content is high 
in all stainless grades throughout the process stages. The 
comparison of unit prices of valuable elements (€/kg) gives 
an order: Cr <  < Ni <  < Mo < V. In special cases , when high 
Ni or Mo steels are produced, their value in the steel and in 
metallic inclusions in slag can be even higher than the value 
of Cr, respectively. For an efficient recovery, it is important 
to keep each special type of slag as its own lot and not to mix 
and dilute the valuable element into the big bulk of slags. 
As to other minor but valuable elements, vanadium contents 
are typically max tenths of a percent, but its recovery can 
be worth an inquiry. The same concerns titanium although 
it is less expensive.

For more quantitative recovery a pyrometallurgical treat-
ment is an option. It might be a separate “reduction furnace” 
in which valuable metals could be reduced from the slag to 
very low contents in a properly stirred reactor under highly 
reducing conditions, e.g., in the presence of a Fe–C or Fe–C-
Cr melt. Also, other reductants like Si and Al are possible 
[15–21]. Cr bound  is most difficult to reduce in spinels like 
 MgCr2O4. Liquid slag and high temperature ≥ 1873 K make 
beneficial conditions to achieve over 95% Cr recovery. Any 
ready industrial applications are not on the record, but such 
approaches have been examined. Both electric furnaces with 
electrodes and induction furnaces are feasible reactors. The 
product is liquid Fe–C–Cr alloy containing also other valu-
able metals depending on the initial slag composition. When 
a pyrometallurgical slag treatment furnace can be installed 
on-site in the steel plant, direct charging of the liquid slags 
can be applied. Then a much faster process and significant 
energy saving are achieved. Also, the metallic product is 
possible to use in situ. Depending on the unit processes 
inside a steel plant integrate, it can be possible to combine 
slags from stainless steelmaking with other industrial by-
products like blast furnace slag, slag from FeCr process, mill 
scales, pickling sludges, etc. [21–25].

Also, hydrometallurgical treatments afford means for 
recovery of valuable metals from stainless steelmaking slags. 
In a European CHROMIC project (Efficient mineral process-
ing and hydrometallurgical recovery of by-product metals 
from low-grade metal-containing secondary raw materials), 
a comprehensive characterization of slags and a survey of 
different potential methods for metals recovery were per-
formed [13, 14, 25–28]. Extraction of Cr has been promoted, 
e.g., via mechanical or microwave activation, alkaline roast-
ing/leaching, and acid leaching. Other metals like V, Mo and 
Ni are possible to leach and recover selectively [25, 29, 30]. 
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On the other hand, leaching tests can be used to determine 
the stability/instability of metals like Cr and V in the slag’s 
mineral structure [31]. As pointed out earlier, the risk of 
leachable Cr and its oxidation to Cr(VI) is a potential risk in 
landfilled slag as well as in certain applications like fertilizer 
and soil conditioner. Therefore, the “residual chromium” in 
the slag should be stabilized as strongly as possible. For 
that purpose, binding Cr in spinel structure is a firm solu-
tion [31–37]. Low basicity and high  Al2O3 and MgO favor 
spinel formation. A “spinel factor” was developed to define 
the dependency:

The coefficient n gets values from 1 to 4 depending on 
the oxidation state of iron  (FeOx →  Fe2O3). A strong spinel 
formation is attained with factor sp > 5 [32–35].

Steering Slags Properties for Applications

As described afore and presented in Table  1, several 
slags are generated in stainless steel smelting and refin-
ing and each slag type has its own chemical and miner-
alogical characteristics. They are mainly defined by the 
metallurgical demands of the targeted steel grade and 
eventual specific requirements (ferritic, austenitic, other 
high steel grades). The first one, i.e., EAF slag (black 
slag, EAFS) is mainly formed by calcium silicates, and 
it is rich in metallic oxides  (Cr2O3, FeO, MnO), in some 
cases up to 10% or even more. The minerals observed 
in the EAFS are β-Dicalcium-silicate  (Ca2SiO4), Bre-
digite  (Ca1.7Mg0.3SiO4), Merwinite  (Ca3MgSiO8), Meli-
lite  (Ca2Al2SiO7—Ca2MgSi2O7), and Spinels ((Fe,Mg)
(Cr,Fe)2O4). This slag is compact and has a good volume 
stability. Characteristic to these slags is a wide composi-
tion variety owing to the batch process and heterogeneity 
of charge materials.

In the AOD process, the primary decarburization slag 
is reduced and adjusted to higher basicity for desulfuriza-
tion and after this treatment tapped into a slag pot (single 
slag practice). In the case of demanding final sulfur target, 
the reduction slag can be tapped and an additional slag 
with higher basicity can be formed (2-slag practice). AOD 
reduction slag (AODS) is typically more basic than the 
EAFS and has a white color due to its low Fe, Mn, and Cr 
oxides. Mineral composition is not very divergent from 
EAFS consisting of calcium silicates and occasionally 
free lime  (CaOfree) and cuspidine  (Ca4F2Si2O7) originating 
from fluorspar additions for slag’s fluxing, and no spinels. 
It is collected in slag pots in which also the desulfuriza-
tion slag is poured in the case of 2-slag practice. AODS 
is composed mainly by crystals of β- and γ-dicalcium 

(5)
Factor sp = 0.2MgO + 1.0Al2O3 + nFeO

x
− 0.5Cr2O3(wt%).

silicate  (Ca2SiO4). These slags tend to disintegrate by 
the phase transition from β- to γ-dicalcium silicate dur-
ing cooling, causing dust generation. Another instability 
problem comes from hydration of free lime  (CaOfree) and 
periclase  (MgOfree) which are typically present in basic 
slags (AODS, LFS). Conventional “hot modification” of 
slag can be performed during slag tapping/pouring or in 
the slag pot by adding a “stabilizer” (borate, MgO,  Al2O3) 
which prevents the dust-forming β-C2S to γ-C2S transition 
[36–41].

A portion of the AODS slag is accompanying steel to 
the Ladle furnace where slag’s composition is further 
adjusted by suitable additions (CaO, MgO,  CaF2, Ca-alu-
minate slag) depending on the steel grade. The main func-
tions and requirements of the ladle furnace slag (LFS) are 
to protect steel from contamination with air, to minimize 
heat losses, to improve cleanliness by absorbing inclusions 
from steel, and to minimize the wear of refractory lining 
[42]. This slag has a similar elemental and mineral compo-
sition as that one coming from AOD desulfurization, and 
thus, it is practical to incorporate them together. After all, 
in the stainless steel production, two basic types of slag 
can be distinguished: black EAFS with higher contents of 
metallic oxides and low basicity (C/S ≈ 1.5), and white 
slags from AOD, VOD, and LF, which are more basic 
(C/S ≥ 2.0) and with lower contents of metallic  oxides.

Effects and Potential Applications of Controlled 
Cooling

Apart from slag chemistry, cooling rate is another way to 
control the mineralogical structure of the solidified slag. 
Slag’s “journey” from the process conditions ≥ 1600 ºC to 
outdoors temperature is, thus, extremely crucial, and it is 
strongly connected to utilization of slags in different applica-
tions. For different controlled cooling rates, several methods 
are available from slower to faster cooling: free air cool-
ing in slag pot or bed < the same with water spraying < air 
granulation < water quenching < pouring thin layer on metal 
substrate or corresponding rapid cooling technique [43–50]. 
Rapid cooling can prevent crystallization in accordance with 
the phase diagram resulting in an amorphous glassy struc-
ture, encapsulating eventual metal particulates and solid 
oxides, and thereby lowering the solubility of heavy metals. 
Such a slag can be used for road construction. The tendency 
for glass formation is characteristic for acid viscous silicate 
slags and, thus, depends on both the chemical composition 
and the cooling conditions. Glasses, such as granulated 
slags, can be regarded as supercooled liquids with very high 
viscosity. By enhancing the fraction of amorphous material 
in a slag, the potential hydrating properties are improved, 
and the slag can be used in cement and concrete products for 
high-quality construction applications. Controlled cooling 
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conditions can be a means to affect minerals formation and 
transformation and, consequently, the solubility of elements 
such as Cr, Mo, and V. Their leachability depends on the 
distribution between glassy and crystalline phases which is 
influenced by the whole cooling curve including the high-
temperature liquid and liquid–solid stages too [48–50].

Controlled slag cooling process gives a good opportu-
nity for heat recovery as hot air or steam [51–57]. When 
producing amorphous slag as a substitute to cement dry 
granulation by air is the best choice. Such methods like 
rotary drum, spinning disks, and rotary cups are potential 
methods, offering the advantage of generating uniform and 
small grains at a lower energy consumption rate [52]. Better 
heat exchange is attained with smaller droplets resulting in 
better heat recovery and higher temperature, and the slag is 
quenched faster with less coolant. A two-step heat recovery 
system consisting of a fluidized bed, followed by a packed 
bed has been proposed to get maximal energy recovery effi-
ciency, as both high outlet gas temperature and low slag dis-
charge temperature are achieved [52]. In this form, the heat 
recovery is, however, only for energy storage before its final 
utilization. Better total energy efficiency could be achieved 
via chemical energy recovery methods which afford high 
energy density and zero loss when applied on-site without 
any transportation. Examples of processes under investiga-
tion are methane reforming and coal gasification [55, 56]. 
Hydrogen production by decomposition of  CO2–CH4 over 
hot-granulated slag in a packed bed has been studied. The 
slag acted not only as thermal media but also as a catalyst 
promoting the decomposition process [58, 59]. Thermoelec-
tric power generation appears to be an emerging technology 
in the future with many applications. Combined with an 
appropriate phase change material (PCM) as energy storage 
to solve the current mismatch between the high slag tem-
perature and much lower operating range of thermoelectric 

materials, this technology might suit to the recovery of slag 
waste heat energy as well [52, 60].

Current and Novel Slag Products and Applications

In general, several steel slags have beneficial properties such 
as good strength, durability, and latent pozzolanic (cementi-
tious) properties that make them attractive and potentially 
suitable for engineering applications, such as infrastructure 
construction, soil stabilization, neutralizer, as filler or binder 
in concrete or as drainage or low-permeability barrier layers 
[61–67]. Slags from stainless steelmaking are potential as 
well provided that the best suitable slag type is selected and 
modified by appropriate additions, cooling method, or other 
pre-treatments, i.e., tailoring for each specific application. 
Electric arc furnace slags (EAFS) have physical properties 
comparable to natural aggregates such as granite, e.g., high 
compressive strength and resistance to abrasion and, thus, 
fitted as landfill construction material. More basic slags 
(AODS, LFS) are potential substitutes as cementitious bind-
ers, thus, cutting  CO2 emissions of the cement production 
[64–69]. Alkali activation is used to improve cementitious 
properties and to form hardening matrix, geopolymer [69, 
70].

Different product applications of metallurgical slags in 
general and potential for stainless steel slags are collected 
in Fig. 3 by completing the previous process scheme. An 
essential stage is slags’ treatment, which can be specific for 
each slag type and dependent on the target product. Recov-
ery of metals and direct return to the in-plant processes or 
eventual external use are performed in this stage. Internal 
recycling of slag is possible as well, e.g., a part of AODS/
LFS could be returned to EAF as a CaO + MgO source and 
slag forming agent. Thereafter, the slag lots continue to 
their final purposes, products, and uses. Some of these were 

Fig. 3  The scheme of different 
unit processes in stainless steel-
making, slags formation, treat-
ment, and product applications
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already discussed above. The use in fillers for instance as 
an ingredient in asphalt concrete has been studied [71, 72]. 
Precipitated calcium carbonate (PCC) is a relatively valuable 
product as a filler and pigment for paper industry. The con-
version of slag to PCC means carbonization of CaO (MgO) 
in the slag to form  CaCO3. Such decarbonization processes 
have been intensively studied; few examples are in refer-
ences [73–77]. As a measure to mitigate  CO2 emissions, it 
was estimated that utilization of one ton of EAFS for carbon 
capture could mineralize 0.38 tons of  CO2 in the flue gas, via 
an accelerated carbonation process. The carbonated EAFS 
product could be used in cement mortar, with additional ben-
efits. The whole global  CO2 reduction potential by applying 
mineralization for iron and steelmaking slags was approxi-
mated as 0.137 Gt  CO2, per annum [57]. All these applica-
tions are substitutes for virgin materials and thus save natural 
resources and reduce  CO2 emissions. Two dashed arrows 
between the “slag line” and “product line” describe the 
interactive relation slag´s steering/treatment ↔ application/

product. By integrating the treatments of slags and steering 
of their properties to the total process optimization system, 
the targets of circular economy could be attained, and the 
portion of landfilling minimized and even reset to zero.

Economic Viewpoint

The foregoing survey mainly started from environmental and 
metallurgical standpoints. For more advanced development 
and industrial exploitation, there must also be an explicit 
economic incentive. Figure 4 strives to outline the economic 
driver for slags treatment and productization. In the cur-
rent situation, when most of stainless slags are landfilled, it 
means expenses (from tens to few hundreds €/t depending 
on the disposal tax and handling costs.

Anyway, the value is negative: large amounts and high 
total cost. By refining waste to resource and final useful 
products, the value turn to positive to tens/hundreds/thou-
sands €/t. The highest value Ca-based products might be 

Fig. 4  Schematic illustration of 
the economic driver for slags’ 
productization and reclaiming 
in high-value applications. The 
relative amounts of different 
products were approximated by 
the width of each box

Fig. 5  Estimated relative values 
of cash flow for different slag 
products (columns) and respec-
tive segments of slags (symbols 
blue square, red triangle) (Color 
figure online)
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such products like food additives. Along with the value-
added production, the treatment expenses tend to grow and 
the quantities to decrease. As an offshoot of a large inte-
grate, it can utilize the ready infrastructure which means low 
investment costs and raises its attractiveness. In Fig. 4, the 
conceivable volumes are presented by the width of each box. 
The fraction of “Landfilling” corresponds to the remaining 
landfilled amount after full productization.

Another economic approach is presented in Fig. 5 in 
which the cash flow of each slag product group was esti-
mated. The cash flow values were calculated based on the 
approximated fraction of each product (as well as of land-
filled slag) and its market price. It is seen that high-value 
Ca-based products with a volume of 5% might yield of the 
order of 2/3 of the total cash flow. For the total economic 
value estimation also, the production costs should be approx-
imated, respectively.

Concluding Remarks

The world of stainless steel production is strongly grow-
ing. As a consequence, the amount of produced slags 
increase rapidly. Today, most of these slags go to land-
filling, although there are varying practices in different 
companies. The utilization degree has been low due to 
their small amounts and complexity. Slags landfilling can 
cause environmental and health risks due to metal and 
fluoride contents. Tightening environmental requirements 
and demands for circularity are pressing for reassessment 
and corrective actions. On the positive side, the slags have 
a great economic, technical, and ecologic potential, when 
properly recycled, recovered, and productized. The main 
results of the survey can be condensed into a few remarks.

1. Optimized running of the unit processes (EAF-AOD/
VOD-LF-CC) is a central issue considering slags′ prop-
erties as for the function of the slag in the primary pro-
cess and for the subsequent slag processing for specific 
products.

2. For the steelmaking process, it is crucial to minimize 
metal losses into the process slags, and to obtain effi-
cient metals recovery from the slags.

3. As the slags, however, always contain valuable alloying 
metals (Cr, Ni, Mo), their efficient recovery is a key 
economic issue. Also, minor elements (V, Ti) should be 
considered. In addition to mechanical separation, chemi-
cal treatments, leaching, and extraction are attractive. 
Via selective individual processing of different slag 
types, the recovery of metals could be maximized.

4. The composition and mineralogical structure of the slags 
can be steered by modifying additions and controlled 

cooling. Heat recovery from molten slag is a potential 
option too.

5. Slag granulation equipped with heat recovery as hot air 
could produce significant amounts of high-quality mate-
rial to construction purposes with minimal energy and 
low carbon footprint.

6. High total energy efficiency could be achieved via chem-
ical energy recovery methods for production of synthesis 
gas, hydrogen, or even direct conversion to electricity. 
Such techniques are under development.

7. Concerning slags, utilization and productization, stain-
less steel slags are suitable to special high-value prod-
ucts due to relatively small quantities with well-specified 
chemistry and properties. An economic assessment was 
performed exhibiting the potential to minimize landfill-
ing costs and turn to positive cash flow by developing a 
group of low and medium to high-value products. Pre-
cipitated Calcium Carbonate PCC is an example of a 
valuable product for paper industry. As a bonus, it binds 
 CO2 and mitigates the carbon footprint of steel produc-
tion.

8. Furthermore, on a wider scope, slags’ comprehensive 
utilization results in significant energy saving and direct 
and indirect reduction of  CO2 emissions. These issues, 
as well as the elimination of environmental and health 
risks, can be summarized by the phrase “turning threats 
into opportunities.”
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