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Abstract
This lecture text focuses on surface forces and interactions in a liquid medium, with particular emphasis on the surface-surface 
interactions described by the DLVO theory, i.e., van der Waals attraction and electric double-layer repulsion. The text begins 
by describing the fundamental forces of nature, their connection to intermolecular interactions, and how the latter result 
in measurable forces between surfaces and macroscopical objects. A step-by-step reasoning on how DLVO forces arise is 
then presented, accompanied by a simplified description of the mathematical derivations of the main equations within the 
framework of the theory. The connection between the DLVO theory and the prediction of the stability of colloidal systems 
is presented. Examples on how the colloidal stability can be controlled or tuned are presented. The shortcomings of the 
original DLVO theory are discussed, and recent extended models dealing with these issues are briefly described. The text 
closes with a general overview of some of the most relevant non-DLVO interaction.
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Introduction

Forces and interactions between surfaces are all around us 
and play a vital role in our everyday life. They prevent the 
immediate separation of fat and water in the milk we keep 
in our fridges, they make it possible for us and our children 
to create soap bubbles to play with, they make wet floors 
slippery, etc. They are in fact, ubiquitous, and just as impor-
tant for our daily activities as, for example, the gravitational 
force. Thus, many excellent books on the topic of surface-
surface interactions have been written, spearheaded by Jacob 
Israelachvili’s “Intermolecular and Surface Forces” [1]. The 
level of these books may, however, be considered too com-
plicated for most undergraduate students, and there is an 
astonishing lack of dedicated basic textbooks on the topic. 
In this lecture text the origin, range and strength of surface 
forces will be described and the DLVO theory will be intro-
duced to students of chemistry, biology and pharmacy. This 
theory provides a conceptually simple and very accurate 
description of how surfaces separated by a liquid interact 
with each other and is key to understanding, for example, 

the behavior of colloidal systems. As most surfaces and bod-
ies are composed of molecules, the text will start by briefly 
introducing intermolecular forces and then extrapolate this 
to how surfaces and macroscopic objects interact with each 
other. The reasoning behind the classic DLVO theory as well 
as descriptions of novel developments in the field will also 
be presented. Finally, the text will briefly discuss surface 
forces not described by the DLVO theory.

The term “surface” in this text will be used to refer to 
the interface between two phases (i.e., the plane at which 
one material ends and the other one begins) or between a 
phase and a vacuum. In contrast, the term “bulk” refers to 
the inside of the material, where all molecules/atoms are 
surrounded by molecules/atoms of the same kind.

Forces and interactions in nature

There are four fundamental interactions in nature from 
which all other interactions originate. These fundamental 
forces are:

•	 The weak force, acting between subatomic particles and 
responsible for the radioactive decay of atoms.

•	 The strong force that keeps quarks packed into protons, 
neutrons, etc., as well as binding together neutrons and 
protons to form atomic nuclei.
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•	 Gravitation, a very weak interaction acting between 
objects with mass and/or energy

•	 Electromagnetism, acting between charged particles.

Of these interactions, only gravitation and electromagne-
tism give rise to observable macroscopic phenomena, partly 
because both have infinite range (in contrast with the weak 
and strong interactions, which act only at extremely short 
separations). Of these forces, electromagnetism is the most 
relevant to explain chemical processes. In principle, all inter-
actions between atoms and molecules are of electromagnetic 
origin. In fact, the existence of condensed phases (liquid and 
solid phases) is possible only thanks to the electromagnetic 
force acting between molecules and atoms.

Intermolecular forces

All atoms and molecules are composed of protons and elec-
trons, i.e., charged particles. If a molecule or atom loses or 
gains one or more electrons, it will acquire a charge and 
become an ion. The energy of interaction Wion between ions 
in a medium at separations r much larger than their respec-
tive radius can be described by Coulombs law:

where z1 and z2 are the valences of the interacting ions, e 
is the elementary charge (i.e., the charge of an electron, 
1.602 × 10–19 C), �0 is the permittivity of vacuum (a constant 
reflecting the ability of an electric field to pass through a 
vacuum, 8.854 × 10–12 f/m), and � is the relative permittiv-
ity of the medium. The interaction is attractive if the sign 
for W(r) is negative (i.e., if z1 and z2 have opposite signs) 
and repulsive if the sign is positive (if z1 and z2 have the 
same sign). A conclusion that can be drawn from Eq. (1) 
is that the interaction between two ions is long range, since 
its strength is directly proportional to the inverse of the dis-
tance between them. The interaction will thus be observable 
already at large separations. Coulomb's law describes ion-
ion interactions rather accurately. It is necessary, however, to 
keep in mind that the equation assumes that the ions have no 
volume (i.e., they are treated as point charges). At very close 
separations (in the range of the ionic radii), other effects 
need to be considered.

Non-charged molecules interact with each other also via 
electrostatic interactions. We can consider first the interac-
tion between polar molecules (i.e., molecules with a perma-
nent dipol moment). The positive end of a dipole will attract 
the negative end of another. If the dipoles can rotate freely 
(as, e.g., in gas or liquid form), the dipoles will spend more 
time in a relative position to each other in which this attrac-
tion is maximized. Thus, the negative end of one dipole will 

(1)Wion(r) =
z1z2e

2

4���0r
,

be oriented mainly toward the positive end of another dipole, 
resulting in a net electrostatic attractive force between non-
charged polar molecules. This interaction is known as the 
Keesom interaction, and it decays with the separation up to 
a power of six, meaning it has much shorter range than the 
interaction between ions.

Polar molecules and ions can also attract or repel elec-
trons in the electron cloud of another molecule, inducing 
thus a dipole moment. This leads to a net electrostatic attrac-
tion, even between polar and non-polar molecules. This 
interaction is called the Debye interaction and decays also 
with the separation up to the power of six.

Finally, as all molecules and atoms are surrounded by 
an electron cloud in constant movement, the possibility of 
having an uneven distribution of electrons within the cloud 
at a certain given moment always exists. When this occurs, 
the molecule/atom will possess a dipole moment (an instant 
dipole). This dipole moment can induce a dipole in another 
molecule, thus resulting in an attractive force between mol-
ecules. This force is called “dispersion force” or London 
force and is found between all kinds of molecules. Disper-
sion forces make it possible for elements such as helium to 
condense into a liquid phase. The interaction has the same 
range as the Keesom and Debye interactions, i.e., it decays 
with the separation up to the power of six.

Together, the Keesom, Debye and London interactions 
are grouped in what is called the van der Waals interactions, 
a ubiquitous form of interaction between molecules. The 
total van der Waals interaction between two molecules in 
vacuum is given by the simple expression:

where the parameter C includes the contribution from the 
Keesom, Debye and London interactions and is thus depend-
ent on the permanent dipol moment, polarizability and the 
first ionization energy of the molecules interacting. For mol-
ecules interacting in vacuum, C is always positive, mean-
ing that the van der Waals interaction in vacuum is always 
attractive. In contrast with the ion-ion interaction described 
by Eq. (1), van der Waals interactions between molecules 
have a very short range. The attraction will thus only be 
noticeable at very short separations.

Surface forces and DLVO theory

Atoms, molecules and ions constitute the building blocks 
of most materials. Even very small objects, such as, for 
example, colloidal particles (i.e., particles with a few nm 
or µm in size) contain at least several thousands and often 
millions/billions of such building units. The constituting 

(2)WvdW(r) = −
C

r6
,
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molecules (or atoms) in one object interact with all mole-
cules (or atoms) in another object via van der Waals interac-
tions. Thus, as will be shown below, the interaction between 
surfaces is to a great extent defined by the van der Waals 
interaction between their respective components.

For surfaces interacting in a liquid medium, an entropic 
repulsive force (the electric double-layer repulsion) arising 
from electrostatic interactions between ions in the medium 
will also be observed. The van der Waals and electric dou-
ble-layer interactions form the core of the DLVO theory, 
named after the scientist that developed it: Derjaguin and 
Landau in Russia in 1941 [2] and Verwey and Overbeek [3] 
in 1948 in The Netherlands.

The DLVO theory is particularly useful to describe and 
predict the stability of colloidal dispersions. A colloidal 
system is by definition composed of microscopic particles 
dispersed throughout a medium. How long the particles will 
remain dispersed is a measure of the colloidal stability of 
the system. The colloidal stability depends on the interplay 
between the attractive and repulsive forces acting between 
the particles. Thus, in the frame of the DLVO theory, the 
colloidal stability of a given system depends on the relative 
strengths of the attractive van der Waals and the repulsive 
electric double-layer interactions, which will be described 
in detail in the following sections.

Van der Waals forces between surfaces

Let us imagine having an infinite planar wall. If we place a 
molecule at a given distance from the wall, van der Waals 
interactions will exist between this molecule and all the 
molecules forming the wall. The total energy of interaction 
between the molecule and the wall can be approximated as 
the sum of all these interactions, as proposed in the pioneer-
ing work by Hamaker [4] and Bradley [5].

To find an expression for this interaction, consider the 
situation depicted in Fig. 1. Here, a molecule is placed 
at a distance d from an infinite planar wall. The position 

of the molecule is defined as the origin point of a Car-
tesian coordinate system, with the wall plane found at a 
distance d in the y-axis. Consider now the interaction of 
the molecule with a volume differential within the wall 
at the coordinates (x, y, z). The volume differential will 
be given by dV = dx*dy*dz, and its separation r from the 
molecule will be given by r =

√
x2 + y2 + z2 . The van der 

Waals interaction between the molecule and all molecules 
within the volume differential will be given by:

where � is the density (in molecules per volume unit) of the 
wall.

Integrating over the space occupied by the wall (i.e., 
taking the sum of the interaction between the molecule 
and all possible volume differentials), an expression for 
the total interaction is obtained:

An interesting consequence of Eq. (4) is the fact that 
the strength of the interaction is observed to decrease with 
d−3, in contrast with the r−6 dependence observed between 
molecules. This implies that the van der Waals interac-
tion between a molecule and infinite wall has much longer 
range than between single molecules.

A similar analysis can be used to estimate the total 
van der Waals interaction between two infinite planar 
walls (Fig. 2). In this case, the interaction between two 
volume differentials is calculated and integrated over 
the volume of the two walls (i.e., one calculates the sum 
of all possible interactions between molecules in one 
wall and molecules in the other one). To obtain a finite 
value, the interaction is calculated per unit area. The 

(3)dWvdW(r) = −�
C

r6
dV = −�

C
(
x2 + y2 + z2

)3 dxdydz,

(4)

WvdW(r) = ∫
∞

−∞∫
∞

d ∫
∞

−∞

−
C�

(
x2 + y2 + z2

)3 dxdydz = −
��C

6d3
.

Fig. 1   A single molecule interacting with an infinite wall Fig. 2   Two infinite planar walls interacting with each other
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separation r between volume differentials would be given 

by r =
√(

x2 − x1
)2

+
(
y2 − y1

)2
+
(
z2 − z1

)2 and thus:

where H12 = �2�1�2C is the Hamaker constant describ-
ing the interaction between the two walls. Equation  (5) 
implies that the van der Waals interaction between planar 
surfaces has much longer range than between molecules 
since its strength decreases with the square of the separa-
tion. This means that the short-range van der Waals forces 
acting between molecules can give rise to long-range forces 
between macroscopical objects.

The pairwise additivity assumptions made in the deriva-
tions above ignore, among other phenomena, the effect of 
atoms and molecules in the vicinity of two molecules inter-
acting. More rigid approaches to estimate the interaction 
between two planar walls result, however, in an expression 
identical as given by Eq. (5). The only difference is the way 
the Hamaker constant is calculated (see, e.g., the derivation 
by Israelachvili [6]). Furthermore, it can be shown that the 
same expression can be used to describe the interactions 
between two objects in a medium. Again, the only differ-
ence is the value of the Hamaker constant, which will be 
dependent not only on the materials interacting, but also 
on the medium in which the interaction takes place. Thus, 
the interaction per unit area between Wall 1 and Wall 2 in 
Medium 3 (Fig. 3) is described by the equation:

The Hamaker constant for the interaction in a medium 
H132 is related to the Hamaker constant of the different 

(5)WvdW(d) = ∫
0

−∞∫
∞

−∞∫
∞

d ∫
∞

−∞

−
C�1�2

((
x2 − x1

)2
+
(
y2 − y1

)2
+
(
z2 − z1

)2)3
dy1dx2dy2dz2 = −

��1�2C

12d2
= −

H12

12�d2
,

(6)WvdW(d) = −
H132

12�d2
.

materials in vacuum as given by the combination rule: 
H132 ≈

�√
H11 −

√
H33

��√
H22 −

√
H33

�
 . An interesting 

consequence of the combination rule is that the Hamaker 
constant for the interaction in a medium H132 can be negative 
if H11 < H33 < H22 (or vice versa), i.e., if the value of the 
Hamaker constant of the medium lies between the values of 
the Hamaker constants of the two materials interacting. In 
such cases, the van der Waals interaction between the walls 
will be repulsive. Notice that these repulsive van der Waals 
interactions are possible only in a medium and only if the 
two materials interacting are different. Between two similar 
materials or between any materials in vacuum, the interac-
tion is always attractive.

In the frame of the DLVO theory, a final step to be able to 
estimate the strength of van der Waals interaction between 
colloidal particles is to find expressions to describe the inter-
action between particles with finite geometries. In particu-
lar, the interaction between spherical objects is of relevance 
within the field of colloids. A very useful relationship to 
easily determine the force F(d) acting between two spheres 
is given by the Derjaguin approximation [7], which states 
that this force will be proportional to the interaction energy 
between two planar surfaces W(d) as long as the separation 
d between the spheres is shorter than their radii:

where R1 and R2 are the radii of the two spheres interact-
ing. In the case of spheres with the same radius R, Eq. 7 
simplifies to F(d) = �RW(d) . The Derjaguin approximation 
applies to all kinds of interactions and is therefore very use-
ful to extrapolate the results obtained when considering two 
infinite surfaces to what would be expected for two finite 
spheres. The energy of the interaction between two spheres 
Ws(d) can then be calculated from:

In the case of van der Waals interactions between two 
identical spheres with radius R, combining Eqs. 6, 7 and 8 
gives us the expression:

(7)F(d) =
2�W(d)

(
1∕R1

)
+
(
1∕R2

) ,

(8)Ws(d) = −∫
d

∞

F(d)dd.

(9)Ws(vdW)(d) = −
H131R

12d
.

Fig. 3   Two infinite planar walls interacting in a medium
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Remarkably, the van der Waals interaction between spher-
ical particles is thus shown to decay linearly with the inverse 
of the separation and thus behaves similarly to the Coulomb 
interaction between ions (Eq. 1).

Comparing Eqs. 6 and 9 reveals that the distance depend-
ence of van der Waals interactions varies with the geometry 
of the objects interacting. Thus, the range of the interaction 
between spherical particles is much longer than for planar 
surfaces and other geometries, as summarized and exempli-
fied in Fig. 4.

Electric double‑layer repulsion between surfaces 
in a liquid

The second force described by the DLVO theory is the repul-
sion between surfaces in a liquid arising due to their respec-
tive electric double layers. As will be discussed below, this 
repulsion, although commonly referred to as “electrostatic,” 
is in fact entropy-driven. Indeed, the “pure” electrostatic, 
energy-driven, interaction between two equally charged sur-
faces in a liquid is, counterintuitively, attractive. Why this is 
the case and what then drives the net repulsion described by 
the DLVO theory will be discussed in the following sections.

Surfaces in a liquid: the electric double‑layer 
and the Poisson‑Boltzmann equation

A surface submerged in a polar liquid will probably acquire 
a certain electrical charge. There are several mechanisms 
by which surface charges appear. For example, in water and 
other hydrogen-bonding liquids, one can expect the dissocia-
tion of acidic or basic groups at the surface, resulting thus on 
the formation of, respectively, negative or positive surface 
charges. The surface can also acquire a charge if ions from 
the solution adsorb or bind onto it. What is important to 

keep in mind is that, regardless of how the surface acquires a 
charge, the solution will acquire the same amount of charges 
but with opposite sign, usually in the form of counterions 
such that the system in its totality remains neutral. These 
counterions are the complementary product of the reaction 
by which charges at the surface are generated. For example, 
in the case of dissociation of an acid at the surface:

Thus, for every negative charge at the surface there 
is a positive ion in solution. Similarly, in the case of ion 
adsorption:

In this case, Cl− in solution adsorbs onto a binding site 
on the surface, rendering the surface negatively charged. 
The sodium counterion remains in solution. Thus, for every 
negative charge that is transferred to the surface, there is a 
positive charge remaining in the solution.

The spatial distribution of the counterions in the liquid 
medium close to the surface is not random but results from 
a compromise between their mixing entropy (which favors 
a homogeneous distribution of the ions in the available vol-
ume) and the electrostatic attraction between the surface and 
the counterions, which favors the accumulation of counte-
rions at the interface. Some of the ions will form a compact 
layer at the surface, forming a so-called Stern layer. The rest 
will be distributed in a “cloud” expanding from the surface, 
with the counterion concentration decreasing as the separa-
tion from the surface increases [8]. This forms the so-called 
diffuse layer (Fig. 5).

To better describe the distribution of ions in the liquid 
medium, it is necessary to consider that the total chemical 
potential µ of a single ion in the solution is given by the sum 
of the electrostatic and entropic contributions mentioned 
above:

where z is the valence of the ion, e is the elementary 
charge, �(x) is the electrical potential at a given posi-
tion x in the solution, k is the Boltzmann constant 
(k = 1.38065 × 10–23 J K−1), T is the absolute temperature, 
and n(x) is the ion concentration at position x. At equilib-
rium, the chemical potential µ of the ion must be the same 
at all values of x. Given that only electrical potential differ-
ences (and not absolute values of the electrical potential) are 
ever meaningful, we can define an arbitrary position x where 
the potential is set to � = 0 and the ion concentration is thus 
n(�=0) . From Eq. 10, it can then be shown that n(x) is given 
by the Boltzmann distribution:

−COOH(surface) → −COO−
(surface)

+ H+
(solution)

.

Na+
(solution)

+ Cl−
(solution)

+ bindingsite(surface) → Na+
(solution)

+ Cl−
(surface)

.

(10)� = ze�(x) + kTlnn(x),0

d

c
b

d) Spheres: WvdW(d) α d-1
c) Parallel cylinders: WvdW(d) α d-1.5
b) Planar walls: WvdW(d) α d-2

W
vd

W
(d

)

d

a) Molecules WvdW(d) α d-6

a

Fig. 4   Distance dependence of the van der Waals interactions for 
selected geometries
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A second needed relationship between the ion concen-
tration and the potential can be derived from the Poisson 
equation, which states that:

where �(x) is the bulk charge density, roughly defined as the 
“charge concentration,” at position x and given by:

Combining Eqs. 11, 12 and 13, one obtains the Pois-
son-Boltzmann (PB) equation:

By applying appropriate limiting conditions, Eq. 14 
can be used to determine the potential �(x) , ion concen-
tration n(x) and electric field E(x) = |d�(x)∕dx| at any 
point x near a charged surface, or, more importantly for 
the purpose of this text, at any point x in between two 
surfaces. The equation thus lies at the heart of the DLVO 
theory.

(11)n(x) = n(�=0)e
−

ze�(x)

kT .

(12)�(x) = −��0
d2�(x)

dx2
,

(13)�(x) = e
∑

zini(x).

(14)
d2�(x)

dx2
= −

e

��0

∑
zini(�=0)e

−
zie�(x)

kT .

Electric double‑layer interaction between a charged and a 
neutral planar wall in the absence of electrolyte

Consider the situation depicted in Fig. 6, where a non-
charged planar wall is placed at x = 0 and a charged pla-
nar wall with a surface charge density σ is placed at x = d. 
Counterions accumulate in the gap between the walls, ensur-
ing thus electroneutrality. Imagine now that outside of the 
gap there is a reservoir of solvent in which no ions are pre-
sent. The mixing entropy of the trapped counterions would 
increase if the solvent from the reservoir would flow in the 
gap, effectively pushing the walls apart. Thus, a repulsive 
osmotic pressure acts at all points within the gap. This pres-
sure is highest at the vicinity of the charged surface (at x = d, 
where the concentration of ions is highest) and lowest right 
next to the uncharged surface (at x = 0). An opposing, attrac-
tive pressure is also found in the gap, and it has an electro-
static (enthalpic) origin: counterions in solution are attracted 
to the charged wall (and vice versa) and thus they effectively 
pull the walls together. This pressure is also highest at x = d, 
and it is zero right at the interface between the medium and 
the uncharged wall (i.e., at x = 0) since the latter experiences 
no electrostatic pull. The total pressure PDL(d) is the sum of 
both these contributions, and it should be uniform across the 
gap. Since the electrostatic contribution at x = 0 is zero, the 
total pressure acting in the system is given by the osmotic 
pressure at this point, i.e.:

Fig. 5   Depiction of a negatively charged wall with surface charge 
density σ immersed in a liquid. A compact layer of counterions form 
close to the surface (Stern layer). The rest of the counterions are dis-
tributed in a diffuse layer

Fig. 6   Representation of a neutral surface placed at a separation d 
from a negatively charged surface with surface charge density σ
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where n0 is the concentration of counterions at x = 0. This 
concentration will be dependent on the separation d between 
the walls.

To be able to calculate the value of the pressure acting 
between the walls, n0(d)  needs to be determined. This can 
be done with help of the PB equation (Eq. 14), which, for 
the system depicted in Fig. 6, becomes:

where the potential at x = 0 has been set to zero (i.e., 
�(0) = 0) . A further limiting condition needed to solve 
Eq. (16) is given by the electric field at x = 0, which is zero, 
i.e.,E(0) = |d�(x)∕dx|x=0 = 0

The solution to Eq. 16 is thus (see Engström et al. [9]):

where

As stated above, the electroneutrality condition must be 
fulfilled, i.e., that the surface charge density must be com-
pensated by the sum of the bulk charge densities at all posi-
tions in the gap, i.e.:

where Es = E(d) is the electric field directly at the surface 
of the charged wall. Combining Eqs. 17 and 19, one obtains:

For a given system where σ is known, n0 can be numeri-
cally determined for a given d using Eq. 20, thus allowing 
calculating the pressure acting between the surfaces.

Electric double‑layer interaction between two identical 
charged infinite walls in the absence of electrolyte

Consider now two identical charged walls interacting in a 
liquid. In this case, the electrostatic contribution to the total 
pressure will be zero right at the midplane, and the pressure 
acting between the walls is thus given by the concentration 
of ions at this point [9]. It is thus convenient to set x = 0 and 
� = 0 at the midplane. The charged surfaces are thus located 
at x =  ± (d/2), as depicted in Fig. 7. Each half of the system 

(15)PDL(d) = kTn0,

(16)
d2�(x)

dx2
= −

e

��0
zn0e

−
ze�(x)

kT ,

(17)�(x) =
2kT

ze
ln(cos(Kx)),

(18)K = ze

√
n0

2kT��0
.

(19)� = −∫
d

0

�(x)dx = ��0∫
d

0

(
d2Ψ(x)

dx2

)
dx = ��0

((
dΨ(x)

dx

)

x=d

−

(
dΨ(x)

dx

)

x=0

)
= ��0(E(d) − E(0)) = ��0Es,

(20)Es =
||||
dΨ(x)

dx

||||x=d
= −

2kTK

ze
tan(Kd) =

||||
�

��0

||||
.

depicted in Fig. 7 is identical to the system illustrated in 
Fig. 6, with the neutral surface being replaced by the mid-
plane. The solution for the PB equation is thus similar to the 
case described above. The only difference is that the separa-

tion d in Eq. 20 must be replaced by d/2 [9]:

Thus, two charged surfaces separated by a distance d will 
interact with the same strength as a charged and a neutral 
surface separated by d/2 [10].

Isolated charged surfaces in an electrolyte solution

The cases described in the previous sections are unlikely to 
be found in real systems, particularly if water is the medium. 
In such case, most surfaces will acquire a charge, and there 
will always be other ions in solution besides the surface 
counterions. All these ions need to be considered when 
solving the PB equation. For two surfaces interacting in an 
electrolyte, the approach used in previous cases does not pro-
vide an analytical solution concerning the concentration of 
ions at any point in the gap. Instead, it becomes necessary to 

(21)Es = −
2kTK

ze
tan

(
K
d

2

)
=
||||
�

��0

||||
.

Fig. 7   Representation of two identical charged walls placed at a sepa-
ration d from each other
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treat each wall as an isolated surface and to define � = 0 at 
a point where the concentration of the ions is known. Thus, 
x = 0 is defined right at the surface of the wall, and � = 0 is 
set at x = ∞ (see Fig. 8). Thus, n(�=0) = n(x=∞) , i.e., the con-
centration of ions at an infinite separation from the surface. 
This is equal to the bulk concentration of ions.

The solution to the PB equation (Eq. 14) becomes much 
more cumbersome when an electrolyte solution is present. 
Table 1 summarizes the expressions for �(x) obtained for sym-
metrical electrolytes (i.e., electrolytes where the anion and the 
cation have the same absolute valence z) and for a mixture of 
2:1 (e.g., CaCl2) or 1:2 (e.g., Na2SO4) with a 1:1 (e.g., NaCl) 
electrolyte. The equations are expressed in terms of the param-
eters �0 and ni(∞) , which represent, respectively, the surface 
potential (i.e., the potential at x = 0) and the bulk concentration 
of the ion i. In both equations, the decay of the potential as the 
distance from the surface increases is described by a parameter 
� dependent only on the composition and temperature of the 

electrolyte and not on the properties of the surface. The inverse 
of this parameter (i.e., �−1 ) is known as the Debye length and is 
a measure of the thickness of the electric double layer. Increas-
ing the ionic strength of the solution decreases the magnitude 
of the Debye length, meaning that the electric double layer 
becomes thinner. Adding an electrolyte will indeed cause an 
increase of the counterion concentration near the surface, 
screening the surface charges already at small values of x.

The second equation in Table 1 is reduced to the first one 
when a = ∞ (i.e., when only the monovalent electrolyte is pre-
sent). Setting a = 0 (i.e., when only the asymmetrical electro-
lyte is present) results in the equation proposed by Andrietti 
et al. [11] for the case of 2:1 (or 1:2) electrolytes, which is in 
turn similar to the solutions given by Grahame [12].

A relationship between the surface potential �0 and the sur-
face charge density � can be obtained from the PB equation by 
considering that electroneutrality is required:

Equation 22 and the equations in Table 1 can be dramati-
cally simplified when the value of the surface potential is low. 
For absolute values of 𝜓0 ≪ kT∕(ze) (the so-called “Debye 
approximation”), the equations in Table 1 are both reduced to:

Equation 23 is called the Debye-Hückel equation and is a 
very useful approximation valid for all kinds of electrolytes. 
The equation results in a very exact description of the poten-
tial decay near the surface when the surface potential is low 
(< 25 mV at room temperature) as long as the surface potential 
and the Debye length are determined accurately; see Fig. 9 (left). 
Even at large surface potentials, the differences between the 
predictions from Eq. 23 and from the equations show in Table 1  
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Fig. 8   Representation of an isolated charged wall in an electrolyte 
solution

Table 1   Solutions of the PB 
equation for a symmetrical 
electrolyte (known as the 
Gouy-Chapman theory) and for 
a mixture of 2:1 (or 1:2) and 
1:1 electrolytes mixed at a ratio 
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to unpublished work by the 
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differ only slightly (see Fig. 9, right). For 1:1 electrolytes, the 
deviation is actually negligible. To simplify the description of 
the electric double-layer interaction between surfaces, in the 
following sections the Debye-Hückel equation will be used 
instead of the exact solutions in Table 1.

From Eq. 23, a simple relationship between the surface 
potential and the surface charge density is obtained:

Electric double‑layer interaction between two identical 
charged surfaces in an electrolyte solution

When considering the interaction between two charged walls 
in an electrolyte, it is necessary to determine how the ions 

(24)� = −��0

(
d�(x)

dx

)

x=0

= ��0��0.

distribute in the gap. The Boltzmann distribution can be used 
to determine the concentration at any point in between the 
surfaces. The potential at any position can be estimated by the 
weak overlap approximation which considers that the potential 
at any point in the gap between the walls will be given by the 
sum of the potentials of each wall treated separately. From the 
Debye approximation, the potential at any point x between 
two similar walls (see Fig. 10) with a surface potential �0 at 
a separation d is:

From Eqs. 11 and 25, the ion distribution in the gap can 
be calculated. Figure 11 shows the distribution of co- and 
counterions in the gap between two surfaces, as well as the 
total concentration of ions at different points in the gap:

(25)�(x) = �0

(
e−�x + e−�(d−x)

)
=

�

��0�

(
e−�x + e−�(d−x)

)
.

Fig. 9   Comparison of the predictions of exact solutions to the PB 
equation for different electrolytes and the Debye-Hückel approxima-
tion. The Debye length is set equal in all systems (1.34  nm). Left: 

Surface potential: − 15 mV. Right: Surface potential − 50 mV. The 
legend is valid for both figures

Fig. 10   Representation of two identical charged walls placed at a sep-
aration d from each other in an electrolyte solution
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As can be observed, the total concentration of ions is 
higher near the walls and lowest at the midplane. The mid-
plane concentration is, however, higher than the bulk con-
centration (20 mM in the case illustrated in Fig. 11). The 
total pressure acting between the walls will be given by the 
difference between the osmotic pressure at the midplane, 
where the electrostatic contribution is zero, and at the bulk, 
i.e.:

Substituting the Boltzmann distribution (Eq.  11) in 
Eq. 26, we obtain:

where �d∕2 is the potential at the midplane. Expanding the 
exponents into series, and assuming that the value of �d∕2  
is small, Eq. 30 simplifies into:

The midplane potential �d∕2 calculated from the Debye 
and weak overlap approximations is:

The pressure is thus given by:

The energy of interaction per unit area W(d) can be 
obtained by integration of Eq. 30. In terms of the surface 
charge density, one obtains:

Using the Derjaguin approximation, the force Fs(DL) and 
the energy of interaction Ws(DL) between spherical particles 
can thus be expressed as:

and

respectively. The relevance of Eqs. 30–33 is that they are 
valid in all kinds of electrolytes, including mixtures, as long 
as the Debye approximation holds. Indeed, at absolute values 
of 𝜓0 ≪ kT∕(ze) (around 25 mV for a 1:1 electrolyte at room 
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2�2

0
e−�d =

2�2

��0
e−�d.

(31)WDL(d) = −∫
d

∞

PDL(d)dd =
2�2

���0
e−�d.

(32)Fs(DL)(d) =
2�R�2

���0
e−�d,

(33)Ws(DL)(d) =
2�R�2

�2��0
e−�d,

temperature), the equations give a very exact description of 
the experimental observations as long as the Debye length is 
determined with precision. For larger potentials, the approxi-
mation is still rather good qualitatively, although it should 
be used with caution.

For more accurate results with symmetrical electrolytes, 
the weak overlap approximation and the corresponding 
equation in Table 1 can be used to get an expression for �d∕2 . 
The resulting expression for the pressure acting between the 
surfaces is slightly more complicated than Eq. 30, but can 
still be integrated to obtain the energy of interaction.

For asymmetrical electrolytes or for mixtures, an equation 
for the pressure between walls can be obtained. However, 
this expression cannot always be integrated analytically to 
estimate the energy of interaction. Numerical approxima-
tions are thus often needed.

Summarizing the discussion above, the repulsion acting 
between two charged surfaces in a liquid is driven by entropy 
and not by a direct electrostatic repulsion between them. 
Indeed, purely electrostatic interactions would result in an 
attractive force, since the counterions attract the surface 
towards them. The entropy contribution as predicted by the 
PB equation is, however, always dominant. In Sect. “Short-
comings of the PB equation” below, examples where the 
electrostatic contribution actually dominates (leading to an 
attractive force) will be discussed.

The total interaction between surfaces 
in an electrolyte

For two surfaces interacting in a liquid, the total interaction 
between them will be a combination of the electric double-
layer repulsion and van der Waals attraction. Simply put, 
the total interaction is the sum of the contributions of both 
phenomena. For spherical particles interacting in an electro-
lyte solution, the total interaction is then obtained by adding 
Eqs. 9 and 33:

Fig. 12   Total DLVO energy of interaction between two spherical par-
ticles as a function of separation under different conditions
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The effect of ionic strength, particle size and surface 
charge density on the total interaction at different separa-
tions is illustrated in Fig. 12. In general, the attractive van 
der Waals interaction is expected to dominate at short sepa-
rations, since its strength tends to infinity as the separation 
decreases.

As observed in Fig. 12, at high surface charge densities 
and low ionic strengths a repulsive energy barrier appears. 
To come in contact with one another, two particles dis-
persed in a medium would need to collide with enough 
energy to overcome this barrier. The particles are then said 
to have coagulated, i.e., they have aggregated irreversibly. 
Decreasing the surface charge density or increasing the 
ionic strength results in a decrease (or complete vanishing) 
of the repulsive barrier, thus making it easier for particles 
to coagulate.

In cases where the magnitude of the Debye length is 
small, it is possible for the attractive interaction to have 
longer range than the repulsion. In such cases, a secondary 
minimum can appear (see Fig. 13). Particles trapped in the 
secondary minimum are said to have flocculated, i.e., they 
have reversibly aggregated. Flocculation in a colloidal dis-
persion can be observed only if the secondary minimum is 
deep enough to prevent both re-dispersion and coagulation. 
According to Eq. 34, the depth of the minimum is propor-
tional to the size of the particles; thus, large particles are 
more prone to flocculate than smaller ones (Fig. 13).

(34)

Ws(total)(d) = Ws(DL)(d) +Ws(vdW)(d) =
2�R�2

�2��0
e−�d −

H131R

12d
.

Colloidal stability and rate of coagulation

In the absence of a repulsive energy barrier, two particles 
approaching each other would always coagulate. When a 
barrier is present, it is required that the particles approach 
with enough energy to overcome the barrier. The propor-
tion of particle-particle collisions with high enough energy 
is given by the Boltzmann factor e−

Wmax

kT  , where Wmax is the 
height of the energy barrier. The second order coagulation 
rate constant is thus given by an expression resembling the 
Arrhenius equation:

where k0 is the expected frequency of collisions per particle 
concentration. The frequency of collisions is in turn depend-
ent on how the particles diffuse, so k0 can be defined as the 
rate constant of a diffusion controlled process:

where D is the diffusion coefficient of a particle with radius R 
and NA is the Avogadro number ( NA = 6.022 × 1023 mol−1). 
The last equality in Eq. 36 is obtained from the Stokes-Ein-
stein relationship ( D = kT∕(6��R) , where � is the mediums 
viscosity).

The rate of coagulation is given by:

The coagulation frequency, defined as the number of irre-
versible associations per time unit is defined as kcoag[B] . In 
water at room temperature, the value of k0 estimated from 
Eq. 36 is 3.306 × 109 L mol−1 s−1. This means that, in a 
very concentrated colloidal dispersion with [B] = 1 mol par-
ticles per liter, there will be 3.306 billion particle-particle 
collisions every second. How many of these collisions will 
result in coagulation of the colliding particles depends on the 
height of the energy barrier and is given by the Boltzmann 
factor. For a low barrier with a height of 10kT, the Boltz-
mann factor is e−10 = 4.54 × 10–5, resulting in a coagulation 
frequency of 3.306 × 109 * 4.54 × 10–5 ≈ 150,000 associa-
tions per second. For a higher barrier of about 50kT the 
Boltzmann factor is much smaller (1.93 × 10–22), resulting 
in only 6.612 × 10–13 associations per second. The inverse 
of the coagulation frequency can be understood as the aver-
age time that it would take for coagulation to start happen-
ing (average time until the first association occurs). For the 
former case (Wmax = 10kT), this implies that the process of 
coagulation starts already 6.7 µs after the dispersion has 
been prepared, whereas, for the latter case (Wmax = 50kT), 
one would need to wait ~ 48,000 years in average for coagu-
lation to start! How long a time a colloidal dispersion is 

(35)kcoag = k0e
−

Wmax

kT ,

(36)k0 = 8�NADR =
4NAkT

3�
,

(37)vcoag = kcoag[B]
2
.

Fig. 13   Total DLVO interaction between particles showing a second-
ary minimum. Electrolyte solution: 10  mM NaCl(aq) at 25 ℃. � = 
10 mC/m2. H131 = 2 × 10

−19 J. Solid line: R = 50  nm. Dashed line: 
R = 100 nm. Dotted line: R = 150 nm
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expected to remain dispersed is a measure of its colloidal 
stability. Thus, a system where [B] = 1 M and Wmax = 50kT 
is said to have an excellent colloidal stability, whereas if 
the energy barrier is reduced to 10kT the system is deemed 
unstable.

As seen in Fig. 12 above, even moderate surface charge 
densities can give rise to energy barriers with a height 
of several hundred times kT, resulting in good colloidal 
stability even at very high particle concentrations. The 
height of the energy barrier can, however, decrease if, 
for example, the surface charge density is reduced (see 
Fig. 12). This can be achieved by changing the disper-
sion pH. Usually, the surface charge density of negatively 
charged surfaces would decrease if the pH is lowered, 
leading to protonation of the charged groups. Increasing 
the pH would have a similar effect on positively charged 
surfaces. Thus, a way of controlling the colloidal stability 
is to adjust the pH of the dispersing media.

Another common way of decreasing the colloidal sta-
bility of a given system is to increase the ionic strength 
of the dispersion medium. Figure 14 shows the calculated 
total interaction between two particles at different con-
centrations of a 1:1 and a 2:2 electrolyte, respectively. As 
can be seen, increasing the electrolyte concentration leads 
to a decrease of the energy barrier, eventually resulting 
in Wmax = 0. The minimum electrolyte concentration at 
which the barrier vanishes is called the critical coagula-
tion concentration (c.c.c.). At this electrolyte concentra-
tion (and higher), it is expected that all collisions will 
lead to association, causing immediate coagulation. As 
the figure shows, divalent electrolytes are much more 
effective in decreasing the energy barrier. Indeed, the 
so-called Schulze-Hardy rule states that the c.c.c can be 
proportional to z−6 in certain cases, meaning that multi-
valent ions are much more effective than monovalent at 
inducing coagulation.

In summary, the colloidal stability (or lack of it) is the 
result of an interplay between the attractive van der Waals 
and the repulsive electric double-layer interactions. The 
latter can be to an extent tuned, since the main param-
eters affecting it (i.e., the surface charge density and the 
ionic strength) can often be controlled. To better illustrate 
how the colloidal stability is affected by these factors, 
two short demonstrations are included as supplementary 
material. The first video (Online Resource 1) illustrates 
how a change in pH can lead to immediate coagulation 
in an initially stable dispersion. The second one (Online 
Resource 2) shows how fast coagulation can be induced 
by increasing the ionic strength of the dispersion.

The zeta potential

The colloidal stability of a given system can be predicted 
from the above equations if either the surface charge density 
or the surface potential is known. However, these parameters 
are not always readily available. A related parameter which 
is easily determined experimentally is the zeta potential (also 
called the electrokinetic potential). When a charged particle 
moves in a liquid medium, part of the diffuse layer will move 
with it. A slipping plane or plane of shear is defined at the 
boundary between the liquid “fixed” to the surface and the 
mobile fluid. The zeta potential is the electrical potential at 
this plane. Although the plane of shear is not located right 
at the particle surface, the magnitude of the zeta potential is 
related to the magnitude of the surface potential as long as 
no ion adsorption or condensation on the surface occurs. The 
advantage of the zeta potential is that it is easily measured, 
for example, by determining the electrophoretic mobility of 
the particles and using Henry’s equation [13]:

Fig. 14   Total DLVO interaction between particles in different electrolyte concentrations. � = 5 mC/m2, R = 50 nm, H131 = 1.5 × 10
−20 J. Left: 

1:1 electrolyte. Right: 2:2 electrolyte
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where UE is the electrophoretic mobility, � is the zeta poten-
tial, and f (�R) is the Henry’s function, whose value is 
dependent on the product �R (i.e., on the ratio between the 
particle radius and the Debye length). For large particles 
in an electrolyte solution (i.e., for 𝜅R ≫ 1 , also called the 
Smoluchowski limit [14]), the value of f (�R) approaches 1.5. 
For small particles in a medium with a low relative permit-
tivity ( i.e., for 𝜅R ≪ 1 , called the Hückel limit), the value 
of the function approaches 1. For intermediate values of �R , 
more exact solutions can be obtained [15].

The magnitude of the zeta potential can be used to esti-
mate how good the colloidal stability of a given system will 
be. The higher the magnitude of the zeta potential, the better 
the colloidal stability. A rule of thumb is that absolute zeta 
potential values > 30 mV will result in good colloidal stabil-
ity, whereas lower values will result in flocculation and/or 
coagulation [16]. This general rule needs however to be used 
with caution, since other forces not considered by the DLVO 
theory can also play a role concerning colloidal stability.

Extended DLVO theory and non‑DLVO 
interactions

Shortcomings of the PB equation

The DLVO theory has been repeatedly shown to accurately 
describe the interaction between surfaces in a liquid. The 
development of instrumentation such as the surface force 
apparatus [17] and the atomic force microscope [18] has 
allowed measuring the force acting between surfaces with 
very high precision, and in several cases the DLVO theory 
has been corroborated. However, clear deviations from the 
predicted behavior have also been observed, particularly at 
short separations between surfaces. Some of these deviations 
from the expected behavior can be attributed to assumptions 
made by the PB equation, among others:

•	 The dispersion medium is treated as a dielectric con-
tinuum,

•	 Ions are treated as point charges (i.e., their size is 
ignored),

•	 Interactions between ions across the midplane are 
ignored, i.e., the electrostatic interaction between the two 
halves of the system is considered to be zero since each 
half is considered to be electrically neutral.

Concerning the first point, at very short separations (4–5 
times the molecular diameter of the solvent) molecular 

(38)UE =
2��f (�R)

3�
,

ordering effects not predicted by the DLVO theory have 
been observed [19]. At separations corresponding to a mul-
tiple of the molecular diameter of the solvent, an interaction 
minimum is observed, since the solvent molecules can be 
packed tightly in the gap. Separating or bringing the sur-
faces closer together would result in non-optimal packing 
of the solvent molecules and thus both processes imply an 
energy cost. This results in an oscillatory interaction (i.e., 
alternating between repulsive or attractive depending on the 
separation) caused by the ordering of solvent molecules in 
between the surfaces, as illustrated in Fig. 15. The effect of 
molecular ordering of the solvent is only important if the 
surfaces interacting are very smooth and the solvent mol-
ecules are symmetrical, spherical or linear. In other cases, 
these effects are mostly negligible or limited to separations 
corresponding to 1–2 molecular diameters.

Concerning the effect of the ion size, the most readily 
apparent consequence of the assumption of point charges 
made by the PB equation is that the ion concentration at the 
surface can be heavily overestimated, since it is considered 
to increase continuously all the way down to x = 0. However, 
the fact that ions occupy a certain volume requires that no 
charges are present in the compact Stern layer (unless ion 
adsorption occur). In other words, the PB equation is for-
mally valid only from the Stern layer onwards, and not from 
the surface itself. For low surface charge densities and low 
concentrations of monovalent electrolytes, the Stern layer 
is usually very thin, and the PB equation is thus valid. For 
high surface charge densities and heavily hydrated counte-
rions (e.g., multivalent counterions), deviations from the PB 
equation at short separations can be very significant. The 
situation is even more complicated if specific adsorption of 
ions occur: adsorption of co-ions result in an increase of the 
magnitude of the potential across the Stern layer instead of 

Fig. 15   Oscillatory interaction due to molecular ordering effects. Val-
ues in the x-axis are normalized against the molecular diameter “a” of 
the solvent
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the decrease predicted by the PB equation. Adsorption of 
counterions can, on the other hand, lead to charge reversal, 
meaning that the polarity of the Stern potential is of opposite 
sign to that of the surface. These different effects are illus-
trated in Fig. 16. In these cases, it is of the utmost impor-
tance to use the Stern potential �s instead of the surface 
potential when performing calculations on colloidal stability 
using the equations above.

The Stern layer can also give rise to other repulsive inter-
actions not considered by the DLVO theory, particularly at 
short separations. Consider, for example, two surfaces at a 
separation equal to twice the thickness of their respective 
Stern layers. Decreasing the separation between the surfaces 
would imply removing ions from the compact layer. This 
prevents the surface from approaching further, hindering 

coagulation. This force is particularly relevant for systems 
with a thick Stern layer, i.e., when the counterions are 
large or heavily solvated. If the medium is water, the Stern 
layer repulsion can be coupled to the very strong repulsive 
hydration forces observed between hydrophilic surfaces, 
especially if multivalent, heavily hydrated, counterions are 
present.

Another consequence of the ion size is that ions with the 
same valence can have different effects on the interaction 
between surfaces, in contrast to the predictions of the PB 
equation, where identical valences lead to identical interac-
tions. Extensions of the DLVO theory have been proposed 
to deal with the effect of ion size (see, e.g., [20]).

Concerning ion-ion interactions across the midplane, 
Guldbrand et al. [21] have shown that ion-ion correlations 
(ignored by the PB equation) can lead to attractive forces 
between equally charged surfaces, particularly if the coun-
terions in the gap are multivalent and are confined into a 
small space. The strength of the attraction can overcome the 
osmotic repulsion, resulting in a net attractive interaction. 
Several approaches have been put forward to qualitatively 
and quantitatively describe this attraction, including modifi-
cation of the PB equation to account for ion-ion interactions 
across the midplane [10, 22].

Other non‑DLVO interactions

Since most of the above-described shortcomings of the PB 
equation are apparent only at very small separations, the 
DLVO theory can in general predict the behavior of col-
loidal dispersion very accurately. It is, however, important 
to keep in mind that deviations from the expected behavior 
can occur. Not only the effects of the solvent, ion size and 
ion correlation should be considered, but also other forces 

Fig. 16   Potential as a function of the distance x in the presence of 
a Stern layer with thickness δ a without adsorption of ions, b with 
adsorption of coions, c with adsorption of counterions, leading to 
inversion of polarity. The PB equation is valid only for x > δ

Fig. 17   Summary of the main surface forces induced by polymers in solution and/or adsorbed onto the surfaces
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not described by the DLVO theory (referred to as non-DLVO 
forces and interactions) can play an important role when 
describing the colloidal stability of a given system. Some 
relevant examples of these interactions are very briefly 
described in this section.

The presence of polymers in solution, for example, 
can result in an attractive depletion force between sur-
faces [23]. If the separation between the surfaces is small 
enough that the polymer chains do not fit in the gap (i.e., 
if the gap is depleted of polymer), a concentration gradient 
will appear. The dispersion medium will thus flow out of 
the gap driven by this gradient, resulting in an attractive 
force between the surfaces and leading to depletion floc-
culation (Fig. 17, left). The interaction minimum caused 
by depletion forces is however usually rather shallow; thus, 
colloidal particles flocculated by depletion forces can eas-
ily be re-dispersed. Depletion flocculation is thus widely 
used with the purpose of separating the particles from the 
medium with the objective of resuspending them again in 
another medium. An example is the separation and transfer 
of dispersed cells from one medium to another [24].

Adsorbed polymers, on the other hand, can lead to either 
a repulsive steric force (Fig. 17, center) or an attractive 
bridging force (Fig. 17, right) depending on the degree of 
surface coverage and the nature of the polymer [25]. Two 
surfaces coated by polymer will repel each other when the 
polymer chains on each surface overlap, as overlapping poly-
mer chains have a reduced configurational entropy. Further-
more, the formation of a volume between the surfaces where 
the polymer concentration is very high results in an osmotic 
force driving the surfaces apart. Steric stabilization is widely 
used, for example, in pharmaceutical applications, where 
drug nanocarriers are usually coated by a grafted polymer 
layer (often polyethyleneglycol, PEG) to increase their cir-
culation lifetime [26].

If the surface coverage of the polymers is low, however, 
a single polymer chain may adsorb onto several particles. 
Separating the particles from each other would mean stretch-
ing the polymer, thus decreasing its configurational entropy. 
Thus, a very strong attractive bridging force appears. In a 
colloidal dispersion, this force results in bridging floccu-
lation [27]. The secondary minimum caused by bridging 
forces is very deep, so the aggregation is almost irreversible. 
Bridging flocculation is widely used, for example, in water 
treatment, to remove suspended particles [28].

Repulsive forces due to thermal fluctuations in soft parti-
cles play an important role in the stability of, e.g., liposomal 
dispersions and emulsions. The surface of a liposome, for 
example, will present different kinds of thermal fluctuations, 
such as wave formations (undulations), arising from the ther-
mal motion of the molecules on the particle surface [29]. 
These fluctuations result in a repulsion between surfaces, 
since approaching each other would result in a decrease in 

the amplitude of the fluctuations (and thus their entropy). 
The fact that liposomes composed of zwitterionic lipids (i.e., 
with a zero surface charge density) remain dispersed over 
very long periods can be explained by these interactions.

Attractive forces due to (as yet not completely under-
stood) long-range hydrophobic interactions are of great 
importance to understand the poor colloidal stability of 
hydrophobic particles dispersed in water. Two hydropho-
bic surfaces have been shown to attract each other even at 
separations > 100 nm [30]. How this attraction arises is not 
yet completely understood and an active field of research 
(e.g., [31]). Vapor bridging and/or water depletion near 
the surfaces are some of the proposed explanations for this 
phenomenon.

Conclusions

The presented description of the DLVO theory and brief 
summary of other forces that may act between surfaces high-
light the most important factors playing a role when describ-
ing the interaction between surfaces and, by extension, the 
stability of colloidal systems. Increasing the colloidal stabil-
ity of a system means increasing the net repulsion between 
the particles, and this can be achieved by increasing their 
surface charge density or taking advantage of non-DLVO 
phenomena, such as steric stabilization. Decreasing the 
colloidal stability means, on the other hand, decreasing the 
repulsion or increasing the attraction between particles, and 
this can be achieved by increasing the ionic strength of the 
solution, decreasing the surface charge density of the parti-
cles, or with the help of non-DLVO effects, such as adding 
polymers to cause either depletion or bridging flocculation.

The forces described here are also relevant for the for-
mation of liquid crystalline surfactant phases, foams, soap 
bubbles, etc. It is up to the curiosity and interest of the reader 
to explore the wide applications and possibilities of the PB 
equation and the DLVO theory, complemented in many 
cases with other non-DLVO interactions.
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