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Abstract We investigate the effect of Nb and Ta contents

on the (i) critical resolved shear stress (CRSS) for the

b - a00 transformation, (ii) the CRSS for austenite slip, and

(iii) the CRSS for twin nucleation in martensite (a00 phase)
that govern shape memory and superelasticity in Ti-based

alloys. The critical stresses for slip and twinning are

achieved with a modified Peierls Nabarro formalism uti-

lizing generalized stacking fault energy and the generalized

planar fault energy (GPFE), respectively, obtained from

first-principles density functional theory (DFT) calcula-

tions. During the calculation of the twinning stress, we

show the importance of the shuffling process in stabilizing

and lowering the GPFE curve. Similarly, the transforma-

tion stress is obtained with heterogeneous martensite

nucleation mechanism incorporating the energy barriers

associated with the transformation process. Here, we point

to the role of dislocations in the shuffling process during

the early stage of transformation. We show that the

increase of Ta content raises the CRSS more effectively for

the case of slip compared to twinning or transformation.

The slip stress and twin stress magnitudes increase with an

increase in the unstable fault energy cusð Þ and unsta-

ble twinning fault energy cutð Þ; respectively. In summary,

as the Ta composition increases, the difference between

martensite/austenite slip resistance and the transformation/

twinning stress widens showing the efficacy of Ta alloying

additions.

Keywords Superelasticity � Ti–Nb–Ta � Shape memory �
Transformation � Twinning � Slip � High temperature

Introduction

Ti-based shape memory alloys (SMAs) have received

invigorated attention in recent years due to high tempera-

ture capabilities [1–6]. These alloys can also be exploited in

biomedical applications [7, 8] removing the concerns with

the use of nickel element in human body. Several experi-

ments [1, 2, 6, 9], and recent theoretical calculations [10]

have shown that upon alloying Ti-alloys with Nb, Ta, and

Zr, high transformation strains (11 %) and high-martensite

slip resistance can be achieved in addition to the high

transformation temperatures (over 400 K). There are four

other parameters such as transformation stress, twinning

stress, martensite slip stress, and austenite slip stress that

govern the shape memory and superelastic behavior. An

accurate determination of these parameters is crucial for the

design of new SMAs. However, it is a tremendous experi-

mental effort to determine these parameters for multiple

alloys. Earlier experiments [1, 2, 9, 11] have revealed the

role of composition on shape memory functionality in a

selected number of Ti-based alloys. We note that further

theoretical works encompassing a range of wide composi-

tion could cast further light on the generic trends of the

composition effect on the martensite twinning, austenite

slip, and the austenite to martensite transformation stress. In

addition, the critical resolved shear stresses (CRSS) for

martensite transformation, twinning, and austenite slip are

the important parameters appearing in the constitutive

equations [12] whether of the crystal plasticity type or

continuum formulations, allowing description of SMAs

response at the macroscales. With atomistic-informed

& H. Sehitoglu

huseyin@illinois.edu

1 Department of Mechanical Science and Engineering,

University of Illinois at Urbana-Champaign, 1206 W.

Green Street, Urbana, IL 61801, USA

123

Shap. Mem. Superelasticity (2016) 2:180–195

DOI 10.1007/s40830-016-0061-4

http://crossmark.crossref.org/dialog/?doi=10.1007/s40830-016-0061-4&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40830-016-0061-4&amp;domain=pdf


modeling, the CRSS values can be precisely pinpointed in

these alloys, which is the topic of the present paper.

Figure 1 shows the schematics of the four generic func-

tionalities in Ti-based SMAs: (i) shape memory behavior via

twinning/detwinning of orthorhombic martensite, (ii)

superelastic response due to bcc-orthorhombic transforma-

tion, (iii) austenite slip, and (iv)martensite slip. In the case of

shape memory behavior (i), when the internally twinned

martensite variant is loaded above a critical stress, termed the

‘‘critical twinning stress, stwincr ,’’ the martensite variant most

favorably oriented to the loading direction grows at the

expense of the other. The growth of the martensite variant

occurs with the advances in the twin interfaces to form the

end state called the ‘‘detwinned martensite.’’ This process

requires overcoming the twinning energy barrier represented

by the generalized planar fault energy (GPFE). The GPFE is

the energy per unit area required to nucleate a twin [13–15]

and will be discussed later. Upon subsequent heating above

the austenite finish (Af) temperature, the detwinned

martensite reverts back to austenite, giving rise to shape

memory effect. Upon loading further above the critical slip

nucleation stress (ssmar), slip dislocations may nucleate in the

martensite phase that curtails reversibility due to plastic

strain accumulation. If the crystal is unloaded before the

martensite slip nucleation stress, a large strain may be

recovered in this case. Similarly, for the case of superelastic

response (ii), the initial austenite phase transforms to the

martensite above a critical stress, termed the ‘‘critical

transformation stress, stranscr ,’’ and reverts back to austenite

upon unloading. At a very high temperature (T � Af), slip is

commonly observed in austenite upon loading above a crit-

ical stress, ssaus, and no strain is recovered in this case. In order
to achieve a high transformation strain, it is desirable to

minimize irreversible plastic strain accumulation through

increasing austenite and martensite dislocation slip resis-

tance. Concurrently, it is important to lower the transfor-

mation and twinning stresses to assist the thermoelastic

martensite transformation. In other words, the difference

between the austenite/martensite slip resistance and the

transformation/twinning stress is an important parameter

that governs the shape memory or superelastic response.

Research on Ti–Nb alloys can be classified into two cat-

egories. The works on plastic deformation mechanisms

examined slip and twinning, and the second set of works

considered the shape memory behavior (the transformation

from the bcc to orthorhombic phase). Both class of studies

uncovered the physical mechanisms governing the defor-

mation utilizing microscopic tools such as transmission

electron microscopy (TEM) and with experiments at mac-

roscale. The works on slip and twinning using TEM inves-

tigations [16] have revealed the similarities between b Ti-

based alloys and pure bcc metals. The TEM analysis on Ti–

4.4Ta–1.9Nb alloy [17] investigated the role of the

microstructural variations, slip, and twinning, and the role of

austenite/martensite interface on the strength and ductility.

Experiments [16] have successfully revealed the slip sys-

tems in b Ti-based alloys allowing an in-depth understand-

ing on the mobility of slip dislocations, cross-slip

mechanism, and dislocation-interstitial interactions. Spe-

cially, the role of interstitials such as Si and O on the strength

Fig. 1 Stress–strain response showing shape memory effect, superelasticity, martensite slip, and austenite slip as a function of temperature in

Ti–Nb–Ta alloy
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of Ti-based alloys has been discussed in detail. In addition,

the role of alloying elements such as Cr and In [18, 19] in

governing slip, twinning, and transformation, and their

influence on grain refining process have also been studied.

Experiments at macroscale have revealed the role of

alloying elements such as Ta, Zr, and Nb [1–4, 6, 9, 11, 20,

21] on shape memory and superelastic properties in several

Ti-based alloys. Of particular interests are establishing the

parameters such as transformation stress and temperature,

and slip stresses that affect the recoverable strains, and

consequently optimizing the composition to achieve better

shape memory performance at high temperatures. There-

fore, there is a need for theoretical models to establish

these quantities accurately. We point out that the theoret-

ical considerations at the atomic level can establish the

critical slip, transformation, and twinning stresses thus

guiding the development of these alloys. In this regard, the

current work aims at establishing (i) the CRSS for bcc (b)
to orthorhombic (a00) transformation (stranscr ) noting that the

superelasticity is achieved by means of a reversible ther-

moelastic martensite transformation between these two

phases, (ii) the CRSS for martensite twinning (stwincr ), and

(iii) the CRSS for austenite slip, ssaus. The critical trans-

formation stress (i) is achieved with a dislocation-based

heterogeneous mechanism utilizing the Peierls Nabarro

(PN) formalism [22–28] incorporating the energy barriers

associated with the transformation process. We consider

the coupled transformation components—Bain deforma-

tion and the shuffling process—and the accompanying

dislocation activities that participate in the transformation

process. The shuffling mechanism during the transforma-

tion locally rearranges the atomic positions in the bcc

crystal to match the stacking sequence of the orthorhombic

crystal. Similarly, we carefully point to the shuffling pro-

cess during the course of obtaining the martensite twinning

stress (ii). As will be discussed later, twinning on

{110}h110i system in Ti-alloys is accomplished through

shear followed by shuffle mechanism, while twinning on

{111} is accomplished through shear alone. When

obtaining the energy barriers (GPFE) associated with

twinning, we show that shuffling mechanism is an integral

part in the twinning process as it both lowers and stabilizes

the GPFE curve. Similarly, in order to calculate the CRSS

for austenite slip, we obtain the generalized stacking fault

energy (GSFE) [29], and utilize it to calculate the Peierls

stress. Overall, we investigate the aforesaid parameters (i,

ii, and iii) in Ti-based alloys for 11 different compositions

of Nb and Ta (in at.%) exhibiting the minimum and

maximum transformation strains. The minimum and max-

imum transformation strains for different alloying compo-

sitions were obtained using lattice deformation theory in

our previous work [10].

The importance of austenite slip during martensitic

transformation has been well recognized in NiTi [30–32]. It

has been observed that slip dislocations nucleate during

transformation process due to high internal stresses and

strains along the austenite/martensite interfaces [33]. It is

suggested that these dislocations, in most of the cases,

deteriorate the shape memory properties by introducing

permanent plastic strain, while in some other cases, they are

found to assist the martensite transformation, as in the case

of CuAlNi [34]. In order to better understand the role of

dislocations in martensite transformation, the CRSS for slip

has to be established. In the present work, we identify a set of

variables that govern the slip in addition to twinning and

transformation stresses in Ti-based alloys noting that these

parameters have not been discussed in great detail in the

literature. Most importantly, we note that the change in the

compositions in Ti-based alloys affects the twinning/trans-

formation stress by changing the twinning shear magnitudes,

burgers vector, the lattice constants, the elastic moduli, and

the shuffle magnitudes. We provide these quantities in the

current work for the compositions under consideration.

Although binary Ti-Nb alloys are found to exhibit high

transformation temperatures, nonetheless the maximum

transformation strains in these alloys are below 3 % [1, 6].

The advantage of Ta addition is that it increases the CRSS

for martensite and austenite slip nucleation so that a large

reversible deformation can be achieved without significant

plastic strain accumulation. Recently, theoretical works [10]

have established the transformation strains and the CRSS for

slip in a large number of Ti–Nb–Ta alloys. The maximum

transformation strain obtained theoretically is 6.5 % in Ti–

6.25Nb–6.25Ta [10]. The lowest CRSS for martensite slip

was 127 MPa in Ti–6.25Nb–6.25Ta and the maximum

CRSS was 283 MPa in Ti–25Nb–25Ta, more than twice the

increase in the CRSS upon alloying Ti with Nb and Ta. We

note that alloying does not produce similar effect on slip,

transformation and twinning stresses, and this demands a

correct model for determining these quantities theoretically,

which we undertake in the present study.

We organize the paper as follows. In ‘‘SimulationMethods

and Lattice Constants,’’ ‘‘Generalized Stacking Fault Energy

and Austenite Slip,’’ ‘‘Generalized Planar Fault Energy and

Twinning,’’ and ‘‘BCC (b) ? Orthorhombic (a00) Transfor-
mation’’ sections, we discuss, respectively, our simulation

methods, the austenite slip stressmodeling, the twinning stress

modeling, and the transformation stressmodeling approaches.

In these sections, we also provide discussions on obtaining the

GPFE for orthorhombic B19 (a00) martensite twinning and the

energy barriers associated with the transformation process. In

‘‘Discussion of the Results’’ section, we provide discussion

and implications of the results, and finally provide a conclu-

sion in ‘‘Conclusion’’ section.
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Simulation Methods and Lattice Constants

We used the first-principles DFT calculations to compute

the total structural energy of the crystal. The DFT was

implemented using the Vienna ab initio Simulations

Package (VASP) with the projector augmented wave

(PAW) method and the generalized gradient approximation

(GGA) [35, 36]. A 4 9 4 9 2 supercell consisting of 64

atoms was used for simulating a disordered b crystal, and

the Ti, Nb, and Ta atoms were positioned randomly within

the supercell depending on the composition and the bcc

crystal coordinates. Independent simulations with number

of atoms ranging from 16 to 96 were implemented to

ensure that 64 atoms supercell was large enough to obtain

the converged minimum structural energy value. In addi-

tion, to see the effect of the random positions of atoms, four

independent cases representing four different random solid

solution alloys were used to obtain the lattice constants and

the minimum structural energies. The variation of the lat-

tice constant and the structural energy due to random alloy

positioning was within 0.5 % agreement. The Monkhorst-

Pack k-point mesh for the Brillouin-zone integration used

was 6 9 6 9 12, and the convergence was verified. Note

that the k-points chosen are inversely proportional to the

ratio of the lattice vectors of the supercell for uniform

sampling of the k-space. Similar procedure was followed

for GSFE and GPFE calculations of B19 orthorhombic

structure. Ionic relaxation was performed by a conjugate

gradient algorithm. The energy cut-off of 360 eV was used

for the plane-wave basis set. The total energy was con-

verged to less than 10-5 eV per atom. For GSFE calcula-

tions, a full internal atom relaxation, including

perpendicular and parallel directions to the fault plane, was

allowed for minimizing the short-range interaction between

misfitted layers in the vicinity of the fault plane.

Lattice Constant Calculations

The lattice constants for b Ti–Nb–Ta alloys are calculated

by minimizing the total structural energy as a function of

the varying lattice parameters. The equilibrium lattice

constant (a0) is then obtained as the one corresponding to

the minimum structural energy. Similarly, for the case of

orthorhombic crystal, the three lattice constants (a, b, c) are

obtained in two following steps: (i) first, by obtaining the

equilibrium volume (V0) of the lattice and (ii) second, by

varying the a/c and b/c ratios for the calculated equilibrium

volume (V0) of the crystal for the angles a ¼ b ¼ c ¼ p=2.
For complete details on lattice constant calculations, see

Ref [10]. Table 1 represents the complete list of equilib-

rium lattice constants of Ti–Nb–Ta alloys considered in the

present analysis. It should be noted from Table 1 that

increasing Ta content does not have significant effect on

lattice constants of b phase.

Results

Generalized Stacking Fault Energy and Austenite

Slip

In order to achieve high transformation strains, it is

desirable to minimize plastic strain accumulating through

austenite slip. The slip in bTi-based alloys occur on

{110}h111i system similar to bcc metals [16, 37], and we

are interested in obtaining the energy barriers (GSFE)

required to nucleate a �h111i dislocation on {110} plane.

The GSFE can be obtained by rigidly shearing one half of

the crystal relative to the other half on the {110} plane

along h111i direction by displacement of u = nb, where b

is the magnitude of the Burgers vector of the slip dislo-

cation and n is the parameter ranging from 0 to 1 [29].

Table 1 Lattice constants (a0)

of b and orthorhombic phases

(a,b,c) of Ti–Nb–Ta alloys

Alloys Theory (this study) Experiments

a0 a b c a0 a b c

Ti–6.25Nb–6.25Ta 3.26 3.06 4.66 4.93 – – – –

Ti–6.25Nb–18.75Ta 3.26 3.15 4.64 4.81 – 3.16 4.64 4.83

Ti–18.75Nb–25Ta 3.26 3.27 4.66 4.72 – – – –

Ti–25Nb–25Ta 3.27 3.28 4.66 4.71 – – – –

Ti–12.5Nb–37.5Ta 3.27 3.25 4.66 4.71 – – – –

Ti–12.5Nb 3.26 3.01 4.65 4.95 3.28 3.02 4.66 4.98

Ti–25Nb 3.26 3.17 4.62 4.76 3.28 3.19 4.63 4.79

Ti–18.75Nb 3.26 3.09 4.63 4.87 – – – –

Ti–25Ta 3.26 3.28 4.45 4.48 – – – –

Ti–31.25Ta 3.27 3.29 4.46 4.50 – – – –

Ti–37.5Ta 3.27 3.31 4.47 4.50 – – – –

The spaces marked with dash (–) represent unavailable experimental data. Note that the experimental [1]

compositions are close (not exact) to theoretical compositions for lattice constant comparison
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Figure 2 shows the GSFE for two alloying compositions—

Ti–12.5Nb and Ti–25Nb–25Ta exhibiting the minimum

and maximum energy barriers respectively among all the

compositions considered in the current paper. The term cus
in Fig. 2 corresponds to the energy at displacement

u = 0.5b, and represents the maximum energy barrier

required to nucleate a slip. The {110}h111i shear modulus

can also be obtained from the GSFE curve using the

equation, Gf110g 111h i ¼ 2p oc
ou

�
�
max

. A complete list of

{110}h111i cus values and the shear moduli for all of the

compositions are listed in Table 2. For comparison, the

{100}h100i cus values for martensite slip, and the shear

moduli we obtained in our previous works [10] are also

included in Table 2.

The modified Peierls Nabarro formalism [28, 38] is

adopted in the present work to calculate the CRSS for

austenite slip. The PN formalism allows us to derive the

CRSS by obtaining the maximum slope of the misfit energy

variation with respect to the dislocation position. The misfit

energy across a slip plane is defined as the sum over energy

contributions due to slip between pairs of atomic planes

[24, 27], and can be obtained from the GSFE as follows:

Es
c ¼

Zþ1

�1

cGSFE f xð Þð Þdx ð1Þ

The term cGSFE is the GSFE energy landscape expressed

in sinusoidal form, f(x) is defined as the disregistry function

which is a measure of the slip distribution on the slip plane.

The solution to f(x) can be written as follows [24, 27]:

f xð Þ ¼ b

p
tan�1 x

n

� �� �

þ b

2
; ð2Þ

where b is the magnitude of the Burgers vector of the slip

dislocation, x is the position of the dislocation line, and n is

the half-core width of the dislocation given by d/

(2(1 - m)), where d is the slip plane interplanar distance

and m is the Poisson ratio. The discrete form of Eq. (1) can

be written as follows:

Es
c ¼

Xm¼þ1

m¼�1
cGSFE f ma0 � uð Þð Þa0; ð3Þ

where m is an integer, u is the position of the dislocation

line, and a0 is the lattice periodicity defined as the shortest

distance between two equivalent atomic rows in the

direction of the dislocation displacement. The Peierls stress

is calculated as the maximum slope of the misfit energy

curve which describes the potential energy of the disloca-

tion as a function of the dislocation position u, and can be

written as follows:

sslipcritical ¼
1

b
max

oEs
c

ou

� �

: ð4Þ

The values of the CRSS for austenite slip obtained using

Eq. (4) are given in Table 3. It is important to point out

that higher the cus, higher is the CRSS for slip nucleation in

both austenite and martensite phases in Ti–Nb–Ta alloys.

Generalized Planar Fault Energy and Twinning

When the internally twinned martensite with multiple

variants is loaded above the critical twinning stress stwincr ,

the variant most favorable to the loading orientation grows

at the expense of the other (see Fig. 1). The growth of the

martensite occurs through the advancements of the twin

interfaces, and is governed by the GPFE. Twinning in the

Ti-Nb orthorhombic crystal is observed on {111} [39, 40]

and {110} planes [41], as validated by experimental mea-

surements. In the present analysis, we consider obtaining

the twinning stresses for both the twin systems. In Fig. 3,

we consider a schematic of an orthorhombic crystal ori-

ented along the x = [01�1], y = [011], and z = [100]

directions. During the shearing process to form a twin, the

dislocations overcome an energy barrier per unit area,

termed the GPFE [13–15]. In our calculations, we observed

that imposing pure shear alone as in Fig. 3a to form a

twinned crystal is energetically unstable, as the energy

barriers continuously increase upon shearing successive

layers. Therefore, additional shuffle is required to create a

stable twinned structure as shown in Fig. 3b. However, for

the case of {111} twin, no shuffle is required, and the

application of pure shear alone is sufficient to obtain the

stable minimum GPFE values.

In Fig. 4a, we show the energy variation of the sheared

structure when shuffle displacements of varying magni-

tudes are applied on {010}h001i atoms of the B19

Fig. 2 The {110}h111i GSFE for Ti–Nb–Ta alloys exhibiting the

maximum and minimum values
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structure. The {001}h001iB19 system is shown in Fig. 4b.

An increase in shuffle displacement magnitude decreases

the overall energy of the sheared structure, and a minimum

structural energy is obtained when the shuffle displacement

is d = 0.045c for the case of Ti–6.25Nb–6.25Ta where c is

the largest lattice parameter of martensite. In Table 4, we

Fig. 3 a Twinning in an

orthorhombic crystal on

{011}h011i system. b A

stable twin formed after coupled

shear and shuffle

Table 3 Alloy compositions and the CRSS for martensite twinning, martensite slip, austenite slip, and transformation

Alloy compositions {111} Twinning stress

Martensite ðstwincr ; MPa)

{110} Twinning stress

Martensite

ðstwincr ; MPa)

Critical slip stress

Martensite

ðssmar; MPa)

Critical transformation

Stress

ðstranscr ; MPa)

Critical slip stress

Austenite

ðssaus; MPa)

Ti–6.25Nb–6.25Ta 101 94 127 74 135

Ti–6.25Nb–18.75Ta 118 106 152 87 161

Ti–12.5Nb 93 99 144 83 129

Ti–12.5Nb–37.5Ta 131 124 280 119 245

Ti–18.75Nb 80 84 196 88 136

Ti–18.75Nb–25Ta 88 93 255 92 230

Ti–25Nb 72 74 228 76 167

Ti–25Nb–25Ta 83 91 283 96 254

Ti–25Ta 82 89 266 69 188

Ti–31.25Ta 87 93 273 73 198

Ti–37.5Ta 87 96 278 75 211

Fig. 4 a Structural energy

variation of an orthorhombic

crystal with respect to shuffle

displacements. b Shuffling of

atoms on (010) plane along

h001i direction
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provide the twinning shear magnitudes, the Burgers vector

of the twinning partial, and the shuffling displacement

magnitudes. The {110} GPFE with imposed shuffle for the

case of Ti–6.26Nb–6.25Ta is shown in Fig. 5a. Similarly,

the GPFE for the case of {111} twin is shown in Fig. 5b.

The term cus represents the energy barrier required to

nucleate the first layer stacking fault. Similarly, the term cut
represents the energy barrier required to grow the twin,

2ctsf represents the stable energy fault corresponding to the

2nd layer fault, and ctbm is the twin boundary migration

energy given by ctbm ¼ cut � 2ctsf . A complete list of

energy values for all other alloys is included in Table 5. In

Table 6, we provide a list of parameters governing {111}

twinning in Ti–Nb-based alloys.

Modeling of the Twinning Stress

We have developed a twinning stress model using the

modified Peierls Nabarro formalism [for more details, see

Table 4 The magnitude of

Burgers vector of twinning

partial (b), twinning shear

magnitude (s), shuffling

magnitude and h110i shear
moduli (G) of Ti–Nb–Ta alloys

Compositions b (Å) Twinning shear (s) Shuffle magnitude d (Å) G{110}h110i (GPa)

Ti–6.25Nb–6.25Ta 0.54 0.17 0.22 21

Ti–6.25Nb–18.75Ta 0.52 0.16 0.22 23

Ti–12.5Nb 0.54 0.17 0.23 22

Ti–12.5Nb–37.5Ta 0.52 0.16 0.22 34

Ti–18.75Nb 0.52 0.16 0.21 22

Ti–18.75Nb–25Ta 0.52 0.16 0.23 31

Ti–25Nb 0.52 0.16 0.21 29

Ti–25Nb–25Ta 0.52 0.16 0.23 35

Ti–25Ta 0.50 0.15 0.21 27

Ti–31.25Ta 0.50 0.15 0.22 30

Ti–37.5Ta 0.50 0.15 0.22 29

Table 5 The energy values (in mJm-2) associated with the

{110}\110[GPFE for Ti–Nb–Ta alloys

Compositions cus cisf cut 2ctsf

Ti–6.25Nb–6.25Ta 364 165 223 176

Ti–6.25Nb–18.75Ta 393 251 281 267

Ti–12.5Nb 415 226 276 273

Ti–12.5Nb–37.5Ta 409 244 289 263

Ti–18.75Nb 351 120 167 176

Ti–18.75Nb–25Ta 393 236 297 246

Ti–25Nb 312 123 160 111

Ti–25Nb–25Ta 344 187 228 176

Ti–25Ta 394 231 296 241

Ti–31.25Ta 394 233 296 241

Ti–37.5Ta 396 232 300 256

Fig. 5 GPFE for twinning on a {110} and b {111} planes in an

orthorhombic Ti–6.25Nb–6.25Ta alloy
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[28, 38]]. Consider the dislocation arrangement of a len-

ticular twin as shown in Fig. 6. We obtain the twinning

stress by considering the total energy of the dislocations,

and minimizing it with respect to separation distances d1
and d2. The total energy of the twin nucleus corresponding

to Fig. 6 can be written as follows:

Etotal ¼ Eint þ EGPFE þ Eline �W ; ð5Þ

where Eint is the interaction energy of the dislocations,

EGPFE is the twin boundary energy, Eline is the dislocation

line energy, and W is the externally applied stress. Upon

substituting each of the energy terms in Eq. (5), we have

the following:

Etotal ¼ � lb2

2p
ln

d2

ro

� �

þ ln
d1 þ d2

ro

� �

þ ln
d1

ro

� �� �

þ
Xm¼þ1

m¼�1
ctwin f ma0 � uð Þð Þa0 þ N

lb2

2 1� mð Þ 1� m cos2 h
� �

þ
Xi¼2

i¼1

sshdi

ð6Þ

Here h is the height of the twin nucleus, s is the twinning

shear defined as b/d, and ro is the core width determined as

d{111}/(1 - v). The terms m, a,0 and u are described earlier

in Eq. (3). The twinning stress is then obtained by mini-

mizing the total energy with respect to the dislocation

positions, d1 and d2 as follows:

oEtotal

od1
¼ oEtotal

od2
¼ 0: ð7Þ

Upon solving the set of Eq. (7), we obtain the CRSS as

the minimum value of s that satisfies both of these equations.
The {110} and {111} twinning stresses obtained using

Eq. (7) are included in Table 3 for all the alloys considered

in the present analysis. Upon comparing the critical twin-

ning stress values reported in Table 3, we observed that the

twinning stress values for {111} system are lower than the

those for {110}h110i system for most of the compositions,

although the difference in magnitudes for both cases are

within 10 %. Therefore, the twin systems observed in these

alloys preferably belong to the {111} plane.

BCC (b) ? Orthorhombic (a00) Transformation

The b� a00 transformation can be considered as a special

case of the b� a0 ðhcpÞ transformation, with the same

Table 6 The Burgers vector of the twinning partial on {111} plane for orthorhombic martensite the {111} interplanar distance, the twinning

shear (s), the shear moduli, and the cut mJm�2
� �

values for Ti–Nb–Ta alloys

Compositions Burgers vector (b)
bj j A

o
� �

df111g A
o

� �
Twinning shear (s) Shear modulus (GPa) cut mJm�2

� �

Ti–6.25Nb–6.25Ta [-0.2832 -0.3562 0.0730] 2.3 3.72 0.62 22 476

Ti–6.25Nb–18.75Ta [-0.3671 -0.4148 0.0477] 2.2 3.69 0.60 28 479

Ti–12.5Nb [-0.2503 -0.3354 0.0850] 2.2 3.71 0.60 27 469

Ti–12.5Nb–37.5Ta [-0.4455 -0.4771 0.0316] 1.45 3.69 0.40 28 498

Ti–18.75Nb [-0.3199 -0.3787 0.0588] 2.3 3.70 0.62 16 363

Ti–18.75Nb–25Ta [-0.4559 -0.4802 0.0243] 1.63 3.71 0.44 29 456

Ti–25Nb [-0.3941 -0.4336 0.0395] 2.13 3.69 0.58 16 350

Ti–25Nb–25Ta [-0.4642 -0.4864 0.0221] 1.51 3.72 0.41 22 393

Ti–25Ta [-0.5636 -0.5397 -0.0239] 1.33 3.70 0.36 29 389

Ti–31.25Ta [-0.5631 -0.5372 -0.0259] 1.53 3.70 0.41 29 435

Ti–37.5Ta [-0.5734 -0.5446 -0.0287] 1.36 3.71 0.37 30 441

Fig. 6 Twin dislocation

arrangement in an orthorhombic

crystal on {111} plane
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(110) stacking sequence as in hcp structure but different

lattice constants [42, 43]. The lattice constants of the a00

structure are between those of b and a0 structures. The

major difference between the two transformations lies in

the principal deformation strains (Bain distortion matrix) to

form the end state. The principal strains required to form

the a00 structure from the b structure is identical in sense but

differ only in magnitude compared to the b - a0 transfor-
mation [42, 43]. Consider the following Burgers lattice

correspondence between the b and the a00 structure:

½100�b k ½100�a00 ; ½010�b k ½01�1�a00 ; ½001�b k ½011�a00 :

As shown in Fig. 7, the a00 structure can be formed from

the b structure via two deformation modes [44–47]:

(i) Collinear shuffle displacements of alternating {110}bcc
planes along h110ibcc direction by d or alternatively, every

second {110}bcc along h110ibcc direction by 2d to form the

orthorhombic stacking sequence and (ii) Bain deformation

involving compression and dilation of (110)bcc planes

along h001i and h110i directions to achieve the lattice

constants of the orthorhombic structure. In Fig. 7, we take

Ti–6.25Nb–6.25Ta as an example to illustrate the magni-

tude of principal strains to achieve a00 lattice constants from
b structure. The principal strains g1 and g2 are -2.8 and

?3.3 % respectively, for Ti–6.25Nb–6.25Ta.

The heterogeneous dislocation-based mechanism [48,

49] is well established for martensite transformation.

Consider the following dissociation reaction in a bcc

crystal [48–50]:

a

2
1�11½ � ! a

8
0�11½ � þ a

8
0�11½ � þ a

4
2�11½ �:

When the dislocations with Burgers vector b = a/8

h011i move on alternate {110} bcc plane by an amount d, it
forms the a00 stacking sequence. The equilibrium shuffling

displacement dð Þ is calculated by minimizing the structural

energy of the bcc crystal by varying shuffling displacement

magnitudes. The complete list of shuffling displacements

for all the alloys considered in the present analysis is

provided in Table 7. We then establish the energy per unit

area required to shuffle the atoms on alternate {110} planes

by a displacement d in terms of a fault energy (c) curve
[51], and the results are shown in Fig. 8a. The term cusd1 in
Fig. 8a is the unstable fault energy required to shuffle the

Nth layer of the crystal by a displacement of d. Similarly,

cssd1 is the stable fault energy per unit area corresponding to

the shuffling of the same Nth layer by an additional dis-

placement of d. The energy term cusd1 represents the

unstable energy required to shuffle the (N ? 2)th layer by a

displacement of d and the term cssd2 represents the

stable energy corresponding to the additional shuffling of

(N ? 2)th layer by d. It is important to note that the dis-

locations participate in the collinear shuffling process

during the martensitic transformation based on dislocation-

based transformation theory [48, 49], while Bain

Fig. 7 Schematic of the process

showing shear and shuffle

mechanisms of transformation
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deformation does not involve any dislocation activity. The

Bain deformation is accomplished via internal stresses

inherently present in the crystal due to inclusions or

imperfections [48, 49]. This has been further supported by

molecular dynamics simulations [52]. In addition, these

simulations have shed light on the role of dislocations, in

the absence of which no transformation was observed [50].

Furthermore, in the current study, we employ dislocation-

based martensite transformation mechanism, and therefore

shuffling process involving dislocations is accounted for in

our theoretical modeling. As will be seen next, the com-

pression or dilation event does not contribute to the total

energy of the dislocation in our formulation.

We write the total energy of the dislocations as the sum

of (i) the elastic energy due to interaction of the disloca-

tions, Eint; (ii) the self-energy of the dislocations, Eself; (iii)

the misfit energy (Es
c) which represents the periodic energy

that should be overcome by the dislocation; and (iv) the

applied work, W, to move the dislocations. Therefore, the

total energy of the dislocation configuration in Fig. 8b can

be written as follows:

Etotal ¼ Eint þ Eself þ Es
c �W

¼ �Gb2

2p
ln

2d
ro

� �

þ N
Gb2

2 1� mð Þ 1� m cos2 h
� �

þ
Zþ1

�1

c f xð Þ½ �dx� 2Nsbd

ð8Þ

where Eself ? Eint (=Eelastic) is the elastic strain energy

stored in the two half crystals, Es
c is the misfit energy

representing the periodic non-linear interatomic interac-

tions in the dislocation core, G is the shear modulus, and

N is the number of dislocations participating in the trans-

formation process. The term f(x) is obtained in a similar

manner as described in ‘‘Generalized Stacking Fault

Energy and Austenite Slip’’ and ‘‘Modeling of the Twin-

ning Stress’’ sections. The critical transformation stress is

then obtained by minimizing the total energy with respect

to the shuffling displacement as follows:

oEtotal

od
¼ 0: ð9Þ

The critical transformation stress for all the alloys

obtained using Eq. (9) is provided in Table 3.

Discussion of the Results

Considerable effort has been devoted in establishing the

CRSS for (i) austenite slip, (ii) b to a00 transformation, and

(iii) the martensite twinning as a function of Nb and Ta

contents in the present work. The determination of these

quantities is accomplished through in-depth investigation

of the associated energy barriers (GPFE and the GSFE), the

Table 7 The energy values (in mJm-2) associated with the shuffling

for Ti–Nb–Ta alloys

Compositions d (Å) cusd1 cssd1 cusd2 cssd2

Ti–6.25Nb–6.25Ta 0.33 219 63 248 55

Ti–6.25Nb–18.75Ta 0.33 313 74 322 58

Ti–12.5Nb 0.32 298 89 307 95

Ti–12.5Nb–37.5Ta 0.31 396 112 384 104

Ti–18.75Nb 0.29 198 76 256 113

Ti–18.75Nb–25Ta 0.28 237 154 223 126

Ti–25Nb 0.27 223 87 246 109

Ti–25Nb–25Ta 0.27 216 144 278 93

Ti–25Ta 0.35 228 126 285 123

Ti–31.25Ta 0.34 311 249 276 221

Ti–37.5Ta 0.34 323 246 298 213

The shuffling displacements dð Þ are also provided

Fig. 8 (a) Fault energy curve

(c-curve) associated with

shuffling process during bcc to

orthorhombic transformation for

the case of Ti–6.25Nb–6.25Ta

(b) Schematic of the dislocation

based martensite

transformation.
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lattice constants, and the shear moduli of the slip and the

twin systems. Since the twinning/detwinning of the

martensite crystal, the austenite slip, and the transformation

stress magnitudes govern the shape memory effect and

superelastic properties, it is important to theoretically

develop models to calculate these quantities, which we

successfully undertake in this study. The theoretical models

do not rely on any empirical constants, and therefore, they

provide useful insights into the development of Ti–Nb–Ta

with novel alloying compositions.

The role of slip dislocations during phase transformation

has been extensively studied in NiTi [30–32] and CuNiAl

[33, 34]. The austenite to martensite phase transformation

is associated with high internal stresses and strains, espe-

cially at the phase interface, which acts as the dislocation

source [53–55]. Slip dislocations are also found to originate

due to the interaction of martensite plates during phase

transformation [34]. The dislocations emanating from the

interface are found to be aligned with the martensite twin

planes [53]. In this regard, microstructural evidence [32,

54] has shown that the dislocation multiplication, and

hence its density is high in austenite close to the austen-

ite/martensite interface during stress-induced martensite

transformation. Twinning is one of the mechanisms to

relieve the incompatible strains at the interfaces; however,

the internal stresses accompanied with external stress are

high enough to generate numerous dislocation bundles

which introduce permanent plastic strain in SMAs. In some

of the Ti-based alloys, even voids are found to nucleate

from the interface, as validated by fractography analysis

[17].

The dislocation slip has been investigated in b-titanium
alloy using TEM analysis [16]. The dislocations with

Burgers vector b = a/2h111i are observed to glide on the

{110}, {112}, and {123} planes similar to bcc metals, and

the deformation is largely governed by the motion of screw

segments. The mobile screw dislocations on {112} and

{123} planes are found to frequently cross slip onto the

{110} plane, the latter being the preferential glide plane in

these alloys [16]. An issue with slips observed during phase

transformation is their contribution to hysteresis [54], thus

degrading the functionality of SMAs. Slips are observed to

interact with the austenite–martensite interface, and

increase the resistance of the interfacial motion of the

martensite during phase transformation process. However,

experiments have also shown that dislocations formed

during plastic deformation of martensite are found to pro-

mote the growth of martensite depending on the type of

dislocation, as in the case of CuNiAl [34] and NiTi [30]. In

any case, the CRSS magnitude for slip and its comparison

with the transformation/twinning stress magnitudes is an

important topic in order to understand the plasticity

associated with SMAs, which we undertook in this study

for the case of Ti–Nb-based alloys.

The importance of the shuffling process during

martensitic transformation has been discussed in the liter-

ature [44–47]. It has been proposed that the composition-

dependent shuffling process may have a significant effect

on the elastic moduli of Ti–Nb a00 crystal [46]. In addition,

the Ti-rich x-phase formed by aging at low to intermediate

temperature or by quenching increases the elastic moduli in

addition to suppressing the martensitic transformation [3].

The x-phase also decreases the transformation temperature

Ms, and consequently increases the critical transformation

stress. It is important to note that our transformation stress

analysis is applicable to b - a00 phase transformation, and

the effect of x-phase is not taken into consideration.

Recently, X-ray diffraction measurements [46] have

revealed the role of the composition dependence on the

Bain distortion and the shuffling magnitude in Ti–Nb. The

dependence of the Bain distortion on the composition is

obvious, as the orthorhombic lattice constants are strongly

dependent on Nb content (see Table 1). Therefore, the

magnitudes of principal strains to achieve the lattice con-

stants of the orthorhombic phase depend on the Nb content.

Experimentally, the magnitude of the shuffling displace-

ment is found to show a linear dependence on the Nb

content with composition 10–40 at.% [45, 46]. If we

investigate the shuffling displacement magnitudes we

obtained in the present case (Table 7), we find that Nb

predominantly governs the shuffling displacement magni-

tudes, while Ta shows negligible effect. In fact, the shuf-

fling magnitudes decrease with an increase in Nb content

from Table 7. It is worth pointing out that the transfor-

mation stress calculation we employ in the present analysis

is based on the heterogeneous dislocation-based mecha-

nism of martensite transformation [48, 49] where disloca-

tions partake in the shuffling process. It should be noted

that fault created by the a/8h110i dislocations during

shuffling stage make the bcc phase much closer to the

orthorhombic phase, thus reducing the transformation

barrier as observed in other Ti-alloy [52]. Molecular

dynamics simulations [50] have also shown that disloca-

tions are responsible for the early stage of martensite

transformation (shuffling), while the later stages of the

transformation involving Bain deformation require no

dislocation activities. The latter is assisted by internal

stresses inherently present in the lattice due to imperfec-

tions (such as inclusions).

It is well known that self-accommodating internally

twinned martensite variants are responsible for minimizing

the incompatible strains associated with martensitic trans-

formation [39, 56]. The martensitic plates are coherent

(show no misfit dislocations) and ensure the reversibility of
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phase during twinning/detwinning process [39]. In this

regard, the twinning process in Ti–Nb–Ta is an important

topic to investigate, which we discussed in the current

paper. It is interesting to note that {110} twin formation in

Ti–Nb–Ta alloys is accomplished through coupled shear

and shuffle during which the atoms undergo local rear-

rangement to lower and stabilize the GPFE curve.

Although the internal shuffling mechanism in B19 NiTi has

been well discussed in the literature [57, 58], that of Ti–

Nb–Ta is still unknown. In order to determine the dominant

shuffle mode in Ti–Nb–Ta alloys, we calculated the min-

imum structural energy for two different shuffling modes.

The first shuffling mode as shown in Fig. 4 involves the

motion of atoms in (010)B19 plane along the [001]B19
direction, while the second shuffling mode corresponds to

(001)[100]B19 system. For these two cases, the total

structural energy in the case of Ti–6.25Nb–6.25Ta was

found to be -129.43 and -128.88 eV, respectively,

showing that (010)[001]B19 shuffling mode is dominant. In

addition, although the twinning shear values (s) and the cut
values for the case of {111} twin are much higher than

those for {110} for the same composition, the higher

magnitude of the Burgers vector for {110} twinning dis-

location results in a lower stress magnitude compared to

the {110} case, as evident from Eq. (4). Upon comparing

the values in Tables 4 and 6, we observe that the Burgers

vector for {111} twinning is almost four times higher than

that for {110} case, while the shear moduli are within 10 %

for the same composition. Therefore, the lower twinning

stress magnitudes for the case of {111} twins compared to

{110} twins are strongly attributed to the higher magni-

tudes of the Burgers vector of the twinning dislocation.

Nonetheless, the critical twinning stress values increase

with an increase in cut for {111} twins, similar to the ones

observed for the case of {110} twins.

The twinnability approach [59, 60] has been used in

cubic crystals utilizing the energy barriers to investigate the

competition between slip and twinning, and our calcula-

tions show that the martensite crystal prefers to twin than to

nucleate a slip dislocation. If we compare cus required to

nucleate a slip versus cus required to nucleate a twin, the cus
for slip is found to be higher than cus for twin suggesting

that twin formation is easier than deformation by slip to a

first approximation for all of the alloys considered. For

example, the cus for slip in Ti–6.25Nb–6.25Ta is 460

mJm-2 and cus for twin is 364 mJm-2, the former being as

high as 1.3 times the latter. The low energy barriers asso-

ciated with twinning and transformation assist reversible

transformation, thus minimizing permanent plastic defor-

mation over all compositions considered in the present

analysis.

In order to compare and understand the alloying effects

on the CRSS for slip, transformation, and twinning, we plot

the CRSS as a function of Nb and Ta content in Fig. 9. It is

important to note that that all of these quantities increase

with increase in Ta content. However, the rate of increase

of CRSS with an increase in Ta content is much higher for

slip compared to transformation and twinning, thus the

difference between the two increasing with an increase in

Ta content. The higher CRSS of austenite slip compared to

transformation stress is beneficial to improve the shape

memory response. In such a case of high austenite slip

stress, the transformation proceeds at a stress much lower

compared to the austenite slip stress, and hence the pos-

sibility of any plastic strain accumulation is minimized. In

the present calculation, the difference between the trans-

formation and the austenite slip resistance is as high as

158 MPa for the case of Ti–25Nb–25Ta, and this alloy may

show promising shape memory response. Overall, we find

that higher alloying content exhibits higher difference

between the austenite slip and the transformation stress.

We point out to the major variables affecting the slip

and the twinning stresses in the current study. Upon ana-

lyzing Tables 2 and 3, we note that an increase in cus
increases the shear moduli, and eventually the slip stress in

austenite Ti–Nb–Ta crystals. Recently [10], we obtained

similar results for the case of martensite slip resistance in

both Ti–Nb–Ta and Ti–Nb–Zr alloys where an increase in

cus is found to increase the slip stress magnitudes. Simi-

larly, the martensite twinning stress is found to depend on

one major variable—the unstable twinning fault energy

(cut), as shown in Fig. 10. The dependence of twinning

stress on the intrinsic stacking fault energy (cisf ), however,
is not so pronounced, as evident from Fig. 10 in Ti–Nb–Ta

alloys. It is important to note that the twinning stress

dependence of orthorhombic Ti–Nb–Ta alloy on cut is

similar to fcc metals [61]. Reassessing the GPFE values in

Table 5, we observe that cus associated with twinning do

not show any observable dependence on alloying compo-

sitions in Ti–Nb–Ta alloys.

Experiments [1, 3] on binary Ti–Nb alloys have shown

that a decrease in Nb content increases the critical stress to

induce martensite transformation. The Ti–25Nb alloy

exhibits shape memory with complete strain recovery of

approximately 2.2 % [1, 3]. This can be rationalized based

on the high-martensite slip resistance and much lower

twinning stress in Ti–25Nb. Our calculations show that the

critical twinning stress of Ti–25Nb is 72 MPa, which is

lower than the CRSS of martensite slip by 156 MPa, and

hence the alloy exhibits complete strain recovery without

undergoing any plasticity. Experimentally [1, 3], the

twinning stress of Ti–25Nb is obtained to be 170 MPa

based on 0.2 % strain offset. If we assume that Schmid

factor of the twin system is 0.5, the experimentally deter-

mined CRSS for Ti–25Nb is 85 MPa, which is within 15 %

of the theoretical value we obtained in the present analysis.
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Similarly, assuming that the SF is 0.5, the martensite

critical slip stress and the twinning stress for Ti–8Nb–20Ta

are approximately 175 and 150 MPa, respectively, from

experiments, the difference between the two as low as

25 MPa. If we compare these values with the theoretically

observed magnitudes for similar composition of Ti and Ta,

the martensite critical slip stress is approximately

152 MPa, while the twinning stress is 106 MPa. The the-

oretically observed difference between the martensite slip

stress and the twinning stress from our calculations is

46 MPa, while experimentally observed magnitude is

25 MPa, thus reflecting good agreement.

Conclusion

We draw the following conclusions from the current paper:

(1) We developed theoretical models to establish the

three important parameters: (i) the CRSS for

austenite slip, (ii) CRSS for martensite twinning,

and (iii) the critical b-a00 transformation stress

governing shape memory and superelasticity in Ti–

Nb–Ta alloys for 11 different compositions of Nb

and Ta.

(2) We established the fault energy curves for transfor-

mation, GSFE and GPFE for slip and twinning, and

utilized modified Peierls Nabarro formalism and

dislocation-based martensite nucleation theory to

establish the CRSS values.

(3) The current work points out to the major variables

such as lattice constants, Burgers vector, shear

moduli, and twinning shear that affect the stress

magnitudes. Specially, the austenite slip was found

to strongly depend on shear moduli and cus values.
Similarly, the twinning stress magnitudes increase

with an increase in the unstable twinning fault

energy (cut), similar to pure fcc metals.

(4) We revealed that {110}h110i twin formation in B19

Ti–Nb–Ta alloys is accomplished through coupled

shear and shuffle, while {111} twin is formed by

shear alone. Two different shuffling modes,

(010)[001]B19 and (001)[100]B19, were investigated

for {110}h110i twinning, and our results indicated

that the former is dominant in Ti–Nb–Ta alloys due

to the low structural energy (-129.43 eV for

(010)[001]B19 vs. -128.88 eV for (001)[100]B19).

Fig. 9 Dependence of the CRSS for austenite and martensite slips, twinning, and transformation stresses on Ta content for Ti–Nb–Ta alloys. The

slip in austenite occurs on {110}h111i system, while the slip in martensite occurs on {100}h100i system. Similarly, the twinning on martensite

Ti–Nb–Ta alloys is observed on the {111} plane

Fig. 10 Dependence of the minimum twinning stress on in Ti–Nb–Ta

alloys. The following number designations are used in the figure: 1

Ti–25Nb, 2 Ti–18.75Nb, 3 Ti–25Nb–25Ta, 4 Ti–25Ta 5 Ti–31.25Nb,

6 Ti–37.5Ta, 7 Ti–18.75Nb–25Ta, 8 Ti–12.5Nb, 9 Ti–6.25Nb–

6.25Ta, 10 Ti–6.25Nb–18.75Ta, 11 Ti–12.5Nb–37.5Ta
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(5) We find that the dependence of CRSS on Ta content

is greater for the case of slip compared to twinning

or transformation. Our calculations showed that an

increase in Ta content from 0 to 37.5 at.% increases

the CRSS for austenite and martensite slip by more

than 90 %, while the twinning stress increases by

25 %, and the transformation stress by 40 % for the

same composition of Ta and Nb.

(6) We also show that the CRSS values for slip

nucleation in martensite are close to those of

austenite for most of the compositions, differing

only by 10 %. However, these values are much

higher than the twinning or the transformation

stresses. Overall, as the Ta composition increases,

the difference between martensite/austenite slip and

the transformation/twinning stress increases. This is

important for better shape memory and superelastic

properties for high-temperature applications.
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