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Abstract 
Three different lines of thinking (mechanical, mixed thermodynamical-mechanical, statistical thermodynamic) are presented 
to derive the noted barometric formula, which gives the altitude dependence of the pressure of a gas in a gravity field. It is 
shown that the first two methods can be extended to non-isothermal cases, whereas statistical thermodynamics relies on the 
concept of thermal equilibrium and its usefulness is limited to the isothermal barometric formula. The temperature changes 
in the gravity field are taken into account by two different methods: simple conservation of energy, and a more refined line 
of thought based on the adiabatic expansion of an ideal gas. The changes in gravitational acceleration are also considered 
in further refinements. Overall, six different formulas are derived and their usefulness is tested on the atmosphere of the 
Earth. It is found that none of the formulas is particularly useful above an altitude of 20 km because radiation effects make 
the temperature changes in the atmosphere difficult to predict by simple theories. Finally, the different components of air are 
also considered separately in the context of the barometric formula, and it is shown that the known composition changes of 
the atmosphere are primarily caused by photochemical processes and not by the gravity field.
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Introduction

The barometric formula expresses the dependence of atmos-
pheric pressure on altitude [1–9]. Its useful mathematical 
form is given as follows:

In this equation, p(h) is the atmospheric pressure at altitude 
h, p0 is the atmospheric pressure at sea level, g is the gravita-
tional acceleration, ρ0 is the mass density of air at sea level, 
R is the gas constant, T is the temperature, M is the (average) 
molar mass, m is the average mass of a gas molecule, and H 
is a composite parameter sometimes called “scale height”.
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The significance of dropping atmospheric pressure with 
increasing elevation is quite well known in everyday life 
and has a number of notable consequences. First, elevation 
can be estimated with a barometer, and Eq. 1 has a funda-
mental role in the process. Altitude sickness is also well 
documented even in popular stories [10]. This syndrome 
occurs in the mountains at high elevation and is caused by 
a general lack of oxygen in the body. At high altitudes, the 
overall atmospheric pressure is lower than at sea level, which 
means that the partial pressure of oxygen is also much lower 
than human bodies are used to even if the percentage com-
position of air is the same.

Airplanes change their altitude very fast and, of course, 
must have instruments to keep the inside pressure at con-
venient levels. A very sad chapter in the history of modern 
aviation was the case when pilots failed to switch on the 
pressurizing instrument on Helios flight 522 from Cyprus 
to Athens on August 14, 2005 [10]. The pilot crew did not 
recognize their mistake soon enough, and one of the first vic-
tims of oxygen deprivation was their logical thinking. Even 
though ground control reminded them to check pressure, 
they did not respond by proper action and—along with all 
the passengers on board—fell into a deep coma. The plane 
reached the destination on automatic pilot but could not land 
without human intervention and crashed when the fuel sup-
ply was exhausted. No one survived the accident. A very 
similar private jet accident was the cause of the death of 
world-famous golf player William Payne Stewart on October 
25, 1999.

There are less tragic consequences of the falling atmos-
pheric pressure in elevation. For example, the capital of 
South American landlocked state Bolivia, La Paz, lies at 
an elevation of 3700 m and their national soccer team is 
allowed to play their official games there. Needless to say, 
this means a major (and, most would probably argue, highly 
unfair) advantage to the home side, whose players are used 
to these conditions, but the opponent never has the time to 
undergo full acclimatization. Less spectacularly, cooking in 
boiling water in La Paz takes a lot more time than at normal 
elevations because the lower atmospheric pressure causes 
water to boil at about 90 °C instead of 100 °C as explained 
by the Clausius–Clapeyron equation [11].

Accurate description of atmospheric phenomena is obvi-
ously important in environmental science [12]. The altitude 
dependence of pressure, temperature, and the composition of 
the atmosphere all play dominant roles in forming weather 
patterns on Earth, radiative phenomena [13] such as airglow 
[14] on polar lights (aurora australis on the southern hemi-
sphere and aurora borealis in the northern hemisphere) [12], 
and the maintenance and operation of the ozone layer [15]. 
It is also clear that the use of the barometric formula is not 
limited to planet Earth [13]; it should be valid for other solar 

and extrasolar planets as well because gases exist there in a 
gravitational field.

Most general and physical chemistry textbooks include 
the barometric formula given in Eq. 1 [11]. This article will 
show some less standard, but theoretically somewhat more 
acceptable formulae for the same purpose. In each case, 
the range of validity and the theoretical limitations on their 
use will be given. It will also be discussed how well they 
describe the actual observations on Earth.

The text here will present derivations in a sufficiently 
detailed form so that they can be understood without con-
sulting other texts. These derivations are mostly based 
on equilibrium considerations. There are kinetic ways of 
deriving the barometric formula based on the speed dis-
tribution of particles [3, 5], but these will not be recalled 
in this article. For most of the time, radiation effects will 
be ignored. These play a major role especially in forming 
the temperature profile of the atmosphere and, through 
temperature, they affect the pressure dependence as well. 
However, radiation effects are difficult to quantify in a way 
that is simple enough for inclusion in this article. Instead, 
the disagreement between some of the theoretical formulas 
and reality will be used as proof of the atmospheric impor-
tance of radiative processes. The presence of water vapor 
in the atmosphere will also be disregarded (i.e., air will be 
idealized as dry air). Some laws and equation will need to 
be borrowed from standard physical chemistry textbooks. 
In these cases, the textbook by Atkins and de Paula will 
be used as a reference [11]. Furthermore, sometimes it 
will be necessary to find the solutions of certain ordinary 
differential equations. This will not be done in detail here. 
An excellent account of first-order differential equations in 
chemistry was published as the first article ever in Chem-
Texts [16]. For other differential equations, the solutions 
will be simply given. Use of the rules of differentiation 
allows the validity of these solutions to be tested readily. 
It is more laborious to find these solutions, but even sym-
bolic mathematical software such as Mathematica can do 
this, so all that remains to be done by the investigator is 
to learn the syntax.

Fig. 1  Schematics for calculating the pressure difference with an alti-
tude difference of dh 
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Derivation of the barometric formula 
at constant temperature

Mechanical line of thought

In the mechanical way of thought, the starting point is that 
the change in the gas pressure going down in a gravity field 
is only caused by the weight of the gas. Imagine a very thin 
layer of air in a column that has a horizontal cross section of 
A, and its vertical size is dh (i.e., infinitesimal). The pressure 
acting on the lower surface is larger than on the upper one 
by dp (Fig. 1). The difference dp is caused by the weight of 
the air between the two surfaces, so:

In this formula, ρ(h) (Greek letter rho) is the mass den-
sity of air at altitude h, and g is the gravitational accelera-
tion (9.81 m s−2 for mid-latitude geographical locations). 
The mass density of an ideal gas can be calculated from 
the definition of mass density and the ideal gas law [11] as 
ρ = m/V = nM/V and n/V = p/(RT), so this equation will give 
a direct connection between mass density and pressure:

The quantities used in this equation were used and defined in 
Eq. 1. The next step is combining Eqs. 2 and 3 to calculate 
the derivative of pressure with respect to altitude. Altitude h 
is measured starting from the surface of Earth, so it increases 
upward, but pressure decreases upward, so a negative sign is 
also needed in the final equation:

In this section, it is assumed that the temperature does not 
change with altitude. Thus, the whole term Mg/(RT) in Eq. 4 
is independent of altitude. Therefore, Eq. 4 is one of the sim-
plest possible ordinary differential equations: a first-order, 
linear one, whose solution is the exponential function [16]. 
Using the notation p0 for the pressure at zero altitude, the 
solution takes the following form:

This becomes identical to the classical barometric for-
mula in the first part of Eq. 1 if the ideal gas law in Eq. 3 
is used again for the pressure and mass density at sea level: 
M/RT = ρ0/p0. The value of scale height H is between 4 and 
8 km depending on the temperature.

(2)dp =
�(h) g A dh

A
= �(h) g dh

(3)�(h) =
p(h)M

RT

(4)
dp

dh
= −

Mg

RT
p(h)

(5)p = p0e
−

Mgh

RT = p0e
−

h

H

Mixed thermodynamical‑mechanical thinking

In this sequence of thought, the starting point will be that 
equilibrium is maintained under conditions when the forces 
acting on a particle are balanced. Gravity exerts an obvious 
force on any particle in the gas phase (which would be the 
weight of the molecule if it were exerted on some object 
below):

The force balancing Fgr is a less obvious one. In mechanics, 
the concept of potential energy is used quite widely [11]. 
Actually, there is something very similar in thermodynam-
ics as well: it is called chemical potential, μ (Greek letter 
mu). Usually, force can be calculated as the spatial deriva-
tive (gradient) of the potential, and this is true for chemical 
potential as well:

The negative sign is the consequence of the fact that smaller 
chemical potentials are preferred, so the force points into the 
direction of decrease in the potential. The pressure depend-
ence of the chemical potential of an ideal gas at constant 
temperature is readily given by a simple formula [11]:

Therefore, the gradient of chemical potential can be calcu-
lated using the derivation rules for a composite function:

Combining Eqs. 8 and 9 and calculating the derivative gives:

Before applying the condition of balancing the two forces, 
some dimensional analysis is necessary, which reveals that 
Fgr (unit: newton) gives the force acting on a single mol-
ecule, whereas Ftd (unit: newton per mole) is the force acting 
on one mole of molecules. Therefore, the Avogadro con-
stant (NA = 6.02 × 1023 mol−1) needs to be included in one 
of the forms. Considering all these, the balanced equation 
becomes:

When the definition of molar mass (M = NAm) is introduced 
in this formula, it is clear that Eq. 4 is derived here by an 

(6)Fgr = mg
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independent line of thought and the end result of these con-
siderations will also be Eq. 1.

A method based on statistical thermodynamics

Statistical thermodynamics has an important formula for the 
energy distribution of particles, which is called the Boltz-
mann distribution [11]. It states that in any molecular system 
in thermal equilibrium, the following equation will hold for 
the number of particles in a state with energy ε (nε) and the 
number of particles in the ground state (n0):

Here, T is the absolute temperature, whereas k is the Boltz-
mann constant (k = R/NA = 1.38 × 10−23 J K−1). Thermal 
equilibrium means that the temperature is the same eve-
rywhere, i.e., it does not have a gradient. In this case, the 
difference between the energies of particles at different alti-
tudes comes only from the potential energy, which can be 
calculated for a molecule in a simple manner:

In an ideal gas at a constant temperature, the ratio of nε and 
n0 is exactly the same as the ratio of pressures:

Substituting Eqs. 13 and 14 into Eq. 12 gives the following 
expression:

This is, again, identical to Eq. 1 as m = M/NA and k = R/NA.

Allowing for temperature changes

General thoughts

It is well known from experience that the temperature of air 
changes with altitude. So, when a more realistic barometric 
formula is sought, this fact must be somehow taken into 
account. The first thing to note is that the considerations 
based on statistical mechanics must be abandoned entirely 
in this case, as their underlying principle is the concept of 
thermal equilibrium.

On the other hand, the mechanical way of thought does 
not need any adjustment, so Eq. 4 is still valid, the only 
difference being that temperature T becomes a function 

(12)
n�

n0
= e−�∕(kT)

(13)�h = mgh

(14)
n�h

n0
=

p(h)

p0

(15)
p(h)

p0
= e−mgh∕kT

of altitude h in it, which means that the simple solution in 
Eq. 5 cannot be used any more. The mixed thermodynami-
cal-mechanical thinking is not beyond help, but this will be 
discussed in a separate subsection.

There are two strategies to deal with the problem of tem-
perature change: the first is to simply measure it and substi-
tute the empirical temperature dependence into Eq. 4. This 
method is probably intellectually less satisfying than the 
alternative that will be presented in much detail as using the 
observed dependence does not even attempt to explain the 
findings. The second strategy is to look for a way of thought 
which either gives the altitude dependence of temperature 
directly or connects the altitude dependence of temperature 
and pressure.

As a first approach, one should think about the fact that 
the temperature differences with altitude in the atmosphere 
are sustained despite the fact that heat conduction would 
tend to equalize them. Although the temperature of air does 
change even at a given altitude, this is quite slow compared 
to the usual rate of heat conduction and is primarily caused 
by changes in the irradiation (day and night cycles, for exam-
ple). So, it is a good starting point to think that constant 
temperature at a given altitude is maintained despite the 
fact that heat conduction occurs vertically. In short, a trans-
port equation is needed here. The formulas describing heat 
transport are fully analogous with Fick’s first and second 
laws (which describe the transport of matter). In physics, 
the direct analog of Fick’s first law is called Fourier’s law, 
whereas the direct analog of Fick’s second law [11] is called 
the heat equation. The latter is important for our purposes 
here. In one dimension, it is stated as:

The proportionality factor κ (Greek letter kappa) in this 
equation is called thermal conductivity, and cw is the specific 
heat. From the kinetic-molecular theory of gases, κ can be 
given for an ideal gas as follows [11]:

The previously undefined quantities in this equation are ν 
(Greek letter nu), which is one half of the number of degrees 
of freedom for the molecule (dimensionless) and the diam-
eter d of the molecule. This formula implies that the thermal 
conductivity of air will also change with altitude if the tem-
perature changes. However, the only significant information 
used from Eq. 17 is the fact that κ is never zero.

As discussed previously, a convenient starting point of 
thinking is that the temperature of air at a given altitude does 
not change in time even though thermal conduction occurs. 
Mathematically, this is expressed by:

(16)
�T

�t
=

�

�cw

�2T

�h2

(17)� =
2�R

NAπd
2

√
2RT(h)
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Therefore, the right side of Eq. 16 must also be zero. κ is 
never zero (although altitude-dependent), cw and ρ are also 
positive, so the second partial derivative with respect to alti-
tude should be zero at all points:

This is only possible if the first partial derivative is constant. 
This quantity will be denoted α (Greek letter alpha) and 
called the thermal gradient of the atmosphere (unit: kelvin 
per meter). It is known that temperature decreases with alti-
tude, so because of our usual human preference for positive 
numbers, α is defined as:

Integrating Eq. 20 with the introduction of T0 (the tempera-
ture at sea level) and T(h) (temperature at altitude h) gives:

The essence of this equation is that the atmosphere can only 
be in a stationary state if the temperature decreases linearly 
with altitude (or isothermal, which means α = 0). This is 
in quite nice agreement with the experimental observations 
for the lower atmosphere. A notable property of Eq. 21 is 
that, taken literally, it would allow a limitless decrease in 
temperature. Of course, negative temperatures do not make 
sense on the absolute scale, so the use of this formula will 
only be reasonable until a limiting altitude. In fact, a deeper 
analysis of heat conduction reveals that it is necessary to 
assume both an upper and lower boundary. The lower bound-
ary is obvious: it is the surface of Earth, whereas the upper 
boundary is less self-explanatory. Whatever it might be, its 
altitude must not be higher than T0/α, and the independence 
of the temperature of time in the whole atmosphere (i.e., the 
stationary state) is caused by the fact that the amount of heat 
entering through the lower boundary is the same as the one 
escaping through the upper boundary.

At this point, it should be pointed out that the picture 
sketched thus far for interpreting the atmospheric tempera-
ture profile is highly incomplete. The heat equation shown 
in Eq. 16 does not include the so-called source term, which 
means that it is assumed that heat is not produced within the 
atmosphere. In fact, this occurs because of the absorption of 
sunlight. Furthermore, heat loss also occurs through thermal 
radiation, which is also excluded from the considerations. In 
the following sections, theoretical considerations will be pre-
sented to interpret the value of the thermal gradient α based 

(18)
�T

�t
= 0

(19)�2T

�h2
= 0

(20)−� =
dT

dh

(21)T(h) = T0 − �h

on thermodynamic thinking alone. These will be compared 
with the actual findings in later sections.

Instead of attempting to determine the value of α in a 
theoretical manner, Eq. 21 is first substituted back into Eq. 4, 
which has already been shown to be valid no matter what the 
temperature changes are. The result is:

So, this line of thought decouples the problems of tem-
perature and pressure changes. Equation 22 is still a well-
behaved, separable differential equation, which can be 
solved routinely:

Equation 23 is an improved barometric formula, as it incor-
porates the temperature change as well.

Now, attention can be turned to finding theoretical esti-
mates of the thermal gradient of the atmosphere.

Simple conservation of energy

Possibly the simplest approach is to include the potential 
energy in the gravity field as part of the overall energy of the 
molecule. The average internal energy of a single molecule of 
a perfect gas at temperature T is νkT, and the common con-
vention is that sea level is the zero point of potential energy. 
At higher altitude, the internal energy of the molecule is par-
tially transformed into potential energy. Therefore, the internal 
energy and, consequently, the temperature are smaller than at 
sea level. Conservation of energy sets the following equation:

After multiplying by the Avogadro constant and some addi-
tional rearrangements, this yields a straightforward expres-
sion for T(h):

Equation 25 is in full agreement with Eq. 21. The theoreti-
cally obtained temperature gradient is:

This would give an estimate of 0.0137 K m−1 = 13.7 K km−1 
for the temperature gradient. The experimental value (as dis-
cussed later) is 0.00649 K m−1 = 6.49 K km−1 for the lowest 
10 km of the atmosphere.

(22)
dp

dh
= −

Mg

R
(
T0 − �h
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(
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�
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h
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(24)�kT0 = mgh + �kT(h)
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Reversible adiabatic expansion of an ideal gas

In the explanations following Eq. 21, it was already mentioned 
that the model predicting a linear change in the temperature 
as a function of elevation was based on the stationary state 
of the heat equation, which implies that the same amount of 
heat enters and escapes the atmosphere at different places. So 
altogether, the heat exchange with the environment is zero (of 
course, radiation absorption and emission are still neglected 
in this model, and the possible role of water evaporation and 
condensation is also excluded). In this model, the decrease in 
temperature with increasing altitude may easily be attributed 
to the adiabatic expansion of an ideal gas. As the pressure and 
temperature change continuously and the whole atmosphere 
is in a stationary state, the expansion may also be assumed 
to be reversible. The law governing the reversible adiabatic 
expansion of a gas is well known from thermodynamics [11]:

The new quantity γ (Greek letter gamma) is the ratio of the 
two molar heat capacities (measured at constant pressure and 
constant volume) of an ideal gas:

One can obtain another equation from the ideal gas law:

Comparing Eqs. 27 and 29 makes it possible to eliminate the 
volume from the calculations:

This is now an equation that connects the pressure change 
with the temperature change instead of giving the altitude 
dependence of the temperature change directly. So now 
Eqs. 4 and 30 together form a system of two simultaneous 
equations with two unknown functions. Calculating the 
derivative of Eq. 30 with respect to altitude h gives:

It is now advantageous to substitute Eqs. 4 and 28 into the 
above formula:

(27)pV
�

= p0V
�

0

(28)� =
Cp

Cv

=
�R + R

�R
=

� + 1

�

(29)V = V0

p0T

pT0

(30)T = T0

(
p0

p

)1∕�−1

(31)

dT

dh
= T

0
p
1∕�−1

0

1 − 1∕�

p(h)1∕�
dp

dh
= T

0

(
p
0

p(h)

)1∕�−1
1 − 1∕�

p(h)

dp

dh

= (1 − 1∕�)
T(h)

p(h)

dp

dh

This formula is still in full agreement with Eqs. 20 and 21, 
but gives a theoretical estimate for the temperature gradient 
of the atmosphere that is slightly different from Eq. 26:

The numerical value is α = 0.00978 K m−1 = 9.78 K km−1 
from this equation.

Salvaging the mixed thermodynamical‑mechanical 
thinking

At this point it should be noted that all the considerations 
with altitude-dependent temperature have been based on the 
mechanical approach to the problem thus far. Since we con-
sider air to be a single ideal gas, the chemical potential is 
the same as the molar Gibbs energy (Gm), and it depends on 
both temperature and pressure. The thermodynamic force 
would then be given as:

The three question marks at the end of this equation mean 
that it will be shown to be incorrect later. The first term can 
be simplified by using the equation that the partial derivative 
of the Gibbs function with respect to pressure is the volume 
of the system [11]:

The second term in Eq. 34 is the partial derivative of the 
Gibbs function with respect to temperature, which is the 
entropy [11]:

So, the equation giving the thermodynamic force would take 
the following form now:

The three question marks again mean that this equation will 
be shown to be incorrect.

Here lies a conundrum: if this force is taken to balance 
gravity analogously to Eq. 11, the following formula is 

(32)
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)
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p
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obtained (the derivative of temperature with respect to tem-
perature was already denoted α):

Equation 4, which was based on the mechanical line of 
thought, was already declared to be valid even in the pres-
ence of a temperature gradient. The third law of thermo-
dynamics guarantees that the molar entropy Sm is always 
positive (side note: the reversible adiabatic expansion 
is isentropic, so Sm would be independent of the altitude 
under the scenario outlined in the previous subsection). So 
the only way to bring Eqs. 4 and 38 into agreement is to say 
that α = 0, so the case is isothermal. But this scenario was 
already dealt with in Sect. 2.2. How can this contradiction 
be avoided?

It would take a large detour into the kingdom of non-
equilibrium thermodynamics to resolve this contradiction. A 
consistent view on the nature and calculation of thermody-
namic forces was a significant part of the scientific work for 
which Norwegian-born American physical chemist and theo-
retical physicist Lars Onsager (1903–1976) was awarded the 
Nobel Prize in Chemistry in 1968 [17]. Without going into 
the details, it turned out that Eq. 34 has two problems. First, 
the gradient of chemical potential is not the only source of 
thermodynamic force under non-isothermal conditions. Sec-
ond, the ultimate origin of the thermodynamic force is not 
the change in chemical potential (μ) or temperature (T), but 
the change in the ratio of the chemical potential and tem-
perature (μ/T) and inverse temperature (1/T). Therefore, the 
correct formula that gives the thermodynamic force is this:

Here, Hm is the molar enthalpy of the system. It is easily 
seen that the above equation is identical to Eq. 7 under con-
stant temperature as the second term is zero and the tem-
perature can be moved out of the differentiation in the first 
term. Similarly to Eq. 35, we can first replace μ by Gm, then 
expand the derivative considering the pressure dependence 
and temperature dependence separately and also substitute 
d(1/T) =  − dT/T2:

The first term can be simplified by using the equation that 
the partial derivative of the Gibbs function with respect to 
pressure is the volume of the system and then substituting 
the ideal gas law:

(38)
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RT
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RT
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The second term in Eq. 40 will require the derivative of 
(Gm/T) with respect to temperature, which is just the essence 
of the Gibbs–Helmholtz equation [11, 18–21]:

The equation giving the thermodynamic force takes the fol-
lowing form now:

So, with much effort, the formula already given in Eq. 10 
was obtained, but now under non-isothermal conditions. 
Therefore, Eq. 4 follows from the thermodynamical-mechan-
ical way of thinking under non-isothermal conditions as 
well.

A more refined view of gravity

Thus far, gravity was only handled through a single grav-
itational acceleration, either in the form of force (mg) or 
potential energy (mgh). The law of gravity, however, requires 
a different sort of dependence: gravitational acceleration 
depends on the altitude as the gravitational force acting upon 
an object is smaller when it is farther away from the center 
of Earth. Given for the force acting on mass m at altitude h, 
the force exerted by gravity takes the following form:

Here, γgr is the gravitational constant (γgr = 6.67 × 10−11 kg−1 
m3 s−2), mE is the mass of the Earth (mE = 5.97 × 1024 kg), 
and RE is the radius of the Earth (RE = 6.37 × 106 m). Instead 
of using all these parameters, it is better to define g0 as 
the gravitational acceleration at the surface of the Earth 
(g0 = γgrmE/RE

2 = 9.81 m s−2) and give g as a function of h:

The potential energy also takes a more complicated form:

(41)
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Some comments on this equation may be interesting, 
although they may not be directly relevant to the barometric 
formula. When h tends to infinity in Eq. 46, Egr(h) will tend 
to the finite limit of mg0RE. This is the energy needed for a 
gas molecule of mass m to escape the gravity of Earth. Cal-
culations for the smallest of all gas particles, the hydrogen 
molecule (m = 3.32 × 10−27 kg), give 2.07 × 10−19 J for this 
limit. The average kinetic energy of the hydrogen molecule 
at 300 K (which is not very far from the usual surface tem-
perature on the Earth) is 1.5kT = 6.21 × 10−21 J, which is 
more than an order of magnitude lower than the limit. What 
is remarkable here is that a very common explanation of the 
low concentration of hydrogen and helium in the atmosphere 
is that these gases escape to outer space. Yet, at the surface 
of the Earth, they certainly do not have enough energy to do 
so (in other words, the average speed of their molecules is 
well below the escape velocity at sea level). It should also 
be noted that any possible gas escape is also limited by the 
mean free path, i.e., the average distance a molecule can 
travel between two collisions, which is less than 100 nm at 
the surface of the Earth. More will be said about this issue 
at the end of Sect. 6.

Following in the footsteps of isothermal thinking, Eq. 45 
can be simply substituted into mechanics-based Eq. 4 to 
yield:

The solution of this separable ordinary differential equation 
is:

This formula can also be derived by statistical thermody-
namics using Eq. 46 as the potential energy.

The equation expressing the conservation of energy is 
now stated by a modification of Eq. 24 with the updated 
potential energy given in Eq. 46:

The temperature as a function of altitude can be given after 
a straightforward rearrangement:

It should be noted that this formula predicts non-linear 
change, which is a contradiction to Eq. 21 that awaits some 
explanation.

Setting T = 0 in Eq. 49 makes it possible to find the maxi-
mum altitude a molecule can achieve, hmax:

(47)
dp

dh
= −

Mg0

RT

(
RE

RE + h

)2

p

(48)p(h) = p0e
−

Mg0REh

RT(RE+h)

(49)�kT0 =
mg0REh

RE + h
+ �kT(h)

(50)T(h) = T0 −
mg0REh(
RE + h

)
�k

For air at 288.15  K, a numerical value would be 
hmax = 22 km.

Now, everything is ready to set up a new differential 
equation incorporating both the temperature change and 
the refined view of gravity; this can be done by substituting 
Eq. 50 into Eq. 47:

This equation can be stated in a somewhat more orderly form 
after some rearrangements:

This differential equation might seem frightening, but it is 
still a separable one. Therefore, routine calculations yield a 
full solution:

Similarly to a previous line of thought, it is also possible to 
substitute the reversible adiabatic formula of Eq. 30 and the 
refined view of gravity in Eq. 45 into the mechanics-based 
Eq. 4:

This is again a separable differential equation, the solution 
of which is:

The dependence of temperature on altitude is then given as:

Finally, the highest altitude that makes sense in this model 
is:

A numerical estimate here would be hmax = 30 km.
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Equation  57 again displays non-linear dependence, 
which—similarly to Eq. 50—contradicts Eq. 21. Now it is 
time to think more deeply about this fact. The equations 
developed for the altitude dependence of temperature after 
introducing the more refined view of gravity all predict non-
linear formulas. In the case of Eq. 50, the mechanics-based 
differential equation given was not even used in the deriva-
tion, so modifying in Eq. 4 would not help the problem. The 
starting point of deducing a linear temperature dependence 
was the heat equation in Eq. 16. This assumes that the only 
driving force of heat transfer is the temperature gradient. The 
discrepancies imply that a gradient in gravitational accelera-
tion is also a driving force of heat transfer, an effect that is 
not reflected by the usual heat equation. This would not be 
surprising in non-equilibrium thermodynamics at all. Actu-
ally, a very similar sequence of thought was already used: 
the temperature gradient had to be considered an additional 
driving force of matter transfer when the thermodynamical-
mechanical thinking was salvaged.

Comparison with observations

In science, any theory should be compared to experimental 
observations to prove its usefulness. In the case of atmos-
pheric pressure and barometric formulas, this comparison is 
somewhat hindered by the fact that pressure and temperature 
depend on the meteorological conditions according to the 
time of the day and year. However, pressure altimeter cali-
brations, aircraft performance calculations, rocket design, 
ballistic tables, meteorological diagrams, and other atmos-
pheric modelling studies all require at least some sort of 
average values of pressures and temperatures as a function of 
altitude. For this purpose, the US standard atmosphere was 
developed in 1976, which gives an idealized, steady-state 
representation of mean annual conditions at mid-latitude 
from sea level up to 1000 km and is entirely empirical [22, 
23]. The temperature at sea level is taken as T0 = 288.15 K 
(15 °C), the pressure at sea level is p0 = 101,325 Pa, and the 
atmospheric gases are assumed to obey the ideal gas law. 
In the forthcoming section, the barometric formulas devel-
oped in earlier sections will be compared to the US standard 
atmosphere, which is shown in Fig. 2. It should be pointed 
out that the US standard atmosphere is still a model: the real 
atmospheric temperature and pressure profiles show obvious 
daily and seasonal variations and are also somewhat depend-
ent on the geographical location.

In terms of temperature, the first 11 km is like a theo-
rist’s dream. It is in fact a linear decrease, in agreement 
with Eq.  21, with α = 0.00649  K  m−1 = 6.49  K  km−1 
(which is often quoted as 1 °C decrease for each 150 m 
of increase in elevation). Equation 26 gives the estimate 
α = 0.0137 K m−1 = 13.7 K km−1, which is about double the 
observed value, whereas Eq. 32 shoots significantly closer 
with α = 0.00978 K m−1 = 9.78 K km−1. This suggests that 
the adiabatic expansion scenario may be closer to reality 
than simple conservation of energy. However, the rest of 
the temperature curve seems close to hopeless from the 
point of view of simple quantitative interpretation. There 
is a constant temperature part (about 215 K) from 11 to 
20 km. It should be noted that real atmospheric conditions 
seldom show such an extended isothermal region, and this 
is one of the simplifications of the US standard atmos-
phere. This region is followed by an increase (often called 
temperature inversion) up to almost 0 °C at an altitude of 
50 km, then a sharp drop to reach a minimum of 185 K at 
90 km and finally a gradual increase until the temperature 
stabilizes at 1000 K above 300 km. In the theoretical con-
siderations presented in earlier sections, there was noth-
ing that made an increase of temperature with increasing 
elevation possible. Qualitatively, it is easy to understand 
that the phenomenon is caused by the effects of radiation 
[13]. For example, it is quite common knowledge that 

Fig. 2  Temperature and pressure at different altitudes in the atmos-
phere. Solid blue (temperature) and black (pressure) lines are those 
given in the US standard atmosphere [18, 19]. Other curves are 
labelled by a letter, the meaning of which is given in Table  1. As 
explained in the text, curve G was calculated using Eq. 23 with the 
real value of α (0.00649 K m−1 = 6.49 K km−1). ISS: location of the 
International Space Station
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the ozone layer, most of which is between 15 and 35 km, 
absorbs most of the ultraviolet radiation of the Sun, which 
is converted to heat in the process [10, 15]. This causes the 
temperature increase in that region. Both absorption and 
emission of electromagnetic radiation also occur simulta-
neously in all parts of the atmosphere, and these processes 
have a very important influence on the temperature profile. 
Within the lower 10 km of air, the radiative heat source is 
not very large because essentially all absorbable radiation 
is stopped by the upper layers [13]. However, solar heat-
ing of the surface and condensation of water vapor (cloud 
formation) still could influence the temperature there.

The pressure behaves in a much more predictable manner 
in Fig. 2: at least it decreases monotonically with increasing 
altitude. Actually, six different formulas were derived in the 
earlier sections to interpret this dependence; these are col-
lected in Table 1 for easy reference, and are labelled A–F. 
Four of them (C–F) came with a limitation of altitude (hmax); 
these can be calculated as T0/α for C and E, whereas Eqs. 51 
and 58 are used for cases D and F. It is now worth computing 
these limits numerically; they are 21, 29, 22, and 30 km for 
C, D, E, and F, respectively.

Figure 2 shows that theoretical curve pairs A–B, C–D, 
and E–F are almost identical, which implies that consider-
ing the change in gravitational acceleration is unnecessary 
in the validity range of these formulas. Curves C and D give 
the poorest agreement with observations. This is not surpris-
ing as the thermal gradient of the atmosphere was overes-
timated by a factor of 2 by the sequence of thought based 
on the conservation of energy. Curves A and B (isother-
mal) consistently overestimate the pressure, whereas curves 
E and F (adiabatic) underestimate it by approximately the 
same amount. It was already stated that curves C–F have 
a theoretical upper limit on their validity (hmax). No such 
thing exists for curves A and B. Nevertheless, they become 
practically useless above 30 km. Unsurprisingly, the best 
way to describe the observed data is using Eq. 23 with the 
real value of α (0.00649 K m−1 = 6.49 K km−1). This is also 
shown in Fig. 2 by curve G. The curve underestimates the 
real pressure somewhat, but the deviation never exceeds 5% 
at altitudes lower than 15 km. That means this formula is 
very useful for the commercial airline industry or human 

hiking. At 30 km, the formula gives only one fourth of the 
actual pressure (the theoretical validity limit is hmax = 44 km 
in this case).

It should be noted that the primary reason for the gen-
eral failure of the forms displayed in Table 1 above 20 km 
is the inability to account for the variation in temperature. 
However, this is irrelevant for the differential form shown 
in Eq. 47, which can be tested independently. In the US 
standard atmosphere, it is possible to determine the observed 
pressure gradient at each altitude, which is denoted π (Greek 
letter pi):

The validity check of Eq. 47 uses these pressure gradients 
directly through calculating the relative difference, Δ (Greek 
uppercase letter delta) between the observed gradient and the 
right-hand side of Eq. 47:

Figure 3 displays Δ as a function of altitude h. It can be seen 
that the deviations are really minor below 60 km, and these 
are most likely caused by the error of the numerical dif-
ferentiation necessary in calculating π from data of the US 
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Table 1  Different barometric 
formulas derived in the text. 
T0 = 288.15 K was used from 
the US standard atmosphere
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Fig. 3  Altitude dependence of the relative difference between the 
observed pressure gradient and that calculated by Eq. 4. The defini-
tion of Δ is given in Eq. 59
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standard atmosphere. However, major differences (up to a 
multiplying factor of 6) occur above this. These cannot be 
caused by the imprecision of the temperature as the calcula-
tions use those given in the standard US atmosphere itself. 
Also, the derivation of Eq. 47 relies on a simple mechanical 
sequence of thought; there is no known source of conceptual 
error in it.

However, at this point, it should be remembered that air 
is not a single ideal gas but a mixture of different gases. 
Quantities h, p, T, and π are observed data. RE, g0, and R 
are natural constants. With this knowledge, it is possible 
to rearrange Eq. 47 so that the only remaining quantity, the 
molar mass, is expressed:

Figure 4 displays the values of M as a function of altitude 
h. In the beginning, M = 29 g/mol is in perfect agreement 
with the known composition of air. At 1000 km, however, 
M = 4 g/mol is identical to the molar mass of helium. This 
clearly hints that the composition of air changes drastically 
with altitude. In fact, this is in full agreement with observa-
tions: at 1000 km, with an overall pressure of 7.5 nPa, more 
than 90 mol% of the atmosphere is helium gas. Therefore, 
the closing section of this article will deal with altitude-
dependent composition changes.

Composition changes in the atmosphere

For most practical purposes, mixtures of ideal gases behave 
like a single ideal gas. Thus far, we have assumed that the fact 
that air is a mixture of gases is sufficiently taken into account 
by using the average molar mass. Yet, it is a well-known obser-
vation that the relative abundance of a lighter gas increases 
with altitude.

As a first approach, we might remark that if the use of 
Eq. 4 is attempted separately for the components of a mix-
ture, the pressure of those with lower molar masses decreases 

(61)M(h) = −�(h)
RTobserved(h)

pobserved(h)g0

(
RE + h

RE

)2

with increasing altitude less as the relative pressure gradient 
is smaller. However, the mechanical thinking that yielded 
Eqs. 4 or 47 is not easily extended in this case: the weight of 
the air column has the same pressure contribution irrespective 
of the composition of the gas below. Only the overall weight 
matters and it is not possible to divide this into contributions 
for mixtures of gases. Yet, it may seem rather obvious that 
the pressure increase balancing the weight must be distributed 
between the components in the proportion that they cause the 
overall pressure. For a component X with a partial pressure of 
pX, the following equation is obtained in this way:

Substituting this back into Eq. 47 gives:

Here, it must be strongly emphasized that M is the average 
molar mass of the mixture, and not the molar mass of X. 
Using this equation for two different components, X and Y, 
and considering pX as function of pY rather than h yields the 
following, very simple differential equation:

This differential equation has the unexpected consequence 
that the ratio of the two partial pressures does not change 
with altitude, which means that the composition would not 
change, either.

Based on the mixed thermodynamical-mechanical 
thinking, the forces acting upon a single molecule were 
taken into account. The chemical potential of an ideal gas 
in an ideal mixture (μX) is given as [11]:

Here, μX* is the chemical potential in the standard state and 
p° is the standard pressure  (105 Pa by convention). As μX* 
is usually taken to be identical to μX° (see Eq. 8), μX is iden-
tical to the chemical potential of a pure sample of X gas 
at the pressure pX. In other words, the chemical potential 
of an ideal gas does not depend on what other ideal gases 
are present in a mixture. So, Eqs. 39–43 can be used for 
the components of a mixture directly: the only modification 
needed is to use partial pressures and the molar masses of 
the individual components:
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Fig. 4  Altitude dependence of the average molar mass of the atmos-
phere as calculated by Eq. 60
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Most unfortunately, this formula contradicts the one in 
Eq. 63, which was the result of the mechanical way of think-
ing. On a conceptual level, Eq. 66 implies that the increase in 
the pressure of component X balances in its own weight only.

Both Eqs. 63 and 66 have potential problems. As already 
remarked, the implication in Eq. 63 is that the total pressure 
increase balancing the weight of a layer with a thickness of 
dh is distributed between the components in the proportion 
that they cause the overall pressure. This seems logical but 
in fact not required by mechanics. The potential problem 
with the derivation of Eq. 66 is even less obvious: it is the 
use of Eq. 65 for obtaining the chemical potentials, which 
is valid for an ideal mixture of ideal gases. As pointed out 
by Robinson [24], the constant μX* is the chemical poten-
tial of component X in a mixture of such total pressure 
p that pX is  105 Pa, and this (often hypothetical) mixture 
has the same composition and temperature as the one for 
which the chemical potential is calculated. This cannot be 
equated, without further argument, to the standard chemi-
cal potential of the pure component X (μX°). This is espe-
cially problematic for the minor components of a mixture. 

For example, the partial pressure of He in air at sea level 
pressure is about 0.5 Pa. So, in this case, μHe* would be the 
chemical potential of helium at the partial pressure  105 Pa 
in the presence of other gases so that the total pressure is 
20 GPa, which clearly lies outside the usual validity range 
of ideal gas behavior.

The contradiction between Eqs. 63 and 66 does not sub-
mit itself to an easy resolution. When problems like this 
arise, it is a standard strategy to turn to experimental data. 
Fortunately, the composition of air as a function of altitude 
is readily available from some public databases: NRLM-
SISE-00 will be used here [25, 26] (side note: this database 
generates data that takes both the geographic location and 
the exact time into account).

Figure 5 shows a typical composition–altitude diagram 
for those components that are handled within the NRLM-
SIS-00 model. These are  N2,  O2, Ar, and He as well as the 
somewhat less expected species of O, N, and H (atoms!). 
Even the identity of the species in this list indicates that 
gravity is most likely not the dominant force shaping the alti-
tude dependence of the composition of the atmosphere. Pho-
tochemical processes are very important in the region above 
100 km; this is nicely illustrated by the fact that atomic oxy-
gen is the most important gas in the atmosphere between 200 
and 600 km. Yet, the usefulness of the barometric formula(s) 
can certainly be tested on the unreactive gases helium and 
argon, and the partial pressures of molecular oxygen and 
nitrogen are also worth testing.

This test can be done very similarly to that already out-
lined in Eqs. 59 and 61. First, the gradient of the partial pres-
sure of component X is calculated by numerical differentia-
tion of the data obtained from the NRLMSIS-00 model [26]:

Then this quantity is used to calculate the gradient-equiva-
lent molar mass ηX (Greek letter eta):

(67)�X(h) =
dpX

dh

(68)�X(h) = −�X(h)
RT(h)

pX(h)g0

(
RE + h
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)2

Fig. 5  Partial pressures and molar concentrations of selected atmos-
pheric gases at different altitudes. NRLMSISE-00 model input 
parameters [22]: year = 2000, month = 1, day = 1, hour = 12.00, Time_
type = Universal, Coordinate_type = Geographic, latitude = 55.00, 
longitude = 45.00, height = 100.00

Fig. 6  Calculated ηX values of selected atmospheric gases as a func-
tion of altitude
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If Eq. 63 is valid, then ηX should be equal to the average 
molar mass of the mixture and should not depend on which 
gas is used in the calculation. On the other hand, if Eq. 66 is 
valid, then ηX should be identical to the molar mass for each 
of the components.

The calculated ηX values are shown as a function of alti-
tude for argon, molecular oxygen, molecular nitrogen, and 
helium in Fig. 6. The emerging picture may be unexpected 
at first sight. The ηX values below 100 km are, indeed, inde-
pendent of the identity of the gas and agree very well with 
the average molar mass of air (29 g/mol), which shows that 
Eq. 63 is valid in this region. The pattern of change seems 
complex between 100 and 200 km. Above 200 km, however, 
full adherence to Eq. 66 is evident as ηX values are equal to 
the individual molar masses of the components.

It is also notable that some of the ηX values are nega-
tive for helium in the intermediate region between 100 
and 200 km. This arises from the fact that there is a minor 
increase in the partial pressure of helium in this region. It 
must be noted that the source of the anomaly is the steep 
increase in temperature in this region (Fig. 2): the molar 
concentrations of helium (magenta curve in Fig. 5) actually 
never increase with an increase in altitude.

It is worth returning to the issue of the escape of 
atmospheric gases to space at this point. As seen from 
Fig. 5, the second most abundant component of the atmos-
phere is the hydrogen atom (H) at 1000 km, closely fol-
lowed by the oxygen atom (O). For the hydrogen atom 
(m = 1.66 × 10−27 kg) at this altitude, the energy necessary 
to escape the gravity of Earth can still be calculated from 
Eq. 46 by the difference Egr(h → ∞) − Egr(h = 1000 km) = 
8.97 × 10−20 J. The average kinetic energy of the hydrogen 
atom at 1000 K (the temperature at altitude 1000 km in the 
US standard atmosphere) is 1.5kT = 2.07 × 10−20 J. This is 
still more than a factor of 4 lower than the escape limit. 
However, from the kinetic molecular theory of gases, it 
must also be remembered that the velocities are described 
by the Maxwell–Boltzmann distribution [11], so values 
much larger than the average are possible. Calculating the 
numerical values shows that about 0.5% of hydrogen atoms 
have speeds larger than the escape velocity. Also, it must 
be remembered that temperatures may show large varia-
tions (e.g., between day and night) at this high altitude.

Conclusion

Through the example of the barometric formula, the deri-
vations included in this text show that there are multiple 
different theoretical ways to arrive at the same result. It is 
also illustrated how refinement of scientific ideas by con-
sidering additional factors may lead to improved concep-
tual understanding of natural phenomena. However, as this 

example also shows, the improvement does not necessarily 
yield a spectacularly better numerical agreement between 
theoretical predictions and observed data. For barometric 
formulas, the main reason for the deviations from meas-
ured data is that the vertical temperature change within the 
atmosphere is difficult to describe by simple theories. The 
reason for this difficulty is recognized: radiative effects are 
also very important in maintaining the temperature profile, 
but they cannot be described with formulas as simple as 
the barometric equations. A standard scientific strategy 
to handle this problem is to use the hard-to-predict vari-
able (in this case, temperature) as an external parameter, 
whose value is taken directly from observations rather than 
obtained from the model. With this method, it could be 
proven that the differential form of the barometric for-
mula is valid for the atmosphere of the Earth for the entire 
studied region between sea level and 1000 km of altitude.
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