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Abstract A Ginzburg–Landau model is developed that is

adequate to describe a square-to-rectangle martensitic

transition with associated shape-memory and superelastic

properties. Using this model we study caloric effects in the

vicinity of the martensitic transition induced by stress and

we compare the case of a uniform uniaxial stress and the

case of a non-uniform continuous distribution of stresses

that produce bending of the material. The former case

corresponds to an elastocaloric effect and the latter corre-

sponds to a flexocaloric effect. The aim of the work is to

quantitatively compare both cases, which we show must be

accomplished in terms of equal amounts of exchanged

mechanical work. It is then obtained that the flexocaloric

effect is more efficient for low exchanged work but less

efficient for large exchanged work.

Keywords Flexocaloric � Elastocaloric � Bending �
Uniaxial stress � Martensite

Introduction

It is widely acknowledged that besides shape-memory and

superelastic properties, shape-memory materials display

many other functional capabilities, which make them

desirable for a broad spectrum of technological applica-

tions. Among these capabilities, during the last few years a

lot of attention has been paid to their excellent caloric

response which suggests that these materials have a great

potential for solid-state refrigeration and energy harvesting

applications [1, 2]. The large thermal response is a con-

sequence of the release or absorption of the latent heat

intrinsically associated with the first-order martensitic

transition, which is at the origin of the memory properties

exhibited by shape-memory materials [3].

The caloric response of solids is defined as the reversible

thermal changes that can be induced by application or

removal of an external field, either magnetic, electric or

mechanical. In shape-memory materials, mechanocaloric

effects are induced by changing the stress or strain applied to

the materials. So far, most of the work has been performed

by application and removal of uniaxial stress or hydrostatic

pressure and the corresponding caloric effects are usually

denoted as elastocaloric and barocaloric effects, respec-

tively. These effects may be very large when they occur in

the vicinity of a phase transition associated with an order

parameter thermodynamically conjugated to stress or

hydrostatic pressure [4]. In these two cases the applied stress
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is uniform but caloric effects associated with non-uniform

stresses inducing, for instance, bending or twisting can also

be considered. These caloric effects are usually denoted as

flexocaloric and twistocaloric, respectively [5, 6].

It is usually claimed that inducing mechanocaloric

effects by the application of non-uniform stresses is more

efficient than by the application of uniform stresses since a

lower driving force is required to induce a large caloric

response [7, 8]. Nevertheless, the quantitative comparison

of uniform and non-uniform effects is not straightforward

due to, precisely, the non-uniform character of both stress

and strain in the non-uniform case. The aim of the present

paper is to quantitatively compare the flexocaloric and the

elastocaloric effects associated with a martensitic transition

in a shape-memory material. For illustrative purposes here

we propose a two-dimensional (2D) model for a shape-

memory material that undergoes a square-to-rectangle

transition which can be induced by a uniaxial stress and by

bending. We show that a reliable comparison of the cor-

responding elastocaloric and flexocaloric effects requires

that the mechanical work exchanged in both cases is the

same. The comparison confirms that the flexocaloric effect

is more efficient at low work since less driving force is

required to nucleate the martensitic phase by bending.

Thermodynamics

From a general point of view, a caloric effect is a phe-

nomenon in which a reversible thermal change is induced in

a given material by mechanical or electromagnetic means.

According to the first law of thermodynamics if the effect is

strictly adiabatic then the work, W, exchanged in the process

must result in a change of internal energy, DU ¼ W .

Therefore, the amount of work exchanged represents the

driving force of the caloric effect. In the adiabatic case the

caloric effect is measured by the change of temperature of

the body. When instead, the work is performed in isothermal

conditions, heat must be exchanged with a reservoir in order

to keep the temperature constant and, thus, the thermal effect

is measured by the change of entropy of the body. If the

work is performed by controlling a given external field p,

then the appropriate response functions corresponding to the

adiabatic and isothermal situations are nS ¼ ðoT=opÞS and

nT ¼ ðoS=opÞT , respectively. These two functions are, in

general, position dependent if the field is not uniform. Using

Maxwell’s relations it is obtained that these response func-

tions can be determined as

nT ¼ oB

oT

� �
p

; ð1Þ

nS ¼� oB

oS

� �
p

¼ � T

C

oB

oT

� �
p

¼ � T

C
nT ; ð2Þ

where B is the work conjugate of the field p and C is a heat

capacity.

In the case of an elastic body subjected to a stress rðrÞ
that induces a non-uniform deformation eðrÞ, mechanical

work is given by
R
X dr

R
der [9], where the first integral is

performed over the body’s volume X. The elastocaloric

effect is induced by a uniform uniaxial stress, r, and, thus,

the work is simply given by X
R
der. In this case the

changes of entropy and temperature corresponding to a finite

change of stress can be determined from the equations,

DS ¼ SðT ; rÞ � SðT ; 0Þ ¼
Z r

0

nTdr; ð3Þ

ln 1 þ DT
Ti

� �
¼�

Z r

0

nT
C

dr; ð4Þ

where DT ¼ TðS; rÞ � TðS; 0Þ and Ti ¼ TðS; 0Þ is the ini-

tial temperature of the body. When DT � Ti and C can be

assumed independent of r, DT ’ �ðTiDSÞ=C, which is

often a good approximation to estimate the adiabatic

change of temperature close to room temperature. These

changes are expected to be very large when they occur

close to a phase transition where nT is expected to be large.

In this sense, particularly interesting are first-order fer-

roelastic or martensitic transitions. In this case the large

thermal response is a consequence of the latent heat that is

released or absorbed when the transition is induced by the

application or removal of stress.

When the stress is not homogeneous the above expres-

sions for DS and DT are no longer adequate and, in general,

these quantities must be determined by direct computation

of the entropy induced by the actual distribution of applied

stresses. In this general situation the most convenient way

to compare the caloric responses induced by given distri-

butions of stresses is in terms of the corresponding ratios

DS=W , where W is the work exchanged with the material to

isothermally induce a given change of entropy.

Model

In this section we present a mesoscopic model for a fer-

roelastic material as the constituent of a 2D macroscopic

beam of size Lx � Ly with free boundary conditions

(Fig. 1a). The beam is considered to be the projection onto

a 2D space of a three-dimensional sheet of width Lx,

thickness Ly, and with no boundaries in z-direction. Thus,

all results will be given per unit length in z-direction,

assuming that all physical variables describing the beam

are constant along this direction.
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The model is based on that presented in Ref. [6] but it

will be extended to study homogeneous deformations by

minimization of the thermodynamic potential. Its main

features are summarized as follows.

The Helmholtz free energy of the beam is written as the

sum of the cohesive energy and the free energy of a set of

3N classical harmonic oscillators which are the building

blocks of the beam,

F ¼ Ecoh þ F vib ð5Þ

with

F vib ¼ kBT
X3N
i¼1

ln
�hxi

kBT

� �
: ð6Þ

The vibrational free energy is divided into two terms,

F vib ¼ Fx þ FT ; ð7Þ

the first term, Fx, containing the dependence of vibrational

free energy on the frequencies of the oscillators, and the

second term, F T , that only depends on temperature,

Fx ¼ kBT
X3N
i¼1

ln
�hxi

U

� �
;

FT ¼ �3NkBT ln
kBT

U

� �
;

ð8Þ

where U is the reduced unit of energy. Both the cohesive

energy and the frequencies of the oscillators depend on the

deformation of the beam. Thus, we define an elastic free

energy as

F el ¼ Ecoh þ Fx ð9Þ

which is written as a functional of the 2D mesoscopic strain

fields, em, and the 2D strain gradients, oem=oXi, of the

beam,

F el ¼
Z

felðem; oem=oXiÞdX; ð10Þ

where Xi is the i-th component of the position vector of a

volume element of the beam in the undistorted configura-

tion. The elastic free energy density fel is modeled using a

Ginzburg–Landau expansion,

fel ¼ 1

2
AðT � TcÞe2

2 þ
1

4
be4

2 þ
1

6
ce6

2 þ
1

2
A1e

2
1

þ 1

2
A3e

2
3 þ

1

2
j1jre1j2 þ

1

2
j2jre2j2

þ 1

2
j3jre3j2;

ð11Þ

where T is the temperature, Tc is the stability limit of the

square phase, and e1 ¼ ðexx þ eyyÞ=
ffiffiffi
2

p
,

e2 ¼ ðexx � eyyÞ=
ffiffiffi
2

p
, and e3 ¼ exy are the symmetry-adap-

ted strains, which are written in terms of the components of

the Lagrangian strain tensor, eij. The dependence of the

elastic free energy on the frequencies of the oscillators is

thus included through the parameters of the Ginzburg–

Landau model.

The dynamical equation of the displacement, u, of a

volume element of the beam can be written as follows:

q0 €ui ¼ q0gi þ
X
j

osij
oXj

; ð12Þ

where the dots stand for time derivative, q0 is the density of

the undistorted beam, gi is the i-th component of an

external force (per unit mass), and sij are the components

of the first Piola–Kirchhoff stress tensor [10]. The first

Piola–Kirchhoff stress tensor is the work conjugate of the

deformation gradient, Fij, which is defined as follows:

Fij ¼
oui
oXj

þ dij; ð13Þ

where dij is the Kronecker delta. Thus, using the chain rule

the first Piola–Kirchhoff stress tensor can be obtained from

the Helmholtz free energy as follows:

sij ¼
dF
dFij

¼
X3

m¼1

dF el

dem

oem
oFij

: ð14Þ
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Fig. 1 a Beam of size Lx � Ly in the absence of external forces or

stresses, b with applied bending forces fy and c with an applied

homogeneous deviatoric stress
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A damping force derived from a Rayleigh potential is also

included to dissipate the excess free energy during

relaxation.

The model parameters and the size of the beam are the

same as in Ref. [6]. With these parameters the square-to-

rectangle phase transition in the absence of applied forces

or stresses occurs at T0 ¼ Tc þ 3b2=16Ac ¼ 1:029Tc.

The thermal response of the beam to bending is studied

by numerical integration of Eq. (12) using a distribution of

bending forces applied to the long edge of the beam, as

shown schematically in Fig. 1b. Analytically the forces are

given by the expression,

fyðX; Y ¼ 0Þ ¼
2f0X=Lx; X� Lx=2

2f0 � 2f0X=Lx; X[ Lx=2;

�

fyðX; Y ¼ LyÞ ¼
�f0 þ 2f0X=Lx; X� Lx=2

f0 � 2f0X=Lx; X[ Lx=2;

� ð15Þ

where X ¼ Xx, Y ¼ Xy, and f0 is a parameter.

A uniaxial stress is a combination of a deviatoric stress,

r2 ¼ ðrxx � ryyÞ=
ffiffiffi
2

p
, and hydrostatic pressure. In the

vicinity of a square-to-rectangle transformation the elastic

constant associated with the deviatoric deformation, C0, is

much softer than the bulk modulus. Thus, under an applied

uniaxial stress the deformation of the material is essentially

deviatoric. Therefore, as a simplification, to study the

caloric response of the beam to a uniaxial stress we con-

sider an applied deviatoric stress only. In this approxima-

tion the thermodynamic potential is the Gibbs free energy,

G ¼ F �
Z

r2e2dX; ð16Þ

where the stress r needs to be interpreted as the second

Piola–Kirchhoff stress tensor, as this is the work conjugate

of the Lagrangian strain tensor e. The caloric response of

the beam to a homogeneous deviatoric deformation

(Fig. 1c) can be efficiently obtained by minimization of

this Gibbs free energy. Thus, in this case, no numerical

integration of the dynamical equations of the beam is

performed.

Flexocaloric Effect

In this section we present the results of the elastic and

caloric response of the beam to bending.

First, we show the deviatoric strain pattern of the bent

beam at two different temperatures using a gray scale

(Fig. 2). At T ¼ 1:05Tc, above the transition temperature

in the absence of stress, the low symmetry rectangular

phase is induced by bending (Fig. 2a). We note that the two

different variants of the rectangular phase nucleate at

opposite sides of the beam, as on one side the lattice is

stretched, whereas on the other side it is compressed. The

two transformed regions are separated by a broad region

where the stress is small and the square lattice remains

untransformed. This results in a strain microstructure

where only a fraction of the original square phase is

transformed to the low symmetry rectangular phase.

At T ¼ 0:8Tc, well below the transition temperature, the

thermodynamically stable structure is the rectangular

phase. In this case, a zig-zag domain boundary separating

the two variants of the rectangular phase allows the

transformation of the whole square lattice while accom-

modating the stress induced by bending (Fig. 2b). This

kind of zig-zag microstructure compares very well with the

pattern induced by bending in Cu–Al–Ni reported by

Fig. 2 a Deviatoric strain pattern of a bent beam at T ¼ 1:05Tc,
above the transition temperature in the absence of stress,

T0 ¼ 1:029Tc. Light (dark) regions represent positive (negative)

strain. The strain generated microstructure is enlarged, showing the

nucleation of the two different variants of the rectangular phase at

opposite sides of the beam, while the central part remains untrans-

formed. b Characteristic zig-zag strain microstructure of the rectan-

gular phase obtained at T ¼ 0:8Tc, well below the transition

temperature. c Microstructural changes associated with bending

observed experimentally in Cu–Al–Ni (Ref. [11])
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Otsuka and collaborators (Fig. 2c) [11]. This excellent

agreement with experiments gives support to the model

proposed above to study caloric effects.

To study the caloric response of the beam to bending we

first compute the total entropy which is obtained as,

follows:

S ¼ � oF

oT
¼ �A

2

Z
e2

2dX

þ 3NkB 1 þ ln
kBT

U

� �� �
:

ð17Þ

The entropy of the beam vs temperature for different values

of the parameter f0 controlling the strength of the applied

forces is shown in Fig. 3. The entropy is plotted with

respect to the entropy in the absence of applied forces at

T ¼ 1:5Tc. In the absence of applied forces the result

shown corresponds to equilibrium, with a discontinuity at

the transition temperature. For small applied forces

(f0 � 1 � 10�5 reduced units) a tiny thermal hysteresis has

been observed. In this case, the results shown correspond to

the entropy obtained when cooling the beam.

Ignoring the tiny thermal hysteresis of the bent beam,

these entropy curves are used to determine the isothermal

entropy change (Fig. 4) and the adiabatic temperature

change (Fig. 5) of the beam when applying the distribution

of external forces. It is obtained that both the isothermal

entropy change and the adiabatic temperature change have

a single discontinuity associated with the discontinuity of

the entropy curve in the absence of applied forces. As a

general trend, the caloric response is larger slightly above

the transition temperature. In this temperature region, the

response relative to the applied forces is larger for small

forces. For large applied forces, however, the decay of the

caloric response as the temperature increases is much

slower.
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Fig. 3 Entropy of the bent beam vs temperature for several values of

the parameter f0, which controls the strength of the applied forces.

The entropy is plotted relative to its value at T ¼ 1:5Tc in the absence

of applied forces
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Fig. 4 Isothermal entropy change of the beam when applying the

external forces vs temperature. The results are plotted for several

values of the strength of the applied forces
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Fig. 5 Adiabatic temperature change of the beam when applying the

external forces vs the initial temperature. The results are given for

several values of the strength of the applied forces
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Elastocaloric Effect

In this section we present the results of the caloric response

of the beam to a homogeneous deviatoric stress.

Minimization of the Gibbs free energy of the beam

[Eq. (16)] yields the homogeneous deviatoric strain

induced by application of a homogeneous deviatoric stress.

The total entropy of the beam is then obtained as follows:

S ¼ � oG

oT
¼ �A

2
e2

2Xþ 3NkB 1 þ ln
kBT

U

� �� �
: ð18Þ

The entropy of the beam vs temperature for different values

of the applied stress is shown in Fig. 6. A discontinuity in

the entropy curves is observed for stresses smaller than

rcri
2 ¼ 4:89 � 10�4 (in reduced units) where a critical point

exists [6]. From these curves we obtain the isothermal

entropy change and the adiabatic temperature change when

a homogeneous deviatoric stress is applied to the beam.

The results are shown in Figs. 7 and 8.

For stresses smaller than the critical stress the isothermal

entropy change has two discontinuities associated with the

discontinuities of the entropy curves with and without the

applied stress. Regarding the adiabatic temperature change,

only a single discontinuity is obtained, but the caloric

response relative to the applied stress is especially large

slightly above the transition temperature in the absence of

stress. For stresses larger than the critical stress only the

discontinuity associated with the discontinuity of the

entropy curve in the absence of stress is observed in both

the isothermal entropy change and the adiabatic tempera-

ture change. As obtained when studying the flexocaloric

effect, the elastocaloric response of the beam is larger

slightly above the transition temperature. In this tempera-

ture region, the response relative to the applied stress is

larger for small stresses. For large applied stresses, how-

ever, the decay of the caloric response as the temperature

increases is slower.
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Fig. 6 Entropy of the beam vs temperature for several values of the

applied deviatoric stress, r2. The entropy is plotted relative to its

value at T ¼ 1:5Tc in the absence of applied stress
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Fig. 7 Isothermal entropy change of the beam when applying a

deviatoric stress vs temperature. The results are plotted for several

values of the applied stress
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Fig. 8 Adiabatic temperature change of the beam when applying a

deviatoric stress vs the initial temperature. The results are given for

several values of the applied stress

350 Shap. Mem. Superelasticity (2023) 9:345–352

123



Also, comparison of the caloric response of the beam to

bending with the caloric response to a homogeneous

deformation shows that in the latter case the caloric

response decays faster as the temperature increases.

Comparison Between the Flexocaloric
and the Elastocaloric Effects

In order to be able to compare the caloric response of the

beam to a homogeneous deformation with the caloric

response of the beam to bending from a quantitative point

of view, the stress values corresponding to the curves

shown in Sect. 5 have been chosen so that the work done in

the homogeneous deformation equals the work done by

bending the beam in the curves shown in Sect. 4. As the

displacement/strain depends on temperature, the work done

for a given applied stress or distribution of forces depends

on temperature as well. Thus, the equivalence of the works

done by a homogeneous deformation and by bending is

only established at T ¼ 1:05Tc.

The work done by external forces to bend the beam is

computed as follows:

Wbend ¼ q0

Z
dX

Z
fydu; ð19Þ

whereas for homogeneous deformations the work done by a

homogeneous deviatoric stress is evaluated as follows:

Whom ¼ X
Z

r2de2 : ð20Þ

In the first case [Eq. (19)] the computation of the integral

requires the applied force (per unit mass) vs displacement

curve for each volume element where an external force is

applied. In the second case [Eq. (20)], the stress vs strain

curve is needed.

The correspondence between bending forces and

homogeneous stresses is as follows. The work done when

bending the beam with a distribution of forces with f0 ¼
1 � 10�6 at T ¼ 1:05Tc is the same as by application of a

homogeneous stress r2 ¼ 1:4 � 10�4. Due to the discon-

tinuity of the phase transition, the work done by bending

the beam with f0 ¼ 2 � 10�6 and f0 ¼ 5 � 10�6 cannot be

obtained in a homogeneous deformation where the stress is

the control parameter. The values of the homogeneous

stresses giving rise to the same work as bending with

f0 ¼ 1 � 10�5, f0 ¼ 2 � 10�5, and f0 ¼ 5 � 10�5 are

r2 ¼ 6 � 10�4, r2 ¼ 2 � 10�3, and r2 ¼ 6 � 10�3,

respectively.

Comparison of the isothermal entropy change when

bending at T ¼ 1:05Tc (Fig. 4) to the isothermal entropy

change associated with a homogeneous deformation at the

same temperature (Fig. 7) reveals that at equal work the

caloric response to a homogeneous deformation is larger.

This comparison is done in a broader force/stress range in

Fig. 9 where the isothermal entropy change is directly

plotted vs the work done for both bending (symbols) and

application of a homogeneous deviatoric stress (solid line).

For large values of the work done, the isothermal

entropy change due to a homogeneous stress is systemati-

cally larger than the caloric response to bending. This

result is associated with the smaller transformed fraction of

the beam when bending.

We also note a discontinuity (indicated with a dashed

line) in the caloric response to a homogeneous deforma-

tion. This is due to the first-order character of the phase

transition. When bending, the nucleation of the rectangular

phase occurs with much less work, and the associated

discontinuity cannot be seen in the figure. Thus, when the

stress is the control parameter, the caloric response to a

homogeneous deformation can only be large if the work

done is sufficiently large to induce the phase transition.

Intermediate caloric responses are not allowed. On the

contrary, bending allows to obtain moderate caloric

responses with moderate work. Moreover, for small work,

the caloric response of the beam to bending is larger than

the caloric response to a homogeneous deviatoric stress.

In summary, bending may have the advantage over

homogeneous deformations of giving a larger caloric

response relative to the work done in the limit of small
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Fig. 9 Isothermal entropy change vs work done when bending

(circles) and when applying a homogeneous deviatoric stress (solid

line). The dashed line indicates a discontinuity of the solid line. The

same curves are shown in the inset at a larger scale
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work. Moreover, it also allows to operate at intermediate

work.

Conclusion

We have proposed a Ginzburg–Landau model suitable to

study mechanocaloric effects in the vicinity of a marten-

sitic transition with associated shape-memory and supere-

lastic effects. The model has been used to compare the

elastocaloric effect induced by a uniform uniaxial stress to

the flexocaloric effect induced by bending. We have shown

that a reliable comparison of both caloric effects must be

done for equal amounts of exchanged work. Results cor-

roborate that the flexocaloric effect is more efficient for

refrigeration applications since a larger caloric response

can be obtained in the range of low exchanged work. This

is a consequence of the fact that, in the superelastic region

above the martensitic transition temperature, a larger

threshold must be overcome to induce the transformation

by application of a uniaxial stress than by bending. In real

materials the difference of both caloric effects might be

even larger due to the inverse response associated with the

volumetric effect [12] that dominates the caloric response

in the elastic deformation region of the parent phase.

From the model it is deduced that another advantage of

the flexocaloric effect compared to the elastocaloric effect

is the low hysteresis, which originates only from nucleation

effects. In any case, it has been recently shown that in real

systems the evolution of the transformation fronts through

avalanches results in much larger hysteresis, comparable

with the hysteresis observed in the elastocaloric case [13].
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