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Abstract The effect of the temperature on crack tip

transformation in Nickel–Titanium (NiTi) shape memory

alloys was analyzed in this work by means of experimental

and analytical approaches. In particular, single edge crack

specimens were analyzed for two different values of the

testing temperature in the pseudoelastic regime of the al-

loy, i.e., T = 298 K and T = 338 K. The thermal-depen-

dent phase transition mechanisms occurring at the crack tip

region were studied by analyzing data obtained from digital

image correlation as well as by nanoindentation ex-

periments performed near the crack tip. Finally, ex-

perimental results were compared with predictions of a

recent analytical model. Results revealed that an increase

in temperature causes a decrease of the phase transforma-

tion zone and that both the techniques are well suitable in

capturing the thermal effect on the phase transformation

mechanisms near the crack tip.

Keywords Shape memory � NiTi alloys � Stress-induced

martensitic transformation � Fracture � Nanoindentation �
Digital image correlation

Introduction

Nickel–Titanium-based (NiTi) shape memory alloys

(SMAs) have seen increasing interest in the last few years,

from both engineering and scientific communities, due to

their special functional properties, namely shape memory

effect (SME) and pseudoelastic effect (PE) [1, 2]. These

properties are due to a reversible solid state phase transition

between a parent phase (austenite) and a product phase

(martensite), the so-called thermoelastic martensitic trans-

formation (TMT) [2], that can be activated either by tem-

perature (thermally induced martensite, TIM), or by

applied stress (stress-induced martensite, SIM). Due to

these unique features, NiTi alloys are currently used in an

increasing number of engineering applications [3], where

both SME and PE are used for the realization of smart

components and systems. However, thanks to their good

mechanical properties and biocompatibility, the most im-

portant applications of NiTi alloys are in the field of

medicine [4], where pseudoelasticity is mainly exploited

for the realization of several components, such as cardio-

vascular stent, embolic protection filters, orthopedic com-

ponents, orthodontic wires, micro surgical, and endoscopic

devices. As a direct consequence of this increasing interest,

several experimental studies were carried out in the last

decades, to better understand the thermo-mechanical

properties of NiTi alloys [2]. However, many aspects are

still unknown, especially because the hysteretic stress and/

or thermally induced phase transformations significantly

affect the damage mechanisms occurring under fatigue

loadings, i.e., the crack formation and propagation

mechanisms. In fact, the fracture behavior of austenitic

NiTi alloys strongly depends on the SIM transformation

occurring near the crack tip region, as a consequence of the

high values of local stresses. As a direct consequence of the

marked non-linear and hysteretic behavior, classic elastic

and/or elastic–plastic theories cannot be directly applied to

SMAs.

In this context, both the fatigue crack propagation

[5–12] and the fracture properties under static loadings
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[13–20] were analyzed. Many efforts were done to analyze

the crack tip stress distribution and the size of phase

transformation zone by numerical studies [21–26] which

are mainly based on phenomenological approaches and on

theory of plasticity, i.e., they use plasticity-like concepts to

describe the effects of phase transformation mechanisms

on the macroscopic response of NiTi alloys. Furthermore,

analytical approaches [27–32], mainly based on modified

linear elastic fracture mechanic (LEFM) theories, were also

proposed in the last years.

Even though these methods represent useful design tools

to simulate the macroscopic response of simple or complex

SMA-based systems, special care should be taken when

they are used to study the local effects in the proximity of

high stress concentration regions where stress-induced

phase transition mechanisms occur significantly affecting

the crack tip stress distribution. Despite the increasing

number of research activities on fracture and fatigue of

NiTi alloys in recent years, much effort should be devoted

for an effective understanding of the role of the phase

transformations in the crack formation and propagation

mechanisms and in the stress state generated at the crack

tip.

Within this context, the development and application of

full-field techniques to analyze the local transformation

mechanisms near geometrical discontinuities and, in par-

ticular, in the crack tip region represents a highly chal-

lenging scientific goal. For this purpose, synchrotron X-ray

microdiffraction (XRD) [8, 15, 18], infrared thermographic

(IR) [11, 19], and digital image correlation (DIC) [16, 33,

34] techniques were recently applied, to better understand

the mechanisms of phase transformation at the notch and/or

crack tip proximity. In particular, a pseudoelastic NiTi

alloy for medical applications was analyzed in [8] by using

miniature compact-tension (CT) specimens, which were

directly obtained from thin-walled tubes, similar to those

used for manufacturing self-expanding stents. XRD mi-

crodiffraction investigations of fatigue pre-cracked speci-

mens revealed that the crack tip local strain is due to both

B2 (austenite) to B190 (martensite) transformation and to

the subsequent loading of the martensitic phase. Strain and

texture evolution near the crack tip of a martensitic NiTi

alloy were analyzed in [15], by synchrotron X-ray ex-

periments, after fatigue crack propagation in a compact-

tension (CT) specimen; it was found that texture evolution

is mainly due to detwinning phenomena, the main defor-

mation mechanism in martensitic NiTi alloys. Both

martensitic and austenitic alloys were analyzed in [18], by

using miniaturized CT specimens after fatigue crack

propagation, which revealed the presence of detwinned

martensite at the crack tip of both martensitic and auste-

nitic specimens. An austenitic NiTi alloy was analyzed in

[16] by DIC analysis of thin edge cracked specimen, which

allowed direct measurement of the crack tip strain field

related to stress-induced transformation. Furthermore, the

stress intensity factor (SIF) evolution, as a function of the

operating temperature, in a NiTi pseudoelastic alloy was

investigated in [12] with a proper fitting procedure based

on the William’s series expansion [35], and thermal

changes due to phase transformations in SMAs were in-

vestigated in [11]. Finally, nanoindentation technique,

which was widely used to evaluate the mechanical prop-

erties of NiTi alloys [36], was proposed as an efficient and

easy alternative method to identify near crack tip phase

transformations in SMA alloys in [37].

These experimental investigations provide very useful

information about the occurrence of crack tip transition

mechanisms in NiTi alloys subjected to static and/or

monotonic loads. However, more investigation should be

carried out to better evaluate the effect of the temperature

on the phase transformation zone near the crack tip.

To this aim, in the present work, the effect of the op-

erating temperature on the crack tip transformation of a

commercial pseudoelastic NiTi alloy (Type S, Memry,

USA) was investigated by experimental approaches and

analytical studies. In particular, single edge crack (SEC)

specimens were analyzed for two different values of the

testing temperature, i.e., T = 298 K and T = 338 K, in the

pseudoelastic regime of the alloy. The thermal-dependent

phase transition mechanisms occurring at the crack tip re-

gion were studied by analyzing the strain data obtained

from DIC investigations and the load vs. penetration re-

sponse obtained from nanoindentation experiments per-

formed near the crack tip. Finally, experimental results

were compared with predictions of a recent analytical

model [31].

Results revealed that nanoindentation technique is well

suitable to identify the phase transformation zone near the

crack tip, and good agreement with the analytical predic-

tion was obtained; DIC is a powerful technique to evaluate

the displacement fields whereas strain data result noisy

with jagged contours. However, both the experimental

techniques showed good capability in capturing the thermal

effect on the phase transformation size near the crack tip.

Materials and Methods

Material

A commercial nickel–titanium sheet (thickness

t = 0.5 mm) with pseudoelastic properties at room tem-

perature (50.8 at.% Ni–49.2 at.% Ti, Type S, Memry,

Germany) was used in this investigation. Figure 1a shows

the isothermal (T = 298 K) stress–strain (r–e) response of

the material obtained from a complete loading–unloading
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cycle up to a maximum deformation of about 6.2 %, cor-

responding to a complete stress-induced martensite trans-

formation. The figure also reports the values of the main

thermo-mechanical parameters of the alloy: transformation

stresses (rAM
s , rAM

f , rMA
s , and rMA

f ), transformation strain

(eL), Young’s moduli of austenite and martensite (EA and

EM), and Clausius–Clapeyron constants (CA and CM).

Figure 1b shows the DSC thermogram of the alloy, which

was measured in the temperature range between 173 and

373 K at a heating/cooling rate of 10 K/min. The figure

clearly shows a two-stage phase transformation during

cooling (B2-R-B190), whereas there is no evidence of the

R-phase transformation during heating (B190-B2). The

figure reports also the values of all transformation tem-

peratures (Ms, M, As, A, Rs, and Rf ) as well as the latent

heat of transformation.

Edge-notched tension specimens were cut from a com-

mercial plate with electro discharge machining (EDM); a

0.1-mm EDM wire was used to machine the notch, as

illustrated in Fig. 2. The specimen surface has been prop-

erly treated in order to provide a suitable speckle pattern

for using DIC and to get a good surface roughness for the

nanoindentation tests. In particular, grinding treatment with

progressively finer silicon carbide papers (#400–#1000)

and polishing with 1-lm diamond compound was carried

out; finally, the specimens were cleaned with acetone and

dried in air.

Specimens were fatigue pre-cracked by using a servo

hydraulic testing machine (Instron 8500), with a maximum

load Pmax = 100 N (rmax ¼ Pmax=Wt = 20 MPa), at con-

stant load ratio, R ¼ rmin=rmax, of roughly zero, and at a

rate of 5 Hz to initiate a crack from the EDM notch tip up

to a length ratio (a/W) in the range between 0.3 and 0.4 (see

Fig. 2).

Digital Image Correlation

Tensile load–unload measurements, at different operating

temperature and with a maximum load P = 300 N, cor-

responding to a maximum stress rmax ¼ Pmax=Wt =

60 MPa, were carried out in this investigation by using an

electro-mechanical testing machine (MTS Criterion s42,

USA).

A special system based on a Peltier cell and a thermo-

couple was used to set and control the temperature of the

specimen during the tests.

A digital camera (Sony XCD- X910 model) with a

resolution of 1280 by 960 pixels of 4.65 lm was used to

capture images throughout measurement tests. The focus of

the images was performed using a Linos Photonics mi-

croscope objective with a 49 magnification and a

Fig. 1 Thermo-mechanical properties of the investigated material:

a loading–unloading isothermal stress–strain cycle (298 K) and

b DSC thermograph with transformation temperatures

Fig. 2 SEC specimen with a focus of the notch region
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numerical aperture of 0.1, which ensures, in conditions of

correct illumination, a resolution of approximately 2.5 lm,

and therefore lower than the pixel size of the camera.

DIC was performed on images from each test carried at

different operating temperatures using a commercially

available image correlation software. The first image in the

measurement cycle (at minimum load) was used as the

reference image, and terms up to first-order displacement

gradients were used in all correlations. DIC was used to

obtain full-field displacements for each image throughout

the cycle, and the correlations were performed using a

subset size with a radius of 55 pixels and a spacing of 2

pixels between subset centers.

Finally, the whole experimental setup, see Fig. 3, in-

cluding the testing machine, was placed on an anti-seismic

platform to avoid measurement errors due to unavoidable

vibrations.

Nanoindentation

Temperature and load-controlled indentation tests were

carried out by using a nanoindentation platform (CSM

Instruments, Switzerland) equipped with a special properly

developed frame (see Fig. 4a). In particular, a simple screw

design system was used which allows to apply a fixed

tensile load (P = 400 N), based on preliminary calibration

data between crack mouth opening displacement and the

applied load. A Peltier cell, together with a thermocouple,

was used to set and control the temperature of the sample

during nanoindentation tests. The experimental setup is

shown in Fig. 4a. Nanoindentations were carried out by

using a spherical tip, with a radius of 20 lm, a maximum

indentation load P = 400 mN, and a dwell time equal to

10 s. These latter testing conditions were chosen based on

some preliminary studies and on previous literature results

[38, 39]. In fact, the spherical tip was adopted instead of

sharp tips (such as Berkovich, Vickers, etc.), to avoid high

strain gradients, which promotes plastic deformations,

dislocations and, consequently, inhibit the reversibility of

phase transformation [38]. Furthermore, these testing

conditions minimize the effects of crystallographic aniso-

tropies [40] and of extremely localized surface mi-

crostructural changes, which could arise during mechanical

polishing, due to the larger process zone compared to

Berkovich tip and low indentation loads.

The indentation response at the crack tip region was

analyzed by a matrix of 142 indentation points (see

Fig. 4b), covering an area of 1.7 9 1.2 mm2, under an

applied load P = 400 N corresponding to a remote stress

r0 = 80 MPa. It is worth noting that only one side of the

near crack tip region was analyzed in this study (see

Fig. 4b).

Fig. 3 The experimental setup for DIC

Fig. 4 a The experimental setup for DIC, labeled in the figure: (1)

system to apply the external load, (2) SEC specimen, (3) objective,

(4) nanoindenter head, (5) peltier cell; b SEC specimen with

micrograph of the crack tip region showing the indentation points
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Analytical Modeling

A recent analytical model [31], which provides the extent

of the transformation region, namely austenitic radius rA,

as a function of the thermo-mechanical loading condition

of the alloy was used in this investigation in order to

compare the predictions of the experimental results, ob-

tained from DIC analysis and nanoindentation tests, with

the analytical ones. In particular, Eq. 1 was used to cal-

culate the austenitic radius for the SEC specimen, ac-

cording to the iterative approach described in Ref. [31].

rA ¼ 2K2
Ie

prAM
s rAM

s þ rAM
f

� �

þ
2 EAeL � a�1

M rAM
f þ rAM

s

� �

a�1
M þ 1 � 2mð Þ rAM

s þ rAM
f

� �þ 1

 !

rM

þ 4 1 � mð ÞKIe

a�1
M þ 1 � 2mð Þ rAM

s þ rAM
f

� �

 ! ffiffiffiffiffiffiffiffi
2rM

p

r

; ð1Þ

where KIe is the effective stress intensity factor according

to Ref. [31], m is the Poisson’s ratio, aM is the Young’s

modulus ratio (aM ¼ EM=EA), and rM is the martensitic

radius, i.e., the extent of the fully transformed martensite at

the very crack tip:

rM ¼ 1 � mð ÞKIe

EAeL þ 1 � 2mð ÞrAM
f þ rAM

s

� �2

: ð2Þ

It is important to underline that both the equations were

obtained considering a proper constraint factor, see Ref.

[31], which takes into account the stress triaxiality effect at

the crack tip (i.e., the effective transformation stress). In

particular, as both the experimental techniques are based

on surface measurements and due to the small thickness of

the sample as well as the a/W ratio, plane stress conditions

were assumed in this investigation and, in this way, the best

comparison between the in-plane experimental measure-

ments and the analytical predictions was obtained.

Results

Preliminary Studies

Preliminary studies for the correlation analysis were car-

ried out in order to set and optimize all the experimental

parameters, i.e., spackle pattern, image resolution, and size

of the investigation region. To this aim, full-field dis-

placements were obtained from DIC, and contour plots of

v-displacements (perpendicular to the crack line) and u-

displacements (parallel to the crack line) were generated

for each image recorded during the tests. Figure 5 shows

v and u-displacement contour plots, corresponding to the

peak load P = 400 N, which were directly obtained from

the DIC data.

In order to prove the feasibility of the technique in

predicting the crack tip transformation region, the ex-

perimentally measured displacement contours were com-

pared with a two parameters (stress intensity factor and T-

stress) fracture mechanics solution proposed by Williams

[35]. In particular, if the two in-plane rigid motion terms,

rotation, A, and rigid translation perpendicular to the crack

line, B, are introduced, then the equations for u and v-

displacement contours can be written as follows:

u ¼ KI

l

ffiffiffiffiffiffi
r

2p

r
cos

h
2

� �
1

2
k � 1ð Þ þ sin2 h

2

� �� �

þ 1

2lð1 þ vÞ Tr cos hð Þ � Ar sin hð Þ þ Bu ð3Þ

v ¼ KI

l

ffiffiffiffiffiffi
r

2p

r
sin

h
2

� �
1

2
k þ 1ð Þ � cos2 h

2

� �� �

� 1

2l
v

ð1 þ vÞ

� �
Tr sin hð Þ þ Ar cos hð Þ þ Bv; ð4Þ

Fig. 5 Calculated displacement fields near the crack tip from DIC:

a vertical displacement (v) contour plots; b horizontal displacement

(u) contour plots
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where KI is the effective stress intensity factor, r and h are

the polar coordinates of a system with the origin at the

crack tip (see Fig. 2), m is the Poisson’s ratio, l is the shear

modulus of elasticity, and k, for plane stress solution, is

given by

k ¼ 3 � v

1 þ v
: ð5Þ

The comparison between the measured displacement

contours and the analytical ones, after eliminating rigid

body terms (A and B), is reported in Fig. 6a, b, for the v-

displacement and u-displacement contours, respectively,

and results revealed very good agreement.

Displacement data were used to calculate the strain

contours which allow to identify the crack tip transforma-

tion region, by a direct comparison with the stress–strain

response of the material (see Fig. 1a), as illustrated in the

following section.

Furthermore, preliminary ex situ indentation tests were

carried out to study the nanoindentation response of the

two crystallographic phases of the alloy (martensite and

austenite) as well as to identify suitable parameters to

capture local phase transition mechanisms. In particular,

isothermal stress-free indentation tests were carried out for

the two values of the testing temperature (T = 298 K and

T = 338 K) and two different materials were analyzed: i)

the investigated Ni-rich austenitic alloy (Type S) and ii) a

Ti-rich martensitic alloy (Type M, 49.8 at.% Ni–50.2 at.%

Ti, Af = 343 K).

Figure 7 reports the obtained results in terms of load–

penetration curves for type S and M alloys (Fig. 7a, b,

respectively), and for the two investigated temperatures.

Furthermore, the figures illustrate the measured values of

the maximum depth (hmax), residual depth ratio (hres/hmax),

and the recovery depth ratio (hrec/hmax), which represent

the parameters considered in this study, as also discussed in

[37].

A direct comparison between the two materials shows

very large differences, in terms of both hres/hmax and

Fig. 6 Comparison between the measured and the analytical dis-

placement fields near the crack tip: a vertical displacement contour

plots (v); b horizontal displacement contour plots (u)
Fig. 7 Indentation response as a function of the investigated testing

temperature: a load–displacement curves for Type S alloy; b load–

displacement curves for Type M alloy
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hrec/hmax ratios, which can be directly related to pseudoe-

lasticity in austenitic alloys and pseudoplasticity in

martensitic ones. In particular, Type S alloy shows a

unusual indentation response with very large recovery

depth if compared to Type M and also to common engi-

neering alloys, i.e., with recovery depth ratios (hrec/hmax)

equal to 0.78 at T = 298 K and 0.9 at T = 338 K, due to

the reversible stress-induced transformations occurring

during loading/unloading cycles. On the contrary, Type M

alloy shows large residual depths, i.e., with recovery depth

ratios (hrec/hmax) equal to 0.42 at T = 298 K and 0.74 at

T = 338 K, due to pseudoplasticity associated with de-

twinning mechanisms occurring in the loading stage. In

addition, as expected, Type M alloy shows much larger

maximum depths if compared with Type S alloy, due to the

detwinning phenomena, typical of a martensitic mi-

crostructures, which occur at lower stress values compared

to the stress-induced martensite of the pseudoelastic alloys,

according to the Clausius–Clapeyron law. Finally, both

alloys show a marked effect of the testing temperature, i.e.,

an increase in temperature causes a decrease in the max-

imum depth and residual depth and an increase in the re-

covery depth, as a consequence of the temperature-

dependent stress–strain response according to the Clau-

sius–Clapeyron relation. Based on these preliminary re-

sults, the residual depth (hres) was identified as the most

functional parameter to identify stress-induced phase

transformations at the crack tip, as well as to analyze the

effects of testing temperature.

Crack Tip Transformation

Starting from the experimentally obtained displacement

field, strain data were computed with the aim to evaluate

the phase transformation zone near the crack tip, and the

obtained results were compared with the analytical solution

described in [31]. In particular, Fig. 8a, b reports the von

Mises equivalent strain contours obtained at T = 298 K

(Fig. 8a) and T = 338 K (Fig. 8b) together with the extent

of the transformation region (black contours) obtained by

the reference analytical model. These results are related to

an external applied load P = 300 N and a normalized

crack length a/W = 0.3 (K0 = rH(pa) = 6.8 MPaHm).

The experimental transformation contour can be estimated

by the strain level eeq = 1 %, which corresponds to the

onset of stress-induced transformation, according to the

stress–strain curve illustrated in Fig. 1a.

Nanoindentation tests at the crack tip region of the SEC

specimen subjected to an applied load equal to P = 400 N

and a normalized crack length a/W = 0.42 (K0 =

rH(pa) = 7.8 MPaHm) were carried out for the two dif-

ferent values of the testing temperature, equal to 298 K

(Fig. 8c) and 338 K (Fig. 8d). Based on the preliminary

investigations, discussed in the previous section, the resi-

dual depth (hres) data, obtained from the indentation matrix,

were analyzed, and the corresponding contour plots for

T = 298 K and T = 338 K were computed. A comparison

between Figs. 8c, d and 7 allows to identify the contours

corresponding to full austenitic conditions, i.e., those cor-

responding to a residual depth close to 400 nm at

T = 298 K (Fig. 8c) and 200 nm at T = 338 K (Fig. 8d).

In addition, both figures show a similar trend of the residual

depth ratio when moving from the outer austenitic region

toward the crack tip, i.e., an increase of the residual depth

is observed with maximum values close to 1000 nm at

T = 298 K and to 500 nm at T = 338 K; it is important to

point out that these values are very close to the residual

depths obtained for the martensitic alloy at the same testing

temperatures (see Fig. 7).

Even though a direct comparison between the results

obtained from the two different experimental approaches

cannot be done because of the different applied remote

stress intensity factor (K0), Fig. 8 reports the transforma-

tion zone predicted by the two experimental methods to-

gether with the one analytically calculated [31]. In

particular, DIC data revealed quite difference, in terms of

shape and size, between the analytical and experimental

transformation zone, for both the investigated thermal

conditions, because the derivative procedure to calculate

strain data gives strain plots generally noisier than dis-

placement ones. On the contrary, very good agreements

between the analytical predictions and the nanoindentation

contours, corresponding to the fully austenitic structure, are

observed. Furthermore, it is worth noting that both the

experimental methods are able to capture the thermal effect

on the phase transformation size according to the analytical

predictions as well as to previous numerical [24] and ex-

perimental [12] studies. In particular, it is shown that an

increase in temperature causes a decrease in the crack tip

strain as a consequence of the increase in transformation

stress, according to the Clausius–Clapeyron law.

Conclusions

The effect of the testing temperature on crack tip trans-

formation in a commercial pseudoelastic NiTi alloy was

investigated by experiments and analytical model. Load-

unload tensile tests, supported by DIC, and nanoindentation

experiments were carried out on SEC specimens for two

different values of the testing temperature in the pseudoe-

lastic regime of the alloy, i.e., T = 298 K and T = 338 K.

In particular, the thermal-dependent phase transition

mechanisms occurring at the crack tip region were studied

by analyzing the strain data obtained from DIC investiga-

tions and the nanoindentation response performed near the
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crack tip. Finally, experimental results were compared with

predictions of a recent analytical model. Results revealed

that

(1) an increase in temperature causes a decrease of the

phase transformation zone as a consequence of the

increase in transformation stress, according to the

Clausius–Clapeyron law;

(2) nanoindentation technique is well suitable to identify

the phase transformation zone near the crack tip with

good agreement with the analytical prediction;

(3) DIC is a powerful technique to evaluate the displacement

fields, however calculated strain data result noisy and

revealed quite difference with the analytical predictions;

(4) both the experimental techniques showed good

capability in capturing the thermal effect on the

phase transformation mechanisms near the crack tip.
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