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Abstract The reverse martensitic transformation proceeds

through several sub-processes at various time and length

scales. We recently studied the transformation kinetics in

the large thermodynamic driving force regime. We induced

a rapid heating pulse in a shape memory alloy wire and

tracked its evolution by multi-frame time-resolved X-ray

diffraction at synchrotron radiation with simultaneous

stress measurements. The study identified three stages

occurring at different times on the microsecond-scale and

at different length scales. Specifically, the transformation

was shown to occur initially in a thin layer near the surface,

and only later in the bulk of the wire. Herein, we explain

the obtained experimental results by modeling the evolu-

tion of the phase transformation using a continuum

approach. Theoretical approaches are discussed and model

fitting to experimental results provides insight into the

kinetic relation between the velocity of the phase front and

the driving force. Results support a scenario in which a

cylindrical phase front propagates inward along the wire

radius. The propagation of such a high-specific energy

front releases energy faster than low-energy fronts forming

under low driving forces.

Keywords Large driving force � Phase front � Kinetic
relations � NiTi � X-ray diffraction � Reverse martensitic

transformation � Shape memory alloy � Synchrotron

Introduction

Martensitic transformations serve as the basic deformation

mechanism in many functional materials. The question

‘‘how fast can the martensitic transformation be?’’ is ele-

mental to the field of solid-solid phase transformations,

e.g., [1, 2]. However, in most studies the transformation

rate is restricted by heat or momentum transfer and the

applied driving force is just slightly above the threshold

value required for overcoming the transformation barriers.

The martensitic transformation occurs through several

stages at different times and length scales. These stages

have been thoroughly studied at slow (� 10�4 s�1) and

intermediate (� 1 s�1) strain rates [3]. Yet, both cases are

still in the small driving force regime. At slow rates, it was

found that in polycrystalline materials, neighboring grains

tend to transform in a coordinated manner that minimizes

the strain incompatibility across grain boundaries [4].

Consequently, macroscopic phase fronts involving numer-

ous grains are often observed [5]. At slow rates, these

phase fronts are strain compatible at a scale much larger

than the grain size [4].

The sequence of transformation stages and their char-

acteristic times have not been thoroughly characterized in

the large driving force regime. In many studies, a lack of

experimental tools prevented tracking the evolution of the
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martensitic transformation with sufficient spatial and tem-

poral resolutions. For example, high-rate impact tests in

shape memory alloys (SMA) often lacked the ability to

resolve discrete phase fronts [6, 7]. An investigation of a

discrete phase front [8], tracked by a series of 9 strain

gauges, displayed extensive data scattering. Thus, the

kinetic relations between the thermodynamic driving force

and the velocity of discrete phase fronts are currently

unknown.

Recently, Vollach et al. [9–11] introduced a new

experimental method for measuring the dynamic response

of SMA wires subjected to an electric resistive Joule-

heating pulse of a few microseconds. In these experiments,

the temperature of the SMA wire reaches a constant value,

above the austenite finish temperature, Af , before the phase

transformation begins. The wire was fixed at both ends,

preventing motion of masses except for local motions in

the wire, and the stress in the wire due to the phase

transformation was measured. These experiments provide

the desired conditions for measuring the unhindered

kinetics of the transformation in the high driving force

regime.

Previous Joule-heating pulse experiments were able to

suggest a macro-scale kinetic law for the average stress in

the wire as a function of time [9]. However, the lack of

knowledge on the instantaneous volume fraction of the

austenite prohibited the study of sub-processes of the phase

transformation. In particular, the macro-scale stress mea-

surement could not reveal a micro-scale kinetic relation for

phase front propagation.

Quantitative information about the volume fractions of

different phases can be obtained by time-resolved X-ray

diffraction (XRD). Recent developments of extreme bril-

liant undulator X-ray sources enable capturing single [12]

and multi-frame [13, 14] time-resolved diffraction patterns.

Dana et al. [15] combined the Joule-heating pulse

experimental system with multi-frame time-resolved XRD

to obtain local measures for the austenite volume fraction

with a temporal resolution of 1 ls. The results demonstrate

the ability to obtain information on sub-processes at dif-

ferent time and length scales. Specifically, three different

stages of the phase transformation were identified, occur-

ring on the microsecond time scale. The transformation

was shown to occur initially in a thin layer near the surface,

and only later in the bulk of the wire.

Herein, we build on our experimental results reported in

Ref. [15], and model the evolution of the phase transfor-

mation using a continuum approach. Namely, the dominant

stage is hypothesized to occur via the propagation of a

single phase front. The model predictions are in good

agreement with experimental results and provide the

kinetic relation of the phase front. The investigated phase

front is significantly different than all previously studied

transformation phase fronts (see, e.g., Ref. [4]) for it is

strain incompatible at the macroscopic scale. The misfit

strains at the phase front induce internal stresses through-

out the entire volume of the wire and increase the elastic

energy. We show that this additional elastic energy is small

with respect to the energy associated with the driving force

for the transformation.

The Multi-frame Time-Resolved XRD Experiment

Materials and Methods

In this section, we briefly review the experimental details,

presented in more details in Refs. [10, 15].

The martensite to austenite phase transformation was

studied in a NiTi wire (Dynalloy Flexinol�90 �C, 50 at.%,

Af � 80–90 �C, with a grain size of approximately 100 nm)

with a diameter of 0.2 mm. Flexinol is a preconditioned

material that exhibits a two-way shape memory effect [10].

At room temperature, this material is completely at the

martensite phase and the reverse martensitic transforma-

tions do not involve the formation of the intermediate R-

phase. Initially, the NiTi wire was fixed at both ends under

a constant tensile stress of r0 ¼ 200 MPa. Under these

conditions, the fully martensitic wire achieved a detwinned

state with a transformation strain of approximately e0 ¼
0:035 relative to its original free length at the austenite

phase. The fixed wire, initially at room temperature, was

subjected to a rapid, high-voltage, electric pulse that heated

it to a temperature in the range 433–473 K (160–200 �C,
greater than Af ), during 3 ls [10, 15]. Dedicated force

sensors with a bandwidth of 1 MHz were attached to both

ends of the NiTi wire and measured the force developed in

the clamped wire throughout the experiment. Clamping the

wire at both ends throughout the experiment assures that

the transformation rate is unhindered by acceleration of

masses.

Previous high-rate studies using IR imaging demon-

strated that the temperature is uniform along the wire axis

[10]. The characteristic penetration depth due to the elec-

tromagnetic skin effect is about 3 mm, indicating that for

wires with a diameter of 0.2 mm the temperature change

along the wire radius is smaller than 6 K [11]. Moreover,

heat loss to the surrounding is shown to be negligible at the

ls time-scale, and the temperature is approximately con-

stant during the entire duration of the phase transformation

(see top panel in Fig. 3, as well as a detailed discussion of

the temperature evolution in Ref. [15]).

Under a fixed wire length, the negative transformation

strain is balanced by a positive elastic strain, associated
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with an increase of the tensile stress. Thus, as the phase

transformation proceeds the tensile stress increases,

resulting in a decrease of the driving force for the trans-

formation. Based on our previous work, under the descri-

bed experimental conditions the phase transformation is

not completed [15], and it is estimated that the transformed

volume fraction does not exceed 0.3 [16, 17]. Thus, losses

due to latent heat are smaller than 7 K [15]. The plastic

strain after each pulse was validated to be negligible, as it

did not exceed 10�3, i.e., at least one order of magnitude

smaller than the overall transformation strain [10, 16].

Previous studies of the martensitic transformation in

NiTi were performed either along the isothermal or the

adiabatic path [3]. In this work, the induced phase trans-

formation proceeds under both adiabatic and isothermal

conditions due to the short duration of the experiment (tens

of microseconds) and the low equilibrium value of the

volume fraction of austenite, respectively.

Multi-frame time-resolved X-ray experiments were

performed at the BL40XU beamline at the SPring-8 syn-

chrotron radiation facility (Hyogo, Japan) [15]. The inci-

dent X-ray energy was 15.00 keV (k ¼ 0:8271 Å), for

which the attenuation length in NiTi is approximately 30

lm. Therefore, diffraction was obtained from a thin region

with a thickness of approximately 1.1 lm at the periphery

of the wire [15].

The XRD beam size captured a segment of 1 mm along

the wire axis. Previous studies in Flexinol wires showed

that, at the 1 mm length scale, the transformation is uni-

form along the wire axis [10, 18], i.e., if transformation

bands do exist along the wire axis, their size has to be much

smaller than 1 mm. Dana et al. [15] performed hundreds of

XRD tests at random positions along various wires,

obtaining highly repeatable results. Therefore, it is extre-

mely unlikely that their beam probed the fast transforma-

tion of a specific band along the wire axis, while other

(larger) regions have yet to transform. This conclusion is

further supported by the observation that the force sensors

located at the two ends of the wire measured the same

signal throughout all transformation stages (see detailed

discussion in [9]).

The temporal resolution of the collected XRD data

(Fig. 3) is approximately 1 ls. This was achieved by

combining different sets of experiments conducted under

the same conditions with different time delays between the

onset of XRD image sampling and that of the heating

pulse. Stress measurements throughout these experiments

were highly repeatable.

Diffraction Patterns and Intensity Profiles

Figure 1 shows a diffraction ring pattern, taken during the

phase transformation, where both the martensite and

austenite phases are present. The intensity of martensite

reflections associated with different variants strongly

depend on the angular coordinate g, in accordance with the

average detwinning strain. Two sections of the diffraction

rings, shown by the dashed and dotted lines, were chosen

for further analysis of diffraction profiles. The intensity

profiles shown in Fig. 2 are averaged from two 5� intervals,
0 6 g 6 5 and 20 6 g 6 25. Due to the fiber texture of the

wire, the sampled regions are symmetric across both the y

and z axis, amounting to a total of 20 sampled profiles with

dg ¼ 1�. The average projected directions of each interval,

representing plane normals with angles of U � 4� (red,

dashed lines) and U � 23� (blue, dotted lines) relative to

the wire axis, were calculated using the formulation pre-

sented in Ref. [19] for a material with a fiber texture.

Figure 2 presents intensity profiles that were averaged

over the two different intervals on the Debye–Scherrer

diffraction rings. The diffractograms were obtained at t ¼ 0

(dashed curve) and t ¼ 200 ls (solid curve) after the

heating pulse. Fig. 2a shows the intensity profile along the

direction of the wire (U � 4�). Initially (t ¼ 0), a high

intensity peak (110M ; 020M) is evident at a scattering

vector value of approximately q ¼ 2:78 Å�1 (related to a

large positive strain of approximately 6.5%), along with a

strong shoulder (�111M) at approximately q ¼ 2:96 Å�1

(related to approximately zero strain) and a smaller bump

(021M; 111M) near q ¼ 3:2 Å�1 (related to large negative

strains), see discussion in Ref. [15]. The significant dif-

ferences in peak intensities are due to the average

Fig. 1 Debye–Scherrer diffraction pattern, of 1024� 1024 pixels,

taken at t ¼ 200 ls with an exposure time of 10 ls. The z axis is

aligned in the direction of the wire. Several austenite and martensite

reflections are marked on the figure. The radius of the 110 A reflection

is approximately 2.96 Å�1
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detwinning strain of 0.035 in the direction of the wire,

which results in a large amount of the martensitic variant

related to the large positive strain. At t ¼ 200 ls, the

increase of the intensity at q ¼ 2:96 Å�1 due to the

emerged austenite 110A peak, is accompanied by a

notable decrease in the intensity of the highest martensitic

peak along with a proportional decrease of the smaller

bump representing the negative strains.

Figure 2b shows the intensity profile along an angle of

U � 23� from the wire axis. The average longitudinal

strain along this direction is smaller, and therefore the

intensity of the 110M; 020M reflections is smaller and that

of the (021M; 111M) is greater with respect to those pre-

sented in Fig. 2a. Here, we see that both sets of reflections

decrease by a factor of approximately 1.6, similar to that

observed for 110M; 020M in Fig. 2a. The observed pro-

portionality in the changes of XRD peaks related to

021M,111M

110M,020M
110M,020M

021M,111M
,110A 

,110A 

Fig. 2 Intensity profiles vs

scattering vector q, taken before

the onset of the heating pulse

(t ¼ 0) and after the

transformation reaches

equilibrium (t ¼ 200 ls, Fig. 1).
The profiles were averaged over

four symmetric (due to the fiber

texture of the wire) 5� intervals

along the Debye–Scherrer

diffraction ring (see illustration

in Fig. 1). a U � 4�. b U � 23�

Fig. 3 [Top] Average wire temperature evolution in time, based on

Ref. [15]. [Bottom] Experimental results combined from four

experiments with varying delays [0, 4.4, 5.5, 6.5] ls. The dotted

line shows the � 3ls pulse of electric power transferred to the wire,

in normalized units, the onset of the electric pulse was chosen as

t ¼ 0. The blue squares are the integrated XRD intensity IAðtÞ of the
austenite peak, normalized with respect to its mean final value (i.e

mean of plateau after 20 ls), corresponding to the estimated 0.261

austenite volume fraction by equation (7). The solid curve is the mean

measured tensile stress from all experiments shown in units of MPa,

marked on the right vertical axis. The horizontal dashed line

represents the equilibrium stress value averaged azimuthally over

the interval [1.4,5] ms after the pulse. The vertical dashed lines denote

the different stages of the transformation. The x-marked dashed line is

the analytic solution, Eq. (12), of the tensile stress along the wire

based on the proposed kinetic model (discussed in section ‘‘Model for

a cylindrical phase front’’). Reproduced from Dana et al. (2021) [15]

with permission from Elsevier
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different martensite variants indicates that to a good

approximation the average detwinning strain in the

martensite phase remained constant at the original value of

e0 ¼ 0:035. This means that a transformation of a volume

fraction x within a given region of the wire results in

transformation strain etzz ¼ �xe0 within this region. The

transformation strain results in a change of the elastic strain

leading to a stress change. Thus, the process probed by the

XRD must involve a change in stress.

Time Evolution of XRD Intensities and Force

Measurements

The above description of the experimental method can be

summarized as follows. The 110A XRD intensity, measured

along the wire axis (similar to Fig. 2a), is proportional to

the volume fraction of the austenite within that region, i.e.,

a layer thickness of approximately 1.1 lm near the surface

of the wire. At the same time, the average stress, calculated

by dividing the measured force by the wire cross sectional

area, is a macroscopic measure for the effect of the phase

transformation throughout the entire cross section of the

wire.

Typical experimental results showing the evolution of

the 110A XRD intensity and stress in the NiTi wire are

presented in Fig. 3. In addition, the top panel of the fig-

ure shows the power pulse transferred to the wire and the

resulting temperature response of the wire (as explained in

Ref. [15]). The microsecond-scale time-resolved XRD

study of the transformation [15] identified three different

stages of the transformation, occurring at different times

and length scales.

In the first stage, up to approximately 9 ls after the onset
of the heating pulse, no detectable response of the wire is

observed. Dana et al. [15] assumed that at this stage, sparse

nucleation of austenite islands occurs.

The following second stage shows a fast (approximately

9 ls), steep rise in the volume fraction of the austenite

phase near the surface of the wire (blue squares in Fig. 3).

Concurrently, the macroscopic stress response (solid curve)

during the second stage appears to be negligible. Following

the conclusion from section ‘‘Diffraction patterns and

intensity profiles’’ that the strain change probed by the

XRD must involve a change in stress, we conclude that the

rapid transformation occurs only within a near-surface

layer, which is small compared to the total volume of the

wire. Furthermore, it is more likely that increased nucle-

ation of austenite will be promoted by the lack of

mechanical constraints at the free surface over the highly

constrained center. We therefore consider this stage to be

the formation of a thin partially transformed martensite-

austenite layer near the surface of the wire.

The third, most dominant, stage is the increase of the

macroscopic stress (over approximately 30 ls), signifying
the transformation in the bulk of the wire. However, from

the end of the second stage (t � 20 ls), as the transfor-

mation evolves (32 6 t 6 65 ls), the austenite intensity in

the region probed by the XRD remains constant at the

plateau value. This indicates that a process occurs in the

inner part of the wire while the thin outer layer probed by

the XRD remains unchanged. The saturation of the dif-

fracted austenite intensity indicates that the volume frac-

tion of austenite within the outer layer reaches an

equilibrium value remaining approximately constant

throughout the transformation in the bulk. At times t[ 65

ls, an equilibrium is reached in both the near-surface layer

probed by the XRD and the bulk probed by the force

sensors.

The effect of the initial stress has been studied in pre-

vious work by Vollach et al. [9, 16]. The authors found that

the initial stress value does influence the evolved equilib-

rium stress in the bulk of the wire but barely affects the

time required to reach equilibrium.

Theoretical Framework

The observations made in Sect. 2 imply that during the

third stage (bulk transformation), the transformation pro-

ceeds along the radial direction. This effect may arise due

to the high-driving-force conditions or due to the unique

boundary conditions imposed in this experiment. At the

same time, it should be noted that the common experi-

mental methods used for following the evolution of phase

transformations in SMA are based on optical, electron, or

IR microscopy, which are mainly sensitive to surface

changes. Specifically, previous slow [17, 18] and high [10]

rate studies of Flexinol wires measured strain and tem-

perature changes only at the surface and therefore could not

observe such effects.

Next, we discuss possible scenarios for the propagation

of the phase transformation, in accordance with the

obtained experimental results. The studied problem is

described using a continuum model at a scale much larger

than the grain size (� 100 nm) but much smaller than the

wire radius (100 lm).

The volume fraction of austenite is described by the

general function xðr;/; z; tÞ, where r, / and z represent the

radial, azimuthal and axial coordinates in a cylindrical

system. Due to the cylindrical symmetry of the polycrys-

talline wire, we assume that x is not a function of /. Fur-
thermore, as discussed in Sect. 2.1, any fluctuations of x as

a function of the axial coordinate z, occur at a scale smaller

than few tens of lm. For simplicity, we initially assume
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that x is not a function of z and then elaborate on the issue

and soften this ansatz.

Figure 4 presents the schematics of two different pos-

sible shapes for the functions x(r) and _xðrÞ at a given time,

t, where the dot operator is the time derivative. The dashed

curves in Fig. 4a and b represent gradual functions

describing a situation in which regions at different radial

locations have independent transformation rates, i.e.,

_xðr1Þ 6¼ _xðr2Þ. The solid curves describe a transformation

process that takes place via the propagation of a phase front

separating the outer partially transformed layer (M ? A)

from the inner layer that has yet to be transformed (M).

Within the region of the phase front, x may vary as a

function of z, as illustrated for example in Fig. 4c. Such

local variations can reduce the local strain energy [4]. The

observation that the austenite volume fraction in the outer

region reaches a plateau (equilibrium) value at t � 18 ls,
before the stress begins to rise, deems the scenario

described by the dashed curves less probable.

Herein, we introduce a model for the bulk transforma-

tion stage (32. t. 65 ls in Fig. 3), during which the stress

increases, but the austenite volume fraction within the

outer layer has already reached the equilibrium value. For

simplicity, we express the function x(r, t) in the form of the

step function

xðr; tÞ ¼0; if r\R� hðtÞ; (1a)

xðhÞ; if r[R� hðtÞ; (1b)

�
ð1Þ

where h(t) is the thickness of the partially transformed

outer layer measured from the wire surface (r ¼ R) inward,

as depicted in Fig. 5. To consider the evolution of x within

this layer, we allow it to change as a function of h. The

following model will show that the equilibrium volume

fraction of austenite, xeq, is practically insensitive to h(t), in

agreement with the observation that IAðtÞ remains at a

saturated value while �rðtÞ increases. The model does not

describe the stages at which h or (R–h) are on the scale of a

few grains (i.e., smaller than � 1 lm), in a wire of radius

R. Finally, the model will show that although the cylin-

drical phase front is strain incompatible at the macroscopic

scale, the elastic energy due to this strain mismatch is small

with respect to the driving force for the phase

transformation.
Fig. 4 Schematics of possible shapes of the functions: a x(r), and b
_xðrÞ, at a given time, t. The solid and dashed lines represent a

continuous (e.g., phase front) and gradual spatial distribution of the

transformed region, respectively. c Illustration of the radial cross

section of the wire (in the r–z plane) with a possible boundary

between the partially transformed (M ? A) and untransformed

(M) regions in the wire, composed of sharp (needle) interfaces aimed

to reduce the misfit strain at the boundary between the different

phases (cf. Ref. [4]). If the needles are small enough, they can be

considered as a macroscopic front with a rough interface located at

the average coordinate h

Fig. 5 Schematic illustration of the proposed model for transforma-

tion in a wire fixed at both ends with initial length L0 and

transformation strain e0. a The cylindrical interface, r ¼ R� hðtÞ,
between the partially transformed (M ? A) region and the untrans-

formed (M) region is described by two co-cylindrical bodies in

mechanical equilibrium. b Cross section of the wire
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Model for a Cylindrical Phase Front

This section is organized as follows. We begin by formu-

lating the free energy in the wire and defining the basic

conditions at which the transformation occurs. In section

‘‘Equilibrium volume fraction of austenite’’, we estimate

the equilibrium volume fraction of austenite, xeq, in the

partially transformed layer. In section ‘‘Kinetic-law’’, we

present a simple kinetic law to account for the velocity of

the front and discuss the conditions for its validity. Finally,

the obtained model is solved and fitted to the experimental

results, providing the kinetic relation between the cylin-

drical phase front and the driving force propagating it.

The total free energy is expressed by

Uðh; xÞ ¼U 0; 0ð Þ � p R2 � R� hð Þ2
� �

LxðtÞDsDT

þ 1

2

X
ij

2pL
ZR

0

rijeijrdr:

ð2Þ

The first term represents a reference state at which the wire

is fully at the martensite phase. The second term represents

the reduction of the free energy due to the phase trans-

formation in the outer layer. Here, L ¼ L0ð1þ e0Þ is the

fixed length of the wire, Ds is the entropy change per unit

volume and DT ¼ T � T0 is the temperature difference

relative to the transformation temperature, T0. The third

term represents the energy due to the elastic stresses rij and
strains eij. The work of external forces is zero because the

wire is clamped at both ends.

Based on the data in Fig. 3, the phase front propagates a

distance of 0.1 mm (the wire radius) during approximately

30 ls. The average phase front velocity of 3.33 m/s is three

orders of magnitude smaller than the shear wave speed,

CT � 2000 m/s. Thus, the stresses in the outer layer (par-

tially transformed region) and the inner core (untrans-

formed region) of the wire can be calculated assuming

mechanical equilibrium. The solution to this elastic prob-

lem is presented in Appendix A, where all relevant stresses

and strains are expressed as functions of h(t) and x(t). For

simplicity, we assume that the Young’s moduli and Pois-

son’s ratios of both the outer layer and the inner core are

the same. This assumption is in agreement with ultrasonic

measurements, which showed that at high rates the

Young’s moduli of the austenite and martensite phases are

approximately the same and are equal to � 70 GPa [20].

Equilibrium Volume Fraction of Austenite

We estimate the equilibrium value of the volume fraction,

xeq, as a function of the layer thickness, h, by minimizing

U, defined in Eq. (2), with respect to x. This procedure,

after substituting all of the obtained expressions for rij and
eij from appendix A, provides

xeq ¼
DsDT � r0e0

Ee20
C1ðmÞ � C2ðmÞ

hðtÞ
R

þ C3ðmÞ
h2ðtÞ
R2

� ��1

;

ð3Þ

where E and m are the Young’s modulus and Poisson’s

ratio, and the constants are

C1ðmÞ ¼
5� 4mð Þ

4 1� m2ð Þ ; ð4aÞ

C2ðmÞ ¼
1� 2mð Þ2

2 1� m2ð Þ ;
ð4bÞ

C3ðmÞ ¼
1� 2mð Þ2

4 1� m2ð Þ :
ð4cÞ

Inspection of Eq. (3) at both limits provides that

xeqðh ¼ 0Þ ¼ 1

C1ðmÞ
DsDT � r0e0

Ee20
; ð5Þ

and that

xeqðh ¼ RÞ ¼ DsDT � r0e0
Ee20

: ð6Þ

A substitution of material properties (listed in Appendix B)

into these expressions provides that xeq � 0:261 (in

excellent agreement with previous calculations performed

in Ref. [16]) and that the value varies by approximately 3%

between the two limits. The latter result validates that xeq is

a weak function of h(t), in accordance with our observation

that the XRD intensity of the austenite peak remains con-

stant during this stage of the transformation (as shown in

Fig. 3).

Table 1 Substituted and

calculated model parameters
Parameter Value Parameter Value Parameter Value Parameter Value

E 70 GPa r0 200 MPa Ds 0.245 MPa/K 5�4mð Þ
8 1�m2ð Þ

0.516

m 0.33 e0 0.035 xeq 0.261 a 0.404

DT 120 K h0 10 lm DsDT
Ee2

0
xeq

1.207 b 0.0649

R 100 lm t0 32 ls r0e0
Ee2

0
xeq

0.287 c - 0.0324
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Based on this result, in the following calculation of h(t)

we assume a constant value of the austenite volume

fraction,

xeq �
DsDT � r0e0

Ee20
: ð7Þ

The equilibrium values in our experiment, specifically

volume fraction, equilibrium stress and temperature, are in

agreement with values obtained in a slow-rate study of

similar Flexinol wires, see Ref. [17].

Kinetic-Law

The velocity v of the phase front is calculated by assuming

a kinetic relation of the form

v ¼ dh tð Þ
dt

¼ lmg; ð8Þ

where lm is a mobility coefficient, and g is the thermo-

dynamic driving force for the phase transformation defined

by

g ¼ � 1

S

dU

dh
¼ � 1

2p R� hð ÞL
dU

dh
; ð9Þ

[21]. Here, S is the area of the moving interface (the phase

front). The kinetic relation assumed in Eq. (8) describes a

motion governed by internal viscosity ð1=lmÞ. This is

typical for cases in which the velocity of the phase front is

greater than 10�4CT , yet significantly smaller than CT

[22, 23], as in our case.

The substitution of the elastic solution (Appendix A)

into equations (2), (9), and (8) yields a linear, first order,

ordinary differential equation (see appendix B). Inspection

of relative magnitudes of the different terms (Table 1 in

appendix B) show that the effect of the mismatch strain

energy (third term in Eq. (2)) is approximately 0.43 of the

thermally induced contribution to the driving force (second

term in Eq. (2)). Substitution of material properties into the

obtained expressions shows that the driving force,

g � 0:5xeqDsDT; ð10Þ

and the velocity, v, are approximately constant as a func-

tion of h. Thus, h is approximately a linear function of t,

i.e.,

hðtÞ / lmgt: ð11Þ

Finally, the obtained solution for h(t) is substituted into the

solution for the mean tensile stress in the wire (see details

in Appendix A),

�r ¼ r0 þ Exeqe0 1� R� hðtÞ
R

� �2
 !

: ð12Þ

A solution of our model (Appendix B) showing the tem-

poral evolution of the mean stress in the wire, is presented

by the x-marked dashed line in Fig. 3. An initial condition,

hðt0Þ ¼ h0, was imposed, where t0 ¼ 32 ls and h0 ¼ 10 lm
are the time and layer thickness at which the phase front

propagation stage begins. The temperature difference is set

to DT ¼ 120 K (in accordance with the electric energy

discharged on the wire), and the only fitted parameter is the

mobility of the phase front, lm, resulting in the front

velocity, v ¼ lmg ¼ 4 m/s (see Appendix B for more

details), for propagation along the radial coordinate of the

wire. The agreement between our model solution for �r and

the measured data further strengthens our analysis.

Conclusions

Our previous results (Ref. [15]) revealed a rapid transfor-

mation occurring within a thin layer close to the wire

surface, while the bulk of the wire remained

untransformed.

This paper focuses on the analysis of the main sub-

process that governs the thermo-mechanical response of

the wire, during which bulk transformation occurs. Our

analysis excludes several mechanisms of transformation

propagation, which have been reported to occur at slow

rates in different types of samples, and suggests a new

mechanism that is in agreement with our experimental

observations. In this mechanism, the transformation first

occurs at the near-surface layer and then proceeds inward

by the propagation of a cylindrical phase front.

We developed a theoretical model for a cylindrical

phase front that was fitted to the experimental results and

provided a kinetic relation between the velocity of the

phase front and the driving force propagating it. The

agreement between the fitted model and experimental

results further supports our interpretation.

A cylindrical phase front is significantly different than

all previously studied transformation phase fronts (see, e.g.,

Ref. [4]) for it is strain incompatible at the macroscopic

scale. That is, the misfit strains at the phase front induce

internal stresses throughout the entire volume of the wire

and increase the elastic strain energy. On the other hand,

the cylindrical phase front is formed more easily due to the

lack of mechanical constraints at the surface. To complete

the transformation, the phase front has to propagate just 0.1

mm (� 500 times smaller than the length of the wire).

Broadly speaking, the transformation mechanism at large

driving force values implies the releasing of the excess

energy as fast as possible, rather than following the mini-

mal energy path. This behavior resembles crack propaga-

tion dynamics in the large driving force regime, e.g., [24],
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and is reasoned to be a result of the conditions at which the

thermally induced driving force is much larger than the

effect of the energy due to misfit strains.

The obtained results reveal several interesting insights.

First, the velocity of the proposed phase front (about 4 m/s)

is much smaller than the shear wave speed (� 2000m/s),

suggested as an estimation for the velocity of austenite–

martensite interfaces in ideal single crystals [25]. Second,

the extracted kinetic relation in equation (8) describes an

irreversible thermodynamic process governed by viscous

resistance. Third, the slow phase front velocity is due to the

relatively small value of the mobility coefficient lm,
inversely proportional to the viscous resistance. The latter

is predominantly higher in strain incompatible phase fronts

due to the associated stress changes in the entire volume of

the material.

Future work should include the use of a high energy

([ 20 keV) x-ray beam to overcome beam attenuation in

the material, enabling measurements at varying locations

along the wire cross-section.
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Appendix 1: Elastic Problem

Herein, we formulate and solve the boundary value prob-

lem related to the stress and strain tensors in a wire that

consists of an untransformed martensite cylindrical core

surrounded by a partially transformed cylindrical shell with

a thickness h and an austenite volume fraction x. For

simplicity, we ignore any preferred crystallographic ori-

entation along the wire axis and assume that both the core

and the shell can be described as isotropic materials with a

Young’s modulus E and a Poisson’s ration m. Moreover,

based on previous ultrasonic measurements [20, 26], we

assume that at the high rates relevant for this study E and m
of the austenite and martensite phases have the same val-

ues. As discussed above, _h � CT , therefore the elastic

problem is solved under the assumption of force

equilibrium.

Initially, three superscripts are defined: c-core (un-

transformed martensite core), s-shell (partially transformed

austenite shell), t-transformation. We follow Ref. [27], p.

124, which solves the equilibrium problem of

axisymmetric co-cylinders. The governing equilibrium

equation is formulated, for each of the materials, in terms

of their radial displacement, ur, to obtain

d2ur
dr2

þ 1

r

dur
dr

� ur
r2

¼ 0; ð13Þ

which has the solution

urðrÞ ¼
( Acr; 0 6 r 6 R� hðtÞ;

Asr þ Bs=r; R� hðtÞ 6 r 6 R:

ð14Þ

The boundary conditions for the problem are

ucr R� hðtÞð Þ ¼ usr R� hðtÞð Þ; ð15Þ

rcrr R� hðtÞð Þ ¼ rsrr R� hðtÞð Þ; ð16Þ

rsrrðRÞ ¼ 0: ð17Þ

The conditions specified in Eqs. (15) and (16) represent

continuity of displacement and stress at the interface,

Eq. (17) specifies zero constraints on the outer surface of

the wire (free surface).

We formulate the elastic relations between the stresses

and the elastic strains for both the core and the shell,

rcrr
rchh
rczz

2
64

3
75 ¼ E

1þ mð Þ 1� 2mð Þ

1� m m m

m 1� m m

m m 1� m

2
64

3
75

ecrr
echh
eczz

2
64

3
75;

ð18aÞ
rsrr
rshh
rszz

2
64

3
75 ¼ E

1þ mð Þ 1� 2mð Þ

1� m m m

m 1� m m

m m 1� m

2
64

3
75

esrr
eshh
eszz

2
64

3
75:

ð18bÞ

The total strains in the outer shell (in all three directions)

are each comprised a transformation component and an

elastic contribution such that

es;totalkk ¼ eskk þ etkk; ð19Þ

where the index k represents each of the coordinates

ðr; h; zÞ. Concurrently, phase transformation has not yet

occurred in the inner core and therefore its total strain is

purely elastic. The strain due to transformation in the

direction of the wire is etzz ¼ �e0x, where x is the volume

fraction of austenite in the wire, as described in the main

text. Also, since the wire is fixed at both ends,

ec;totalzz ¼ es;totalzz ¼ r0=E, where r0 is the initial stress in the

wire that is applied before the heat pulse. We thus obtain

that eszz ¼ r0=E þ e0x. Due to volume conservation of the

transformation strains,

etrr þ etzz þ ethh ¼ 0; ð20Þ
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leading to etrr ¼ ethh ¼ 1
2
e0x.

Substituting Eq. (13) into the strain-displacement rela-

tions, ehh ¼ ur=r and err ¼ dur=dr, and combining with

Eqs. (18) and (19), we obtain expressions for the elastic

strains in terms of the constants, Ac; As; andBs. Then,

substituting the results into boundary conditions (15), (16),

and (17), we obtain the solution

Ac ¼ xe0ð1� 2mÞ2

4ð1� mÞ
R2 � R� hð Þ2
� �

R2
� mr0

E
; ð21aÞ

As ¼ xe0ð1� 2mÞ
2

� xe0ð1� 2mÞ2

4ð1� mÞ
R� hð Þ2

R2
� mr0

E
; ð21bÞ

Bs ¼ � xe0ð1� 2mÞ R� hð Þ2

4ð1� mÞ ; ð21cÞ

which can then be used to express all of the elastic strains

and stresses. Finally, we calculate the mean longitudinal

stress in the z direction,

�r ¼
2p
R R�hðtÞ
0

rczzrdr þ 2p
R R
R�hðtÞ r

s
zzrdr

pR2

¼ r0 þ Exe0 1� R� hðtÞ
R

� �2
 !

:

ð22Þ

The solution for the evolution of the thickness of the outer

shell, h(t), is then substituted into equation (22), and both

curves are presented in Fig. 6 (see Appendix 2).

Appendix 2: Kinetic Model

The substitution of the above solution for the elastic

problem into the kinetic law in Eq. (8) in the main text

yields the linear, first order ODE,

_h ¼ ~lm aþ b
h

R
þ c

h2

R2

� �
; ð23Þ

where the modified mobility parameter, ~lm (in units of m/

s), obeys the relation

~lm ¼ lm Ee20x
2
eq

� �
; ð24Þ

and the constants are accordingly

a ¼ DsDT
Ee20xeq

� r0e0
Ee20xeq

� ð5� 4mÞ
8 1� m2ð Þ ; ð25aÞ

b ¼ 1� 2mð Þ2

2 1� m2ð Þ ;
ð25bÞ

c ¼ � 1� 2mð Þ2

4 1� m2ð Þ :
ð25cÞ

Additionally, the initial condition, hðt0Þ ¼ h0, was

imposed, where t0 and h0 are the time and layer thickness at

which the phase front propagation stage begins.

The RHS of the obtained ODE (23) is a second degree

polynomial, which has an analytic solution. Nonetheless,

an inspection of the magnitudes of the constants b and c

(Table 1) showed that their respective terms are negligible

throughout the solution, i.e., 0 6 hðtÞ 6 R. Thus, the RHS

collapses to the constant ~lma, corresponding with a

Fig. 6 Solutions to the proposed kinetic model, Eq. (23). The analytic

approximate linear solution, happrox (neglecting the second and third

terms on the RHS), is compared to a full numerical calculation,

hnumerical. The normalized temporal evolution of the front location

with respect to the radius of the wire, h(t)/R, is presented in the dashed

(approximate solution) and dotted (full numerical solution) lines. The

mean stress (solid, approximate solution and dash-dotted, full

numerical solution) in the wire is normalized relative to its maximum

value (obtained at h ¼ 1), i.e., �r=�rmax, with the maximum obtained

value �rmax � 0:9 GPa
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constant driving force for the transformation and thus a

constant front velocity resulting in a linear profile for h(t)

(Eq. (11) in the main text). A closer estimation of the

magnitudes of the different terms in a (Table 1) shows that

since the effect of the initial stress, r0, is small, the driving

force is dominated by the thermodynamic heating term

DsDT and that the resulting driving force can be approxi-

mated to the expression g � 0:5xeqDsDT .
The parameters that were substituted into the model (see

Table 1) generally follow those estimated in Ref. [9]. The

temperature difference was set as DT ¼ 120 K, which

implies a wire temperature of approximately 473 K (200 �C)
and the total entropy change was estimated as the slope of a

specialized Clausius–Clapeyron equation for uniaxial stress,

i.e., the linear slope of the equilibrium stress vs. the wire

temperature, Ds � ð7e0ÞMPa/K, cf. Ref. [16]. The mobility

parameter, ~lm ¼ 4 m/s, was fitted for the solution that was

obtained by imposing the initial condition, h0 ¼ 10lm and

t0 ¼ 32 ls, to agree with the experimental results.

The solution for the model presented in Fig. 3 is the

linear analytic solution for the simplified Eq. (23) (i.e., with

the 2nd and 3rd terms neglected). The solution was com-

pared to a numerical calculation that included all three

terms of the RHS, which was found to be in good agree-

ment throughout the range of the solution, i.e.,

0 6 hðtÞ 6 R, in Fig. 6, where the time evolutions of both

solutions are compared. The normalized front location,

h(t)/R, is presented by the dashed (linear approximate

solution) and dotted (full numerical) lines, and the mean

tensile stress, �r� r0ð Þ= rmax � r0ð Þ is presented by the

solid (linear approximate solution) and dash-dotted (full

numerical) lines.
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