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Abstract Shape memory alloys have found wide-spread

use in aerospace, automotive, biomedical, and commercial

applications owing to their favorable properties and ease of

operation. Binary NiTi, in particular, is known for its

remarkable shape memory properties, mechanical strength,

ductility, corrosion resistance, and biocompatibility. These

properties can be further enhanced and better controlled

through alloying NiTi with ternary, quaternary, and higher-

order elements. Recently, researchers at NASA have

compiled an extensive database of shape memory proper-

ties of materials, including over 8000 multi-component Ni–

Ti alloys containing 37 different alloying elements. Using

the Ni–Ti dataset, we train machine learning models to

explore shape memory behavior of Ni–Ti alloys over a

large compositional and processing space. The models

predict transformation temperatures, hysteresis, and trans-

formation strain, with low mean absolute errors of 14.8 �C,

7.2 �C, and 0.36%, respectively. We use these models to

map trends and learn relationships between shape memory

behavior and different parameters in the input design space.

They can be used to make predictions for any multi-com-

ponent alloy, without need for additional training. The

combination of an extensive experimental dataset and

accurate learning models, together, make our approach

highly suitable for the discovery and design of new alloys

with targeted properties.

Keywords SMA � NiTi � Machine learning �
Transformation temperature � Hysteresis � Transformation

strain

Introduction

Shape Memory Alloys (SMAs) have gained popularity

over the last few decades owing to their excellent actuation

capabilities, simple design, and their small size and weight

requirements [1, 2]. A range of SMA systems including

Ni–Ti, Cu–Al–Ni, Cu–Zn-Al, and Fe–Mn–Si have been

studied for their use in sensors, actuators, and dampers, of

which binary NiTi has garnered the most attention [3, 4].

NiTi is known for its stability of transformation tempera-

tures, superior mechanical strength, ductility, corrosion

resistance, and biocompatibility, making it an excellent

choice for several aerospace, automotive, commercial, and

biomedical applications [5–9]. However, pure NiTi only

allows for a narrow range of operation, and other ternary

and quaternary additions are necessary to access higher

operating temperatures, larger transformation strains, or

smaller hysteresis [10–13]. The most common alloying

additions to NiTi include Pd, Pt, Hf, Au, Cu etc. Ternary

systems such as Ni–Ti–Zr have emerged as promising

alternatives due to their reduced cost and lower weight

[14]. Besides, other constituents such as Cr, Mn, Fe, Co, V,

etc. have also been added to NiTi to control its properties.

For their use in most applications, it is vital to under-

stand the transformation behavior of SMAs. The marten-

sitic transformation temperature of these alloys is the most
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critical as it dictates the temperature window for the par-

ticular application. Transformation strain, which is calcu-

lated as the strain recovery due to the martensite-to-

austenite transformation upon heating, determines the

ability of the alloy to provide work output. A low hysteresis

is essential to increase the energy conversion efficiency in

engineering applications; a direct correlation between large

hysteresis and poor functional fatigue properties has been

established [15].

Besides performing actual experiments, there are also

two computational approaches generally used to study

transformation behavior in SMAs: ab initio approaches

based on thermodynamic integration or the P4 method,

[16, 17] and classical molecular dynamics approaches that

require the development of interatomic potentials [18, 19].

Of the two, ab initio approaches are more accurate. How-

ever, they are still limited in their present capabilities and

tend to be computationally expensive. Most engineering

alloys are composed of three or more elements; first prin-

ciples calculations of such alloys are limited to extremely

small unit cell sizes (\ 1000 atoms) and timescales

(\ 1 ns). Further, although they provide a good estimation

of transformation temperatures, these techniques cannot be

used to estimate hysteresis or transformation strain. They

also do not account for processing history, even though it is

well known that many alloys do not exhibit shape memory

behavior without prior thermo-mechanical processing [5].

As a result, they are unconducive to large systematic

studies over wide compositional and processing spaces. For

the current task, we take a different approach of using a

dataset of previously compiled experimental measurements

and training machine learning (ML) models to predict the

shape memory behavior of new alloys.

ML has the potential to greatly accelerate the search for

novel and useful materials by effectively learning under-

lying structure–processing–property relationships from

existing data, and efficiently scanning high-dimensional

composition and processing spaces using these learned

relationships. Many different materials properties like

formation enthalpies, adsorption energies, elastic moduli,

band gaps, diffusion barriers, glass forming ability, etc.

have been predicted accurately using experimental and

computational databases [20–28]. Most ML studies com-

bine physics-inspired feature sets with learning techniques

like tree-based ensemble methods, neural networks, or

support vector machines, to predict accurate properties

from the underlying composition or structure. It is postu-

lated that the development of such physically motivated

features has improved the predictive ability of ML models

by at least two orders of magnitude in the past few years

[29].

Lately, there has been great interest in using ML

approaches to model relationships between the

composition and properties of SMAs. In a recent paper, Liu

et al. used a physics-informed ML approach to predict the

mean transformation temperature and thermal hysteresis

using a dataset of about 500 Ni–Ti–Hf alloys with Hf in the

0–30 atomic % range [30]. In another work, using just 53

Ni–Ti–Fe–Pd–Cu alloys in their training set, Xue et al.

developed a three-feature model to also predict transfor-

mation temperatures [31]. Trehern et al. used both com-

position and processing features to build a materials

informatics framework to identify SMA chemistries and

associated thermo-mechanical treatments that result in

narrow transformation range and hysteresis [32]. In each

study, the compositional space being explored was

restricted to three to five elements. This limits the predic-

tive capability of the trained models to alloy compositions

within that space exclusively.

In contrast, we use a dataset of over 8000 multi-com-

ponent Ni–Ti alloys containing 37 different alloying ele-

ments to train ML models for predicting transformation

temperatures, hysteresis, and transformation strain.

Although predictions are made for all four transformation

temperatures—Martensite Start (MS), Martensite Finish

(MF), Austenite Start (AS), and Austenite Finish (AF)—we

mostly refer to the AF model in this work, given that the

performance of the other three models is also quite similar.

Hysteresis is defined as the difference between the AF and

MS temperatures (AF–MS). Instead of training a separate

model, individual predictions from the AF and MS models

are used for predicting hysteresis. Confidence intervals are

computed to accompany model predictions and assist

experimental validation. Together, these models allow us

to study trends and learn relationships between shape

memory behavior and different parameters in the input

design space. To the best of our knowledge, no other

current approach is capable of predicting SMA transfor-

mation behavior over such a wide range of compositions

and processing conditions.

Dataset

The two main requirements for a good ML model are a

representative dataset and an effective learning algorithm.

For the current task, we use the extensive shape memory

materials database compiled by Benafan et al. [33], con-

taining experimentally measured shape memory properties

mined from the literature. The database contains over 8000

Ni–Ti alloys, with compositions ranging from binary NiTi

to quinary systems, which constitutes our training dataset.

Fig. S1 of the Supplementary Information shows a his-

togram of the number of components for alloys within the

dataset. In addition to the four transformation temperatures,

hysteresis, and transformation strain, the dataset also
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contains columns with information about alloy composi-

tions, melting techniques, heat treatments, cycling tem-

peratures, cycle number, heating and cooling rates, and

applied stress, all of which can be used as inputs to the ML

models. While popular systems like Ni–Ti–Pd, Ni–Ti–Pt,

Ni–Ti–Hf, and Ni–Ti–Cu are more heavily represented in

the dataset, those with less common constituents like Al,

Nb, Ta, Sn, etc. are also present. A boxplot of the distri-

bution of alloys by element is shown in Fig. 1. Although

the figure provides a rough estimate of the range of AF

temperatures accessible through the addition of various

elements, it should be noted that only alloys within the

dataset are represented. By training ML models on such a

vast dataset, predictions for any multi-component alloy

within the large compositional and processing space being

explored are possible.

To prepare the data for ML, a cleaning step is first

performed to exclude alloys with missing compositions or

transformation temperatures, and to eliminate duplicate

entries. A few alloys with similar compositions and heat

treatments, but different measured temperatures, remain.

These are likely separate measurements of the same alloy

by the same or different group, and all such entries are

retained. Additionally, outliers are not discarded even

though the possibility of erroneous measurements, report-

ing, and data collection always persists. We are left with

7988 alloys with at least one reported transformation

temperature. 5211 of them have all four temperatures

reported, while 7305 have MS, 5390 have MF, 6032 have

AS, and 6513 have AF temperatures. In order to maximize

data utilization for learning purposes, individual ML

models are trained for each of the four temperatures.

Hysteresis is defined as AF–MS, and there are 5961 alloys

for which both values are reported. Transformation strains

are only measured for 2350 alloys, which are used for

training the corresponding ML model.

Feature Selection

Next, input features are identified from the available col-

umns to predict transformation behavior. These can be

divided into three groups: (i) composition related features,

(ii) thermo-mechanical processing-related features, and

(iii) test parameters.

Composition

For the purpose of representing compositions of alloys, the

percentage of elements in the alloy are used as inputs. For

example, a Ni25Pd25Ti50 alloy is represented with 25, 25,

and 50 for Ni, Pd, and Ti and 0 for every other element. We

also tried using composition-weighted element property

features based on the MAGPIE descriptor set [28] but did

not notice any improvements in performance.

Thermo-Mechanical Processing

Although compositions of Ni, Ti, and other alloying ele-

ments largely determine transformation behavior of SMAs,

many alloys do not even exhibit shape memory effect

without prior thermo-mechanical processing. Thus, pro-

cessing history of alloys is as important as composition for

studying transformation behavior. Processing primarily

includes the melting or preparation method as well as the

subsequent thermo-mechanical treatments performed on

the alloy.

Alloys can be prepared through many techniques—

vacuum induction melting (VIM), vacuum arc remelting

(VAR), sputtering, melt spinning, powder metallurgy, etc.

Different preparation techniques result in alloys with

slightly different end compositions, eventually affecting

the mechanical and functional properties of the final alloy.

For example, while the starting and end compositions are

quite similar for VAR, large variances are possible with

Fig. 1 Boxplot showing the distribution of Ni–Ti alloys in the dataset by alloying element and AF temperatures. In all, 37 total alloying elements

are represented in the dataset
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VIM. Other impurities like C, N, O, etc. can also be

introduced into the melt, depending on the choice of

technique. To account for these variations, one-hot enco-

ded features representing different techniques are included

as inputs to the ML models. Thus, an alloy prepared using

VIM will have a value of 1 for VIM, and 0 for all other

techniques. To limit the total number of features, and to

avoid sparse inputs, only the five most popular techniques

from the dataset have corresponding one-hot encoded

features. Alloys prepared using other techniques, or with-

out a reported technique, are encoded using a 1 in the

‘‘Others’’ column.

Following the melting stage, SMAs typically undergo up

to three different heat treatments: homogenization, solu-

tionizing, and aging. Homogenization at a temperature

below the solidus, followed by quenching, allows for a

uniform chemical composition throughout the solid solu-

tion. Quenching helps prevent the formation of undesirable

precipitates in the alloy. Often times, a solutionizing step is

performed to put precipitates that may have formed back

into the solid solution. Finally, aging below the solvus,

performed for non-stoichiometric alloys, introduces useful

second-phase precipitates such as Ti3Ni4, H-phase, or

P-phase in Ni–Ti alloys. The size and distribution of sec-

ondary particles can change depending on the exact aging

conditions, resulting in different transformation behaviors.

The three heat treatments are accounted for in our models

through the introduction of six features—homogenization

temperature and time, solutionizing temperature and time,

aging temperature and time.

Test Parameters

Inputs grouped under test parameters include the applied

stress, cycling temperatures, cycle number, and heating and

cooling rates. The applied stress value indicates the mag-

nitude of external stress, when present, and is used as one

of the inputs to the ML models. Cycling temperatures and

heating or cooling rates are tested as possible features;

however, they show no appreciable effect on the predictive

ability and are excluded from the final models. Lastly, even

though it is known that the thermal response of an alloy

drifts to lower temperatures as a function of cycle number

[34], very few alloys in the dataset have a reported cycle

number, making it an ineffective input for our ML

approach.

This leaves us with a total of 52 selected features as

input for training the ML models. These are listed in

Table 1. Although latent factors like internal stress, short

range order, size and distribution of precipitates, etc.

actually control transformation behavior of SMAs, we can

only capture their influence indirectly, through input vari-

ables like composition, preparation technique, heat

treatments, and applied stress. Further, since original data

are collected from multiple publications, all of these values

may not always be reported. For features with missing

values, appropriate imputations are performed. Where no

heat treatment was carried out or reported, we use the room

temperature value of 25 �C and 0 h for temperature and

time, respectively. Similarly, where an applied stress was

not reported, we assume a stress-free measurement at

0 MPa.

Learning Algorithm and Model Assessment

Several different learning algorithms have been used to

tackle materials science problems over the last few years,

including Gaussian process regression, support vector

regression, random forest regression, gradient boosting

regression, artificial neural networks, etc. Each has its own

advantages and applicability domains. Here, we use a tree-

based ensemble algorithm called Extremely Randomized

Trees (ExRT) [35].

Ensemble methods combine predictions from several

base estimators to reduce bias and variance, thus,

improving performance. They are extremely effective for

small- and medium-sized datasets that have a mix of cat-

egorical and continuous features spanning various scales.

Ensemble algorithms also do not require scaling of input

features. ExRT is a bagging technique, similar to random

forest regression, where the optimum splits for the indi-

vidual trees are chosen at random to further limit overfit-

ting and, thus, improve prediction accuracy. We use the

scikit-learn [36] implementation of ExRT for our current

work. Although algorithms like ExRT are capable of

interpolating extremely well in high-dimensional input

feature spaces, their extrapolative capacities are known to

be unsatisfactory. One must be careful when extending

these models outside their range of applicability.

After training the ML models, their predictive abilities

are analyzed by performing 10-fold cross validation (CV)

over the entire dataset. All CV errors are computed on

unseen data only and then averaged over 25 randomized

splits of the dataset. The mean absolute error (MAE) is our

preferred scoring metric as it penalizes all errors equally. In

contrast, the root-mean-squared error (RMSE) penalizes

larger errors more and is, therefore, more sensitive to

outliers, which are not excluded in this work. In addition to

the MAE, we also report the cross-validated R2 values for

each model.

Along with predicting transformation temperatures,

hysteresis, and transformation strain, these models are also

equipped to compute confidence intervals to accompany

predictions. Since data acquired to train ML models are

usually limited and fail to capture the true distributions,
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uncertainties are introduced in the model parameters which

propagate to the predictions. We use the jackknife

approach [37] to compute uncertainties across all ML

models using the MAPIE [38] python package which is

based on techniques introduced by Barber et al. [39]. Using

the confidence intervals along with actual predictions

allows us to select the best alloys for experimental vali-

dation. All prediction figures in this work show one sigma

or 68% confidence intervals.

Permutation feature importance analysis (PFI) [40]

helps us to explain outputs from the ML models. PFI

measures how the model R2 changes when a single input

feature is randomly permuted; a higher score reflects a

higher dependence of the model on the corresponding

feature. We use the rfpimp [41] python package to calcu-

late PFI for the models. Since PFI is affected by the

presence of highly correlated features, similar features are

clustered into groups as discussed in ‘‘Results and

Discussion.’’

Results and Discussion

Using the selected input features, ExRT models are trained

to predict transformation temperatures (MS, MF, AS, AF),

hysteresis, and transformation strain. The MAE and R2 for

each model are computed by averaging 10-fold CV errors

over 25 randomized splits of the dataset. These are reported

in Table 2. The MAE for the MS (13.6 �C), MF (15.9 �C),

AS (15.6 �C), and AF (14.8 �C) models are in a similar

range, as are their R2 values (0.92–0.95). For hysteresis,

computed indirectly using the AF and MS predictions, the

MAE is 7.2 �C. The average error for the transformation

strain model is 0.36%. Fig. S2 of the Supplementary

Information shows parity plots for each model. The

inherent noise in the experimental data results in lower R2

values and some scatter around the diagonal, particularly

for the hysteresis and transformation strain models.

After initial training and evaluation, the ML models are

subsequently employed to study the effects of composition

and processing on shape memory behavior. First, we

explore how the transformation temperature (AF) and

hysteresis for stoichiometric ternary alloys, where either Ni

or Ti concentration is fixed at 50 atomic %, varies with

increasing ternary element concentration. To isolate the

effects of composition on transformation behavior, input

parameters for processing are largely fixed while making

the predictions. VAR is selected as the preparation tech-

nique, with a homogenization temperature and time of

1050 �C for 24 h, no solutionizing or aging, and no applied

stress. Figures 2 and 3 show predictions for Ni–Ti–Pd and

Ni–Ti–Hf. Similar predictions for Ni–Ti–Pt and Ni–Ti–Zr

are available as Figs. S3 and S4 in the Supplementary

Information. Here, Pd (Pt) replaces Ni in NiTi, whereas Hf

(Zr) substitutes Ti. The actual AF and hysteresis predictions

are fit to fourth degree polynomials for smoothness and

better visualization (dotted lines). The computed confi-

dence intervals are one standard deviation (68%) away and

shown as shaded regions around the dotted line. There is

good agreement between predictions and experimental data

(solid triangles) for the four ternary systems.

The AF predictions for Ni–Ti–Pd in Fig. 2a show a

slight dip around 8–10 atomic %, before increasing again,

representing the change in phase from B19’ (monoclinic)

to B19 (orthorhombic). [42] This change also manifests

itself in the hysteresis curve in Fig. 2b, which shows

decreasing values in the B19’ region and then a flattening

out to very low hysteresis temperatures in the orthorhombic

Table 1 List of 52 input

features selected for training the

ML models

Compositions Processing conditions Test parameters

Ni atomic % Preparation technique [3 6] Applied stress (MPa)

Ti atomic % Homogenization temp. (�C)

Alloy elem. atomic % [3 37] Homogenization time (hrs)

Solutionizing temp. (�C)

Solutionizing time (hrs)

Aging temp. (�C)

Aging time (hrs)

Table 2 MAE and R2 values for the different ML models reported as

10-fold cross-validation errors that are averaged over 25 randomized

splits of the dataset

Property Training set MAE R2

Martensite start temperature (MS) 7305 13.6 0.95

Martensite finish temperature (MF) 5390 15.9 0.92

Austenite start temperature (AS) 6032 15.6 0.94

Austenite finish temperature (AF) 6513 14.8 0.94

Hysteresis (AF - MS)
a 5961 7.2 0.65

Transformation strain 2350 0.36 0.81

aMAE for the hysteresis model is computed using the predictions

from the AF and MS models
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B19 phase. [11] The same B19’ to B19 phase change is

observed in Ni–Ti–Pt and Ni–Ti–Au ternaries as well [5].

In contrast, Fig. 3b shows consistently higher hysteresis

temperatures for Ni–Ti–Hf, evidence of B19’ presence, and

a distinct uptrend between 20% and 40–45% Hf. Since the

dataset contains only a handful of high Hf alloys, they

carry a larger weight in the model and have a greater

influence on the shape of the prediction curve. It is inter-

esting to note that although the B19’ phase is associated

with higher hysteresis, it permits for larger transformation

strains and work outputs compared to B19.

In addition to common ternary elements like Pd, Pt, and

Hf, the effects of other alloying additions such as Cr, Fe,

Co, to NiTi are also studied. These elements are typically

added in smaller quantities (up to 3 atomic %) and the

available experimental data for these systems are fewer and

noisier. Hence, a simple linear fit is used to represent model

predictions for these systems. Figure 4a reveals that only

Ni–Ti–Cr experimental data lie perfectly on the prediction

line, whereas other alloys show plenty of scatter. All three

elements, however, seem to lower AF, and can, thus, be

useful additions for tuning transformation temperatures of

Ni–Ti alloys.

We make similar predictions for ternary Ni–Ti alloys

containing Ag, Sn, Nb, and Ta. These elements are typi-

cally present in the 0–10 atomic % range and seem to have

minimal effect on the AF temperatures when compared to

binary NiTi. Supplementary Information Fig. S5 shows the

linear fit of ML predictions for these systems. While the AF

temperatures are within the same narrow range for all four,

their hysteresis values show slightly larger variation. Ag, in

particular, can potentially be a useful additive for lowering

the hysteresis in Ni–Ti alloys, while keeping the AF

constant.

Besides manipulating the compositions of alloying ele-

ments, another way to control transformation behavior in

SMAs is through the addition of excess Ni. Adding just

0.1% Ni to near-stoichiometric Ni–Ti alloys can lower

Fig. 2 ML predictions for AF and hysteresis of stoichiometric Ni–Ti–Pd alloys. Dotted lines are fourth degree polynomials fit to actual model

predictions. Shaded regions represent confidence intervals at one standard deviation (68%)

Fig. 3 ML predictions for AF and hysteresis of stoichiometric Ni–Ti–Hf alloys. Dotted lines are fourth degree polynomials fit to actual model

predictions. Shaded regions represent confidence intervals at one standard deviation (68%)
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transformation temperatures by as much as 20 �C [43]. A

comparison between predictions for stoichiometric and

slightly off-stoichiometric Ni–Ti–Pd and Ni–Ti–Hf alloys

is shown in Fig. 5. There is a clear downward displacement

of the blue Ni-rich curve for both systems. However, alloys

with more than 1–2% excess Ni are known to show much

lower transformation strains and are, thus, far less attrac-

tive for actuation applications. In contrast, the addition of

excess Ti has minimal effect on the transformation tem-

peratures. Figure 5 shows that AF slightly increases, or

remains constant, for Ti-rich alloys. Excess Ti, however,

can lead to the formation of detrimental oxides and other

phases in the alloy, degrading workability [44, 45]. Hence,

Ti-rich alloys are rarely used in practice even when

transformation temperatures are within the desired range.

The effects of excess Ni can be counteracted through the

aging heat treatment. For non-stoichiometric alloys, aging

helps precipitate secondary phase particles that are rich in

Ni, into the austenite B2 matrix. The size and distribution

of the precipitates are controlled by adjusting the aging

temperature and time. Coherent nanometer-sized precipi-

tates can impede dislocations, lead to strengthening, and

thus, increase transformation temperatures. The effect is

compounded because the precipitates also contribute to the

removal of excess Ni from the alloy. Ti3Ni4 in binary NiTi,

H-phase [46, 47] in Ni–Ti–Hf and Ni–Ti–Zr alloys, and

P-phase [48] in Ni–Ti–Pd and Ni–Ti–Pt alloys, are all

examples of secondary phases. In slightly Ni-rich Ni–Ti–

Hf alloys, the precipitation of H-phase particles in the

matrix is found to impart excellent mechanical strength and

functional ability to the alloy. [49]

Figure 6 shows the effects of aging on non-stoichio-

metric Ni–Ti–Pd and Ni–Ti–Hf alloys. While AF predic-

tions for slightly Ni-rich alloys aged at 550 �C (Pd) and

650 �C (Hf) are generally higher compared to unaged

alloys, the differences are smaller than experimentally

Fig. 4 ML predictions for AF and hysteresis of stoichiometric Ni–Ti–Fe, Ni–Ti–Co, and Ni–Ti–Cr alloys. Dotted lines are linear fits to actual

model predictions. Shaded regions represent confidence intervals at one standard deviation (68%)

Fig. 5 Comparing the effects of Ni and Ti additions on AF

predictions of Ni–Ti–Pd and Ni–Ti–Hf alloys. Slightly Ni-rich alloys

(blue) have lower transformation temperatures whereas alloys with

excess Ti (red) have similar, or slightly higher, transformation

temperatures compared to stoichiometric alloys (green) (Color

figure online)
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observed. In Ni–Ti–Pd alloys, the P-phase shows unusual

precipitation behavior and does not follow the pre-

dictable aging trend observed in Ni–Ti–Pt alloys [50]. In

fact, some Ni-rich formulations of Ni–Ti–Pd show no

precipitates even after aging. The P-phase can also dissolve

back into the solid solution at relativity lower temperatures

(close to 550 �C). In the case of Ni–Ti–Hf alloys, there is

huge scatter in the experimental data itself, which adds to

the uncertainty of predictions. Nonetheless, aging at

650 �C clearly shows the expected trend, where AF is

higher compared to unaged alloys. Further work is cur-

rently being performed to study how the effects of aging

and other heat treatments can be more effectively captured

through the ML models.

Next, we explore how an external applied stress affects

transformation temperatures. Figure 7a shows that AF

generally increases with higher applied stress in Ni–Ti–Pd

alloys. When plot in a different way (Fig. 7b), we see this

relationship between AF temperatures and applied stress is

in fact linear. There is good agreement between model

predictions and experimental data at all three Pd compo-

sitions. While the 20 and 30% Pd lines have positive

slopes, the 40% line appears almost flat, indicating that the

effect of applied stress might diminish for high Pd alloys.

Such plots are extremely valuable for designing alloys that

need to operate at multiple loading conditions, where

knowledge of the stress-temperature sensitivity is crucial.

Additionally, by using the slope at a given composition,

one can determine the zero stress equivalents of the

transformation temperatures.

We also consider the effects of applied stress on trans-

formation strain. Figure 8 shows a plot of the predicted

transformation strain versus applied stress for Ni–Ti–Pd.

Here, too, fourth degree polynomials are used to fit actual

predictions. We see that transformation strain shows a

linear dependence on applied stress at low values, before

flattening out as the applied stress increases. The uncer-

tainty intervals appear wider due to the relatively small

dataset available for training. Additionally, plenty of

scatter is observed in the experimental data, although most

Fig. 6 Effects of aging on AF predictions for non-stoichiometric Ni–Ti–Pd (Ti = 49.5%) and Ni–Ti–Hf (Ni = 50.5%) alloys. Aging at 550 �C
for Pd and 650 �C for Hf (green) increases the transformation temperatures of slightly Ni-rich alloys (Color figure online)

Fig. 7 Effects of applied stress on AF predictions for Ni–Ti–Pd. AF increases linearly with increasing applied stress

Shap. Mem. Superelasticity (2023) 9:144–155 151

123



experimental strain values still lie within the shaded con-

fidence intervals surrounding predictions.

The predicted transformation strain versus applied stress

plot for Zr (Supplementary Information Fig. S6) also shows

large confidence intervals as a result of scatter within the

experimental data. The transformation strains for ternary

Ni–Ti–Zr alloys appear to be smaller, on average, when

compared to Pd alloys. However, the same trend of

decreasing transformation strains with higher Zr content is

observed. Thus, while addition of ternary elements like Pd

and Zr contribute to higher transformation temperatures in

these SMAs, they come at the cost of lower transformation

strain, and thus, work output.

The dependence of transformation strain on composi-

tion, heat treatment, and other test parameters is more

complex and not so obvious from the limited data available

to us within the database. Since work output is directly

related to the transformation strain, understanding these

correlations will prove critical while designing new alloys

for commercial applications. Future work includes sup-

plementing the database with additional mechanical testing

data generated within our own labs, to study these

relationships.

A major advantage of our current approach is the ability

to make predictions for alloys with any number of com-

ponents. Although the ExRT models are trained on the

predominantly ternary data available within the dataset,

they can also be used to make predictions for higher

component alloys. Figure 9 shows AF and hysteresis pre-

dictions for quaternary Ni–Ti–Pd–Pt and Ni–Ti–Hf-Zr

alloys computed using these models, with no additional

training. Each circle represents an alloy at a particular

composition. The color of the circle indicates the predicted

AF whereas its size is indicative of the predicted hysteresis.

Such plots are useful for screening alloys. By selecting

appropriate filters for transformation temperature and

hysteresis, the design space can be quickly narrowed down

to a handful of compositions which can then be tested

during the experimental validation step. Adding the vali-

dation results back into the dataset creates an active

learning loop that allows us to iteratively explore the

massive space and optimize target properties using far

Fig. 8 Effects of applied stress on transformation strain predictions

for Ni–Ti–Pd. Transformation strain increases linearly at lower

values, before flattening out at higher applied stress

Fig. 9 ML predictions for AF and hysteresis of quaternary Ni–Ti–Pd–Pt and Ni–Ti–Hf–Zr alloys. Color indicates the predicted AF whereas size

is indicative of the predicted hysteresis
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fewer experiments. The same models can also be used for

five, six, and higher component alloy predictions.

Finally, PFI is used to study the importance of different

features in the ML models. Figure 10 shows how randomly

permuting input features affects overall performance for

the AF, hysteresis, and transformation strain prediction

tasks. Since PFI is affected by the presence of highly

correlated features, we perform clustering of related inputs

shown in Table 1. The effects of all 37 alloying elements

are grouped under a single column called ‘‘Alloy Elems

%.’’ Similarly, the six preparation technique columns are

together visualized as ‘‘Prep. Technique,’’ and the six heat

treatment features—homogenization temperature and time,

solutionizing temperature and time, aging temperature and

time—as ‘‘Heat Treatment.’’ Besides, we include the

original Ni atomic %, Ti atomic %, and Applied Stress

features. Although heating and cooling rate or cycle

number are not included as inputs to the final models, their

relative importance is also shown in the figure. It is clear

that alloy chemistry has the largest impact on predictions of

AF, followed by heat treatment. For hysteresis, thermo-

mechanical processing and applied stress are relatively

more important, besides composition of alloying elements.

Transformation strain predictions largely depend on the

applied stress, and simply changing the external stress will

have the largest effect on predictions. Knowledge of the

most important features can help guide the design of future

alloys.

Here, it is important to discuss the advantages and

drawbacks of the current approach. Although the large

dataset makes predictions for any multi-component alloy

possible, it also means that the choice of input features

needs to be general. In their recent work, Liu et al. pre-

dicted the mean transformation temperature for ternary Ni–

Ti–Hf compositions and showed that the use of kinetics-

informed process features that are specific to Ni–Ti–Hf,

improved predictive performance. [30] The diversity of

alloy chemistries in our dataset prevents the use of such

composition-specific features. Additionally, our dataset is

compiled from measurements performed and reported by

different groups. The differences in equipment, sample

purity, heat treatment procedures, measurement practices,

and data standards introduce scatter in the data and addi-

tional uncertainty in model predictions. For example, the

choice of melting technique determines which impurities

are introduced into the alloy; such small changes in com-

position can have large effects on transformation behavior.

Further, an alloy could be heat treated in several non-s-

tandard ways (multiple annealing or aging steps, different

temperatures and time ranges, etc.) or have incomplete data

reported. In all such cases, the true processing history of

the alloy cannot be accurately captured through the input

features. Lastly, many engineering alloys also undergo

repeated thermal cyclic tests to achieve two-way shape

memory effect, referred to as ‘‘training.’’ While training

can have a significant effect on the transformation behavior

of SMAs, it is not accounted for in the current dataset. [51]

Although these drawbacks can lead to a slight loss of

accuracy, the wider confidence intervals that result can

provide hints about the scatter in the data, allowing

designers to make informed decisions knowing the

Fig. 10 Permutation feature importance (PFI) plots for the AF,

hysteresis, and transformation strain ML models showing the

decrease in R2 upon random permutation of individual features.

Higher values indicate a larger impact on model predictions
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uncertainty. Still, the low overall MAE achieved by our

models confirms the usefulness of such an approach. The

added benefit of exploring much larger design spaces

makes it even more promising for materials discovery.

Summary

In summary, we developed a data-driven approach to study

transformation behavior in multicomponent Ni–Ti SMAs.

Using a dataset of about 8000 Ni–Ti alloys containing 37

different alloying elements, machine learning models were

trained to predict transformation temperatures (MS, MF,

AS, AF), hysteresis (AF-MS), and transformation strain.

Through feature engineering, 52 composition, thermo-me-

chanical processing, and test parameter related inputs were

identified, which helped achieve low MAE on all learning

tasks. The trained models were employed to study trends,

learn correlations, and make predictions for new higher-

order alloy systems. Uncertainty intervals and feature

importance were also computed to assist with experimental

validation and to guide future alloy design. The current

approach makes it possible to explore vast compositional

and processing spaces using the same models, making it

ideal for rapid discovery of new SMAs. We are not aware

of any other approaches capable of predicting SMA

transformation behavior over such a wide range of com-

positions and processing conditions.

Future work will involve experimentally validating

promising alloy compositions identified using the models.

The validation results will be fed back into the dataset to

create an active learning loop that will result in improved

predictions with each iteration.

Supplementary Information The online version contains

supplementary material available at https://doi.org/10.1007/s40830-

022-00405-x.
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