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Abstract
The partition of salts between two polar immiscible solvents results from the partition of the cations and anions. Because

electroneutrality rules in both phases, the partition of cations is affected by that of anions, and vice versa. Thus, the

partition of a salt is determined by the chemical potentials of cations and anions in both phases, and it is limited by the

boundary condition of electroneutrality. Whereas the partition of neutral molecules does not produce a Galvani potential

difference at the interface, the partition of salts does. Here, the equations to calculate this Galvani potential difference are

derived for salts of the general composition CatðzCatÞþmCat
AnðzAnÞ�mAn

and for uni-univalent salts CatþAn�. The activity of a

specific ion in a particular phase can thus be purposefully tuned by the choice of a suitable counterion. Finally, the

distribution of a salt between its solid phase and its saturated solution is also presented, together with a discussion of the

Galvani potential difference across the interface of the two phases.
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List of symbols

Latin symbols
a Activity

A Neutral compound A

AnðzAnÞ� Anion An with z negative charges

B, C,... Compounds B, C, etc.

c Molar concentration

c* Standard concentration (1 mol L−1)

CatðzCatÞþ Cation Cat with z positive charges

DCM Dichloromethane

Phase α Phase β
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charge!
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not like your
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e− Electron

E Electrolyte

E Electric potential

f Activity coefficient

F Faraday constant (9.64853383(83)9

104 C mol−1)

g Free energy (Gibbs energy)

G Molar free energy (molar Gibbs energy)

Da!bG
���
A

Standard Gibbs energy of transfer of A from

phase a to phase b
KIP Formation constant of ion pairs (association

constant)

KpðAÞ;T ;p Partition constant of species A

Ksp Solubility product

i Chemical species i

IP Ion pair

ln Natural logarithm (logarithm to the base e, with

e being the Euler constant)

log Decadic logarithm (logarithm to the base 10)

M Metal phase

n Amount of substance (unit: mol) of atoms,

molecules, ions or electrons

nb Nitrobenzene

Ox Oxidized form of a redox pair

p Partition

p Pressure

pic� Picrate (2,4,6-trinitrophenolate)

R Universal gas constant

(8.31446261815324 J K−1 mol−1)

Red Reduced form of a redox pair

s Indicates a solid phase (here a salt phase)

sol Indicates a solution phase

T Absolute temperature

TBA? Tetrabutylammonium ion

TEA? Tetraethylammonium ion

TMA? Tetramethylammonium ion

TPA? Tetraphenylarsonium ion

TPB− Tetraphenylborate ion

w Water

z Charge of an ion, number of exchanged

electrons

Greek symbols
a Phase alpha (Greek letter alpha)

b Phase beta (Greek letter beta)

l Chemical potential (Greek letter mu in italics)

�l Electrochemical potential

m Stoichiometric number (Greek letter nu in

italics)

/ Inner electric potential (Greek letter phi in

italics)

Da;b/ Difference of inner electric potentials of the

phases phase a and b, i.e. the Galvani potential
difference between these two phases. It is

defined as Da;b/ ¼ /b � /a

Ds;sol/
���0
c; i

Formal potential of ion transfer

Other symbols
��� Plimsoll symbol, as superscript indicating standard

quantities

Introduction

The partition of neutral compounds between immiscible

solvents is very well covered in textbooks of general,

physical and analytical chemistry; however, the partition of

salts can be found only in special monographs, where it is

often presented in a form which is not easily understand-

able for students. Here, we provide an introductory text

discussing salt partition on the basis of the thermodynamics

as taught in Bachelor courses.

The partition of salts is of high importance in many

fields of science: ion transfer (e.g. of drugs) through

membranes, ion transfer catalysis in organic synthesis, and

extraction of metal ions in analytical chemistry are just the

most common examples.

When the partition of compounds between liquid phases

is treated, usually the phrase ‘partition between two

immiscible liquid phases’ is used. However, completely

immiscible liquids do not exist. That phrase just points to

those systems where the mutual miscibility is so small that

the phases can be considered as pure phases, at least for a

simplified treatment.

Partition of neutral compounds
between two immiscible solution phases

The Nernst distribution law describes the partition of a

neutral compound A between two immiscible liquid phases

a and b

Aa � Ab: ðEquilibrium IÞ
An example is the distribution of iodine between water

and tetrachloromethane. Walter Nernst published the

respective equation in 1891 [1]. In modern terms, it states

that the ratio of activities [2] of the compound in the two

phases is constant at constant temperature (T) and pressure

(p):

KpðAÞ;T ;p ¼ aA; b
�
aA; a ð1Þ

KpðAÞ;T ;p is called the partition constant of A, and the

upright p in the subscript stands for partition. In
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equilibrium, the chemical potentials lA; a and lA; b of the

distributed compound A must be the same in both phases:

lA; a ¼ lA;b: ð2Þ
Remember, the chemical potential is the partial deriva-

tive of the Gibbs energy over the amount (unit: mol) of

substance (atoms, molecules or ions) (here of A), at con-

stant temperature, pressure and constant amounts (unit:

mol) of all other compounds (e.g. B, C, etc.):

lA ¼ og
onA

� �
T ;p;nB;nC;...

: ð3Þ

This means that the chemical potential is a measure of

the ability to produce or consume work. Since a system

does not produce or consume work when it is in equilib-

rium, the chemical potentials of A in the phases a and b
must be equal at equilibrium, as otherwise a flux of A from

one phase to the other would occur. Since the chemical

potential of A can be split into a standard term l���A (the

chemical standard potential) and an activity-dependent

term:

lA ¼ l���A þ RT ln aA ð4Þ
it follows from the condition (2) that

l���A; a þ RT ln aA; a ¼ l���A; b þ RT ln aA; b; ð5Þ

l���A; a � l���A; b ¼ RT ln aA; b � RT ln aA; a: ð6Þ
The difference of chemical standard potentials is a

constant:

l���A; a � l���A; b ¼ RT ln
aA; b
aA; a

¼ 2:303RT log
aA; b
aA; a

: ð7Þ

Since the partition constant has been defined as

KpðAÞ;T ;p ¼ aA; b
�
aA; a (1), the following equation results

from (7) and (1):

KpðAÞ;T ;p ¼ aA; b
aA; a

¼ e
l���
A;a

�l���
A; b

RT ¼ 10
l���
A; a

�l���
A;b

2:303RT : ð8Þ

Equation (8) nicely shows that KpðAÞ;T ;p is larger than 1

when l���A; a [ l���A;b, and smaller than 1 for l���A; a\l���A; b.
Equation (8) can also be written using the standard Gibbs

energy of transfer Da!bG
���
A of A from phase a to phase b,

defined as

Da!bG
���
A ¼ l���A; b � l���A;a: ð9Þ

Because a Gibbs energy difference always refers to a

certain direction of the reaction, the arrow in the subscript

indicates here the transfer from phase a to b. With Eq. (9)

it is possible to write Eq. (8) as follows:

KpðAÞ;T ;p ¼ aA; b
aA; a

¼ 10�
Da!bG

�
i

2:303RT : ð10Þ

Partition of a salt CatðzCat) +mCat
AnðzAn) -

mAn
between two immiscible solution phases

For a very simple reason, the partition of a salt between

immiscible solvents is more complex than that of neutral

compounds: the two constituents of a salt, i.e. cations and

anions, are on one side free in solution, but on the other

side, their transfer to the other phase is restricted by the

condition of electroneutrality in both bulk phases. The

electroneutrality is the boundary condition for the partition.

Only in the interfacial region (double layer region), where

the two phases meet, is the condition of electroneutrality

violated. This causes the occurrence of an interfacial

potential difference called Galvani potential difference. A

salt CatðzCatÞþmCat
AnðzAnÞ�mAn

partitions between two polar immis-

cible solvent phases a and b according to

mCat;aCat
ðzCatÞþ
a þmAn;aAn

ðzAnÞ�
a � mCat;bCat

ðzCatÞþ
b þmAn;bAn

ðzAnÞ�
b :

ðEquilibrium IIÞ

Since the stoichiometry of the salt is the same in both

phases, i.e. mCat;a ¼ mCat;b ¼ mCat and mAn;a ¼ mAn;b ¼ mAn,
one can write

K
p Cat

ðzCatÞþ
mCat

An
ðzAnÞ�
mAn

� �
;T ;p

¼
amCat
CatðzCatÞþ;b

amAn
AnðzAnÞ�;b

amCat
CatðzCatÞþ;a

amAn
AnðzAnÞ�;a

: ð11Þ

Equilibrium II indicates that the salt is assumed to be

completely dissociated in both phases, i.e. no ion pairs

exist in the two phases. Ion pairs, e.g. CatþAn�½ �ionpair of a
uni-univalent salt, form when the electrostatic attraction

between the opposite charged ions is not overcome by the

free energy of solvation of the single ions (see the example

of ½TBAþpic�� at the end of this paper). This happens

especially in solvents which have a low dielectric constant,

i.e. which are rather nonpolar. Neglecting ion pairs is

certainly a simplification, as ion pairs are in principle

ubiquitous in electrolyte solutions. However, if the liquid

phases have a high polarity, their formation may be neg-

ligible. When one liquid phase is water (a polar solvent),

and the other solvent is also polar, like nitrobenzene, ion

pairing can be neglected in both phases. Further, the par-

tition could be affected by complex formation or any other

chemical equilibria involving the partitioning ions. All

these side reactions are excluded in the present treatment.

Figure 1 shows a scheme of the Equilibrium II as the

result of the partition equilibria of the cations and anions.
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Although the two bulk phases maintain electroneutrality

by having equal numbers of negative and positive charges,

at the interface of the two phases a Galvani potential dif-

ference builds up if the two partition constants

K
pðCatðzCatÞþÞ; T ;p ¼ aCatðzCatÞþ;b

aCatðzCatÞþ;a
ð12Þ

and

K
pðAnðzAnÞ�Þ; T ;p ¼ aAnðzAnÞ�; b

aAnðzAnÞ�; a
ð13Þ

do not have identical values. When these constants differ

from each other, which is the case for almost all salts, a

minute charge separation occurs across the interface,

resulting in the Galvani potential difference:

Da;b/ ¼ /b � /a; ð14Þ
where /a and /b are the inner electric potentials of the two

phases. The determination of the two equilibrium constants

would need to know the activity of each single kind of ion,

i.e. of the cations and the anions. The situation at the

interface shown in Fig. 1 is to some extent similar to that at

the interface of an electrode, where an oxidation and

reduction can proceed: quantification of a redox equilib-

rium at an electrode needs to define the zero point of the

Galvani potential difference. For the basics of interfacial

and especially electrochemical thermodynamics, we sug-

gest the papers by Láng [3] and Inzelt [4]. In the case of

redox equilibria the convention is that the Galvani potential

difference at the platinum|solution interface of the standard

hydrogen electrode is zero. In the case of ion partition

equilibria, the commonly accepted convention (there are

also other conventions) is that tetraphenylarsonium (TPA?)

cations and tetraphenylborate (TPB−) anions have identical

partition constants [5], because they are equally bulky ions

and both are single charged:

KpðTPAþÞ;T ;p ¼ KpðTPB�Þ;T ;p: ð15Þ
Partition of this salt produces a zero cell voltage (see the

end of this text) of the electrochemical cell:

M1 | E1 ⁞ salt bridge 1 ⁞ phase a | phase b ⁞ salt bridge 2 ⁞
E2 | M2

M1 is the metal phase of reference electrode 1, E1 is the

electrolyte of reference electrode 1, M2 is the metal phase

of reference electrode 2, E2 is the electrolyte of reference

electrode 2, the vertical bar | symbolises a phase boundary,

and the dashed vertical bar stands for a junction between

miscible solutions. When the two reference electrodes are

identical, the measured cell voltage is the Galvani potential

difference across the interface of a with b defined as

Da;b/ ¼ /b � /a, plus the diffusion potentials at the

junctions of the different solutions. The latter can be

minimised, so that the Galvani potential difference

between the phases a and b is the major contribution. The

calculation of the partition constant K
p Cat

ðzCatÞþ
mCat

An
ðzAnÞ�
mAn

� �
; T ;p

of the salt can be attempted by calculation of

K
pðCatðzCatÞþÞ; T ;p and K

pðAnðzAnÞ�Þ;T ;p , as the three constants are

related as follows:

K
p Cat

ðzCatÞþ
mCat

An
ðzAnÞ�
mAn

� �
; T ;p

¼
amCat
CatðzCatÞþ; b

amAn
AnðzAnÞ�;b

amCat
CatðzCatÞþ;a

amAn
AnðzAnÞ�;a

¼ K
pðCatðzCatÞþÞ; T ;p

� �mCat
K
pðAnðzAnÞ�Þ; T ;p

� �mAn
:

ð16Þ

Ion partition between two immiscible
solution phases

Since ions are charged particles, the transfer from one

phase to another phase involves electric work, when the

two phases have different inner electrical potentials. This

work, expressed as a molar quantity, is the charge of the

ion zi multiplied by the charge of one mole unit charges

(the Faraday constant), multiplied by the difference of

inner electric potentials /a and /b between the two phases,

i.e. ziF /b � /a

� �
. The sum of chemical and electrical work

for the transfer of ions from infinity (outside the respective

phases) to the inner of the respective phases is the so-called

electrochemical potential, here �li; a and �li;b:

�li; a ¼ li; a þ ziF/a; ð17Þ
�li; b ¼ li; b þ ziF/b: ð18Þ

Fig. 1 The partition of the ions of a salt having the formula

CatðzCatÞþmCat AnðzAnÞ�mAn between two phases is the result of the partition

equilibria of anions and cations
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The equilibrium condition for ions is the equality of

electrochemical potentials, i.e. mi; a �li; a ¼ mi; b �li; b, since the

electric work cannot be neglected:

mi; ali; a þ mi; aziF/a ¼ mi; bli;b þ mi; bziF/b: ð19Þ
When the partition is not affected by any chemical

reactions, the stoichiometry of the salt remains unaffected

in both phases, and for the cations and anions the relation

mi; a ¼ mi; b, must hold true:

li; a þ ziF/a ¼ li; b þ ziF/b: ð20Þ
This allows the calculation of the Galvani potential

difference caused by partition of the ions, either cations or

anions:

ziF/b � ziF/a ¼ li; a � li; b ð21Þ

Da;b/i ¼ /b � /a ¼ li; a � li;b
ziF

: ð22Þ

Since the chemical potential of a species i is li ¼
l���i þ RT ln ai (Eq. 4), one can write Eq. (22) as follows:

Da;b/i ¼
1

ziF
l���i; a þ RT ln ai; a � l���i; b � RT ln ai; b

� �
; ð23Þ

Da;b/i ¼
l���i; a � l���i; b

ziF
þ RT

ziF
ln
ai; a
ai; b

: ð24Þ

The term
l���
i; a�l���

i;b

ziF
defines the standard potential of ion

transfer (cf. Eq. 9):

Da;b/
���
i ¼ l���i; a � l���i;b

ziF
¼ �Da!bG

���
i

ziF
ð25Þ

since Da!bG
���
i ¼ l���i; b � l���i; a, which is the standard Gibbs

energy of transfer of the ions from phase a to b, Eq. (24)
can be written as follows:

Da;b/i ¼ Da;b/
���
i þ RT

ziF
ln
ai; a
ai; b

¼ �Da!bG
���
i

ziF
þ RT

ziF
ln
ai; a
ai; b

¼ �Da!bG
���
i

ziF
þ RT

ziF
ln

1

Kp ðiÞ;T;p
:

ð26Þ

The KpðiÞ; T ;p used here is defined in Eq. (1) as
ai;b
ai;a

, but

one needs to remember that this is the chemical equilib-

rium constant for which equality of the inner electric

potentials of the two phases is a prerequisite. Hence,

lnKpðiÞ;T ;p ¼ ln
ai; b
ai; a

¼ �Da!bG
���
i

RT
; ð27Þ

KpðiÞ; T ;p ¼ e�
Da!bG

���
i

RT ¼ 10�
Da!bG

���
i

2:303RT ð28Þ
(For comparison, see also Eqs. (8–10)). Alternatively,

one can give the relations

lnKpðiÞ;T ;p ¼ ziF

RT
Da;b/

���
i ; ð29Þ

KpðiÞ; T ;p ¼ e
ziF

RTDa;b/
���
i ¼ 10

ziF

2:303RTDa;b/
���
i : ð30Þ

Since ln 1
KpðiÞ;T ;p

¼ ln
ai;a
ai;b

¼ Da!bG
���
i

RT , it follows with

Eq. (26) that Da;b/i is zero: Da;b/i ¼ � Da!bG
���
i

ziF
þ RT

ziF

ln 1
KpðiÞ;T ;p

¼ � Da!bG
���
i

ziF
þ Da!bG

���
i

ziF
¼ 0, which was the condi-

tion to define the chemical equilibrium constant.

In Table 1 standard Gibbs energies of ion transfer and

the corresponding standard Galvani potential differences

are given for selected ions.

The hydrophilicity of cations increases with increasing

Dw!nbG
���
i and with decreasing Da;b/

���
i . The hydrophilicity

of anions also increases with increasing Dw!nbG
���
i , but

with increasing Da;b/
���
i . The latter is a result of the nega-

tive charge of the anions. In the case of the transfer of ions

from water to nitrobenzene, increasing values of Dw!nbG
���
i

imply that fewer ions are transferred to nitrobenzene.

Table 1 Standard Gibbs energies of transfer of ions from water to

nitrobenzene Dw!nbG
���
i , and the standard Galvani potential differ-

ences Dw;nb/
���
i (corresponding to Da;b/

���
i in this text, i.e.

Dw;nb/
���
i ¼ /���i;nb � /���i;w)

Ion Dw!nbG
���
i (kJ mol−1) Dw;nb/

���
i (mV) References

K? 22.65 −235 [13]

Rb? 19.80 −205 [13]

Tl? 19.30 −200 [13]

Cs? 17.80 −184 [13]

TMA? 9.60 −99 [13]

TEA? −0.50 5 [13]

TBA? −8.20 85 [13]

TPB− −35.90 −372 [11]

Picrate −3.00 −31 [13]

ClO�
4 8.00 83 [11]

I− 18.80 195 [11]

ClO�
3 25.40 263 [13]

Cl− 31.40 325 [11]
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Partition of CatðzCat) +mCat
AnðzAn) -

mAn
between two

immiscible solution phases

Now we need to consider the interplay of cation and anion

partition: The chemical interaction of the ions with the two

solvents is always different for the cations and anions (with

the exception of very few salts, like the TPA?TPB− men-

tioned above). Therefore, the partition of cations is affected

by that of anions, and vice versa. The difference of inner

electric potentials Da;b/i is not zero, as in the theoretical

case of single ion partition discussed in connection with

Eq. (27). The Galvani potential differences caused by the

cations Da;b/CatðzCatÞþ and anions Da;b/AnðzAnÞ� must be equal

to the overall Galvani potential difference

Da;b/
Cat

ðzCatÞþ
mCat

An
ðzAnÞ�
mAn

� �, as only one potential difference can

exist at one interface.

Da;b/CatðzCatÞþ ¼ Da;b/AnðzAnÞ� ¼ Da;b/
Cat

ðzCatÞþ
mCat

An
ðzAnÞ�
mAn

� �
ð31Þ

Now, Eq. (26) can be formulated for the cations

Da;b/CatðzCatÞþ ¼ Da;b/
Cat

ðzCatÞþ
mCat

An
ðzAnÞ�
mAn

� �
¼ Da;b/

���
CatðzCatÞþ

þ RT

zCatF
ln

aCatðzCatÞþ;a
aCatðzCatÞþ;b

:
ð32Þ

For the anions Eq. (26) follows

Da;b/AnðzAnÞ� ¼ Da;b/
Cat

ðzCatÞþ
mCat

An
ðzAnÞ�
mAn

� �
¼ Da;b/

���
AnðzAnÞ�

þ RT

zAnF
ln
aAnðzAnÞ�; a
aAnðzAnÞ�; b

ð33Þ

or

Da;b/AnðzAnÞ� ¼ Da;b/
Cat

ðzCatÞþ
mCat

An
ðzAnÞ�
mAn

� �
¼ Da;b/

���
AnðzAnÞ�

� RT

zAnj jF ln
aAnðzAnÞ�; a
aAnðzAnÞ�; b

:
ð34Þ

To solve the equations for Da;b/
Cat

ðzCatÞþ
mCat

An
ðzAnÞ�
mAn

� �,
Eq. (32) has to be multiplied by zCat, and Eq. (34) by zAnj j:
zCatDa;b/

Cat
ðzCatÞþ
mCat

An
ðzAnÞ�
mAn

� � ¼ zCatDa;b/
���
CatðzCatÞþ

þ RT

F
ln

aCatðzCatÞþ;a
aCatðzCatÞþ; b

: ð35Þ

zAnj jDa;b/
Cat

ðzCatÞþ
mCat

An
ðzAnÞ�
mAn

� � ¼ zAnj jDa;b/
���
AnðzAnÞ�

� RT

F
ln
aAnðzAnÞ�; a
aAnðzAnÞ�; b

: ð36Þ

Now, Eqs. (35) and (36) can be summed up:

zCatDa;b/
Cat

ðzCatÞþ
mCat

An
ðzAnÞ�
mAn

� � þ zAnj jDa;b/
Cat

ðzCatÞþ
mCat

An
ðzAnÞ�
mAn

� �
¼ zCatDa;b/

���
CatðzCatÞþ

þ zAnj jDa;b/
���
AnðzAnÞ�

þ RT

F
ln

aCatðzCatÞþ;a
aCatðzCatÞþ; b

� RT

F
ln
aAnðzAnÞ�; a
aAnðzAnÞ�; b

;

ð37Þ
and hence

zCat þ zAnj jð ÞDa;b/
Cat

ðzCatÞþ
mCat

An
ðzAnÞ�
mAn

� �
¼ zCatDa;b/

���
CatðzCatÞþ

þ zAnj jDa;b/
���
AnðzAnÞ�

þ RT

F
ln

aCatðzCatÞþ;aaAnðzAnÞ�; b
aCatðzCatÞþ; baAnðzAnÞ�; a

;

ð38Þ

Da;b/
Cat

ðzCatÞþ
mCat

An
ðzAnÞ�
mAn

� �

¼ zCatDa;b/
���
CatðzCatÞþ

þ zAnj jDa;b/
���
AnðzAnÞ�

zCat þ zAnj jð Þ
þ RT

zCat þ zAnj jð ÞF ln
aCatðzCatÞþ;aaAnðzAnÞ�; b
aCatðzCatÞþ;baAnðzAnÞ�; a

:

ð39Þ

Although Eq. (39) is reminiscent of the Nernst equa-

tion, the argument of the logarithm is not the partition

constant K
p Cat

ðzCatÞþ
mCat

An
ðzAnÞ�
mAn

� �
;T ;p

¼
a
mCat

CatðzCatÞþ ;b
a
mAn

AnðzAnÞ� ;b

a
mCat

CatðzCatÞþ ;a
a
mAn

AnðzAnÞ� ;a

¼

K
pðCatðzCatÞþÞ; T ;p

� �mCat
K
pðAnðzAnÞ�Þ; T ;p

� �mAn
(cf. Eq. 16), but

the term
a
CatðzCatÞþ ;a

a
AnðzAnÞ� ; b

a
CatðzCatÞþ ; b

a
AnðzAnÞ� ; a

in Eq. (39) is the ratio of the

partition constants:
K
pðAnðzAnÞ�Þ;T ;p

K
pðCatðzCatÞþÞ; T ;p

.

Taking into account that the activity ai is defined as

ai ¼ fici
1
c�, where fi is the activity coefficient of i, ci is the

molar concentration of i, and c� is the standard concen-

tration (1 mol L�1), Eq. (39) assumes the form

Da;b/
Cat

ðzCatÞþ
mCat

An
ðzAnÞ�
mAn

� �

¼
zCatDa;b/

���
CatðzCatÞþ

þ zAnj jDa;b/
���
AnðzAnÞ�

zCat þ zAnj jð Þ
þ RT

zCat þ zAnj jð ÞF ln
cCatðzCatÞþ;acAnðzAnÞ�; b
cCatðzCatÞþ; bcAnðzAnÞ�; a

þ RT

zCat þ zAnj jð ÞF ln
fCatðzCatÞþ;afAnðzAnÞ�; b
fCatðzCatÞþ; bfAnðzAnÞ�; a

:

ð40Þ

From the stoichiometry of the salt CatðzCatÞþmCat AnðzAnÞ�mAn it

follows that in the bulk of the two phases the conditions

cCatðzCatÞþ; b ¼ mCat
mAn

cAnðzAnÞ�; b and cCatðzCatÞþ; a ¼ mCat
mAn

cAnðzAnÞ�; a
hold true. With these relations follows
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Da;b/
Cat

ðzCatÞþ
mCat

An
ðzAnÞ�
mAn

� �

¼ zCatDa;b/
���
CatðzCatÞþ

þ zAnj jDa;b/
���
AnðzAnÞ�

zCat þ zAnj jð Þ

þ RT

zCat þ zAnj jð ÞF ln

mCat
mAn

cAnðzAnÞ�; acAnðzAnÞ�; b
mCat
mAn

cAnðzAnÞ�; bcAnðzAnÞ�; a

þ RT

zCat þ zAnj jð ÞF ln
fCatðzCatÞþ;afAnðzAnÞ�; b
fCatðzCatÞþ; bfAnðzAnÞ�; a

:

ð41Þ

Since the second term on the right side of Eq. (41)

equals zero, the final equation is

Da;b/
Cat

ðzCatÞþ
mCat

An
ðzAnÞ�
mAn

� �

¼ zCatDa;b/
���
CatðzCatÞþ

þ zAnj jDa;b/
���
AnðzAnÞ�

zCat þ zAnj jð Þ

þ RT

zCat þ zAnj jð ÞF ln
fCatðzCatÞþ;afAnðzAnÞ�; b
fCatðzCatÞþ; bfAnðzAnÞ�; a

:

ð42Þ

Equation (40) can be also applied to the solubility of a

salt, when this is considered as the result of distributing the

cations and anions between the solid salt phase and the

saturated solution: see Sect. “Distribution of ions between

the solid salt phase and the salt saturated solution”.

For very diluted systems, the activity coefficients

approach unity, and then the last term in Eq. (42) also

vanishes, and the overall Galvani potential difference

Da;b/
Cat

ðzCatÞþ
mCat

An
ðzAnÞ�
mAn

� � can be calculated according to

Da;b/
Cat

ðzCatÞþ
mCat

An
ðzAnÞ�
mAn

� � ¼ zCatDa;b/
���
CatðzCatÞþ

þ zAnj jDa;b/
���
AnðzAnÞ�

zCat þ zAnj jð Þ :

ð43Þ
To calculate the partition constant of the salt

K
p Cat

ðzCatÞþ
mCat

An
ðzAnÞ�
mAn

� �
;T ;p

, the partition constants of cations and

anions must be used in Eq. 16:

K
p Cat

ðzCatÞþ
mCat

An
ðzAnÞ�
mAn

� �
; T ;p

¼
amCat
CatðzCatÞþ; b

amAn
AnðzAnÞ�;b

amCat
CatðzCatÞþ;a

amAn
AnðzAnÞ�;a

¼ K
pðCatðzCatÞþÞ; T ;p

� �mCat
K
pðAnðzAnÞ�Þ; T ;p

� �mAn
;

lnK
p Cat

ðzCatÞþ
mCat

An
ðzAnÞ�
mAn

� �
; T ;p

¼ mCat lnKpðCatðzCatÞþÞ; T ;p

þ mAn lnKpðAnðzAnÞ�Þ; T ;p:
ð44Þ

For the cations, we can formulate Eq. (29) according to

lnK
pðCatðzCatÞþÞ; T ;p ¼

zCatF

RT
Da;b/

���
CatðzCatÞþ

ð45Þ

and for the anions

lnK
pðAnðzAnÞ�Þ;T ;p ¼

zAnF

RT
Da;b/

���
AnðzAnÞ�

: ð46Þ

Inserting Eqs. (45) and (46) in Eq. (44) gives

lnK
p Cat

ðzCatÞþ
mCat

An
ðzAnÞ�
mAn

� �
; T ;p

¼ mCat
zCatF

RT
Da;b/

���
CatðzCatÞþ

þ mAn
zAnF

RT
Da;b/

���
AnðzAnÞ�

:

ð47Þ
Since mCat ¼ zAnj j and mAn ¼ zCat, and zAn in the second

term on the right side has a negative sign, it finally follows

lnK
p Cat

ðzCatÞþ
mCat

An
ðzAnÞ�
mAn

� �
; T ;p

¼ zCat zAnj jF
RT

Da;b/
���
CatðzCatÞþ

� Da;b/
���
AnðzAnÞ�

� �

logK
p Cat

ðzCatÞþ
mCat

An
ðzAnÞ�
mAn

� �
; T ;p

¼ zCat zAnj jF
2:303RT

Da;b/
���
CatðzCatÞþ

� Da;b/
���
AnðzAnÞ�

� �
:

ð48Þ
It is interesting to remember that Eq. (48) has the same

structure as that for calculating the equilibrium constant of

a redox reaction m1Red1þm2Ox2 � m1Ox1þm2Red2 with

the two redox equilibria Ox1 þ n1e
� � Red1 and

Ox2þn2e
� � Red2, where the relation m1n1 ¼ m2n2 ¼ z

holds, and the equilibrium constant is

lnK ¼ zF
RT E���

Ox2=Red2
� E���

Ox1=Red1

� �
or logK ¼ z F

2:303RT

E���
Ox2=Red2

� E���
Ox1=Red1

� �
[6]. These equations are similar

because in both cases two interdependent equilibria deter-

mine the overall equilibrium.

In the case of a uni-univalent salt CatþAn�, it follows
for Da;b/ CatþAn�ð Þ

Da;b/ CatþAn�ð Þ ¼
Da;b/

���
Catþ þ Da;b/

���
An�

2
ð49Þ

and for Kp CatþAn�ð Þ; T ;p ¼ aCatþ ;baAn� ;b

aCatþ ;aaAn� ;a

lnKp CatþAn�ð Þ; T ;p ¼ F

RT
Da;b/

���
Catþ � Da;b/

���
An�

� �

logKp CatþAn�ð Þ; T ;p ¼ F

2:303RT
Da;b/

���
Catþ � Da;b/

���
An�

� �
:

ð50Þ
Figures 2 and 3 illustrate how a lipophilic anion, here

TPB� can affect the partition of a hydrophilic cation, here

Kþ; whereas KþCl� has a partition constant

logKpðKþ
Cl�Þ;T ;p ¼ �9:5, the partition constant of KþTPB�

is logKpðKþ
TPB�Þ;T ;p ¼ 2:3, i.e. the potassium concentration

in nitrobenzene is much larger when KþTPB� is parti-

tioned than in the case of KþCl�.
Figure 4 illustrates how the chemical affinities of the

anions and cations for the two phases conflict with the

necessity of electroneutrality in each phase. The result is a

compromise, a trade-off reflecting the (mostly) different

affinities of the anions and cations, so that electroneutrality

in the bulk phases is maintained. One may say that the

cations partition in such way that they—to some extent
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—“respect” the affinity of the anions, and vice versa. This

compromise leads (i) to a potential difference at the

interface (if the affinities are not equal, as in the case of the

example TPA?TPB−) and (ii) to different concentrations of

the salt in both phases (if the affinities are not identical).

The tuning of partition constants of salts by choosing

appropriate combinations of cations and anions is illus-

trated in Fig. 5: picric acid (2,4,6-trinitrophenol) is a rel-

atively strong acid in aqueous solution (pKa around 0.4).

Although the picrate anion (2,4,6-trinitrophenolate) is

rather hydrophobic, the partition of sodium picrate

(Naþpic�) between water and dichloromethane (DCM)

is such that the salt almost completely stays in water.

The partition constant is KpðNaþpic�Þ;w�DCM ¼ aðNaþpic�Þ;DCM
aðNaþpic�Þ;water

¼ 2:5� 10�5 [7]. This is illustrated by Fig. 5, where the

aqueous phase is strongly yellow, the colour of picrate

ions, whereas the DCM phase is colourless. The same

result is obtained for the partition of picric acid (see Fig. 5)

w,nb ion��

w,nb (Cat An )
� ���

p (Cat An ), ,
log

T p
K � �

Cl�K�TPB�

K Cl� �
K TPB� �

K Cl� �
K TPB� �

(A)

(B)

(C)
2.3�9.5 0

0 0.045

0.325�0.235 0

�0.304

�0.372

Fig. 2 a Standard Galvani

potentials of ion transfer of Kþ,
Cl� and TPB�

(tetraphenylborate), b standard

Galvani potentials of salt

partition of KþCl� and

KþTPB�, and (see Eq. 43) c log
partition constants of KþCl�

and KþTPB�, for the system

water–nitrobenzene

Phase � Phase 	

(A)

Phase � Phase 	

(B)

K� Cl� TPB�

�� � �
�

�
�

�

�

�

�
�

�

�
�

�

��

�

�
�

�

�

�
�

�

�

�

� �

�
�

�

�

�

�

�

Fig. 3 Illustration of the partition of a KCl between water (phase a)
and nitrobenzene (phase b), b KTPB between water and nitrobenzene

Phase α Phase β

Come over, beloved
Minus, we need your

charge!

Dear Plus, but I do 
not like your

phase!

Fig. 4 Cartoon illustrating how the different affinities of cations and

anions for the two phases conflict with the condition of electroneu-

trality in the bulk phases

Water

DCM

Na pic� �
H pic� � TBA pic� �

Fig. 5 Partition of sodium picrate (Naþpic�), picric acid (Hþpic�)
and tetrabutylammonioum picrate (TBAþpic�) between water and

dichloromethane (DCM)
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because the transfer of protons to the DCM phase is

strongly disfavoured. However, when the sodium ions are

substituted by the rather hydrophobic tetrabutylammonium

(TBAþ) cation, the partition strongly favours the presence

of picrate in DCM. Figure 5 shows for the partition of

TBAþpic� a yellow DCM phase and a colourless aqueous

phase. In fact, the partition of picrates is not as simple as

presented here: in DCM, the formation of ion pairs has to

be taken into account. The formation constant of the ion

pairs ½TBAþpic�� in water-saturated DCM is rather large:

logKIP½TBAþ
pic��;DMC ¼ 3:82� 0:06. The formation con-

stant of ½TBAþpic�� in water is comparably small

(logKIP½TBAþ
pic��;w ¼ 1:033� 0:008). The partition con-

stant of TBAþpic� for water–DCM is

logKpðTBAþ
pic�Þ;w�DCM ¼ 5:52� 0:03 (all data from [8]),

which is clearly a result of the hydrophobic nature of

TBAþ, as well as of the favourable ion pair formation in

DCM.

Experimental considerations concerning
the partition of a salt between two
immiscible solution phases

The partition constants of neutral molecules are experi-

mentally accessible without any principal constraints. It is

just necessary to have analytical techniques at hand,

allowing the determination of the concentration of the

partitioned compound in both phases. For salts, this can be

done in the same way; however, the individual partition

constants of the anions and cations are not so easily

accessible. Since the individual partition constants are a

measure of the interaction of the individual ions with each

of the two solvents, e.g. with water and the organic solvent,

it is important to know these data. They provide informa-

tion about the hydrophilicity/hydrophobicity and

oleophilicity/oleophobicity of the ions!

Let us consider a uni-univalent salt, for which

KpðCatþAn�Þ;T ;p ¼
aCatþ ; baAn� ;b

aCatþ ; aaAn� ;a
	 cCatþ ;bcAn� ;b

cCatþ ;acAn� ;a
is experimentally

accessible by measuring the concentrations cðCatþAn�Þ; a and
cðCatþAn�Þ; b. According to Eq. (44) the relation for a uni-

univalent salt is

lnKpðCatþAn�Þ;T ;p ¼ lnKpðCatþÞ;T ;p þ lnKpðAn�Þ;T ;p :

When KpðCatþAn�Þ;T ;p is determined by measuring the salt

concentrations in both phases, the partition constant of

either the cation must be known to calculate that of the

anions, or vice versa. This is a serious problem which can

be solved only by making for some salts the extrathermo-

dynamic (i.e. not strictly based on thermodynamics)

assumptions that the partition coefficients are identical for

the anion and cation. This is reasonable in the case of very

bulky organic ions, e.g. tetraphenylarsonium (TBAþ)
cations and tetraphenylborate (TPB�) anions. The latter

salt was first proposed by Grunwald et al. [5]. On the basis

of this extrathermodynamic assumption, it is possible to

build up a system of consistent KpðCatþÞ;T ;p and KpðAn�Þ;T ;p
data from analysis of the salt concentrations in the two

phases, when different salt combinations are used, among

which are salts with TBAþ cations and TPB� anions.

The experimental determination of individual ion par-

tition constants can also be achieved with the help of

electrochemistry. Dating back to first experiments by

Nernst and Riesenfeld [9], now voltammetric techniques

[10] are available with which the individual transfer of ions

across liquid–liquid interfaces can be measured, and from

the characteristic potentials of the voltammograms, the

standard potentials of the individual ions can be estimated,

of course always relying on an extrathermodynamic

assumption, like the mentioned Grunwald assumption

[11–14]. These measurements need a four-electrode

potentiostat, and they are rather limited with respect to the

solvent systems. There exists another electrochemical

approach, where an electrochemically generated redox

probe drives an ion transfer across a liquid–liquid interface

[15–17]. For this, a three-electrode potentiostat is sufficient

and the number of solvent systems is considerably larger. A

complete discussion of the experimental approaches to

measure the individual transfer of ions (i.e. ion partition)

cannot be given here, and the interested reader should

consult the mentioned sources.

Distribution of ions between the solid salt
phase and the salt saturated solution

The solubility of a sparingly soluble salt can be considered

as the result of distributing the cations and anion between

the solid salt phase (s) and the saturated solution (sol):

Catþs + An�s � Catþsol + An�sol ðEquilibrium IIIÞ

Of course, Catþs and An�s build up the solid phase

CatþAn�f gs. Equilibrium III has the following equilibrium

constant:

KpðCatþAn�Þ;T ;p ¼
aCatþ;solaAn�;sol

aCatþ;saAn�;s
: ð51Þ

The exact quantity of the activities of the ions in the

solid are not known; however, it is clear that they are

constant. The solubility product KspðCatþAn�Þ;T ;p of the salt is

KspðCatþAn�Þ;T ;p ¼ aCatþ;solaAn�;sol; ð52Þ
and this is the relation between the solubility product and

the partition constant:
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KspðCatþAn�Þ;T ;p ¼ KpðCatþAn�Þ;T ;paCatþ;saAn�;s: ð53Þ
For the cations, Eq. (26) can be written as follows:

Ds;sol/Catþ ¼ Ds;sol/
���
Catþ þ RT

F
ln

aCatþ;s
aCatþ;sol

¼ Ds;sol/
���
Catþ þ RT

F
ln aCatþ;s �

RT

F
ln aCatþ;sol:

ð54Þ
The first and second terms on the right side of the

equation can be combined to the formal potential of the

cation transfer Ds;sol/
���0

c;Catþ¼Ds;sol/
���
Catþ þ RT

F ln aCatþ;s (the

subscript c of Ds;sol/
���0

c;Catþ stands for ‘conditional’ because

formal potentials relate to fixed conditions), and thus:

Ds;sol/Catþ ¼ Ds;sol/
���0

c;Catþ � RT

F
ln aCatþ;sol: ð55Þ

For the anions, Eq. (26) is

Ds;sol/An� ¼ Ds;sol/
���
An� � RT

F
ln

aAn�;s
aAn�;sol

¼ Ds;sol/
���
Catþ � RT

F
ln aAn�;s þ RT

F
ln aAn�;sol:

ð56Þ
The formal potential of the anion transfer is

Ds;sol/
���0
c;An�¼Ds;sol/

���
An� � RT

F ln aAn�;s. With that follows

Ds;sol/An� ¼ Ds;sol/
���0
c;An� þ RT

F
ln aAn�;sol: ð57Þ

Like at the liquid|liquid interface, also here only one

Galvani potential difference can be established:

Ds;sol/Catþ ¼ Ds;sol/An� ¼ Ds;sol/ CatþAn�ð Þ. Summing up

Eqs. (55) and (57), and substituting activities with the

products of activity coefficients and concentrations allows

one to calculate Ds;sol/ CatþAn�ð Þ:

Ds;sol/ CatþAn�ð Þ ¼
Ds;sol/

���0

c;Catþ þ Ds;sol/
���0
c;An�

2

þ RT

2F
ln

fAn�;sol
fCatþ;sol

þ RT

2F
ln

cAn�;sol
cCatþ;sol

;

ð58Þ

Ds;sol/ CatþAn�ð Þ 	
Ds;sol/

���0

c;Catþ þ Ds;sol/
���0
c;An�

2

þ RT

2F
ln

cAn�;sol
cCatþ;sol

: ð59Þ

For the saturated solution of the pure sparingly soluble

salt, the concentration of the cations equals the concen-

tration of the anions (no excess of one ion sort) in the

solution.

In the equilibrium, Ds;sol/ CatþAn�ð Þ must be zero, because

in both phases an excess of cations or anions does not exist.

It can be also shown that Ds;sol/ CatþAn�ð Þ is zero, when
the following relations are considered: Defining the two

partition constants Kp;Catþ ¼ aCatþ ;sol

aCatþ ;s
and Kp;An� ¼ aAn� ;sol

aAn� ;s
and

taking into account that the activities in the solid are

constant (although not necessarily equal) gives aCatþ;sol ¼ffiffiffiffiffiffiffi
Ksp

p ¼ Kp;CatþaCatþ;s and aAn�;sol ¼
ffiffiffiffiffiffiffi
Ksp

p ¼ Kp;An�aAn�;s.

Using the relation between equilibrium constants and the

formal Galvani potentials yields RT ln Kp;CatþaCatþ;s
� � ¼

FDs;sol/
���0

c;Catþ ¼ RT ln
ffiffiffiffiffiffiffi
Ksp

p
and RT ln Kp;An�aAn�;s

� � ¼
�FDs;sol/

���0
c;An� ¼ RT ln

ffiffiffiffiffiffiffi
Ksp

p
. This means that the relation

FDs;sol/
���0

c;Catþ ¼ �FDs;sol/
���0
c;An� holds true, i.e.

Ds;sol/
���0

c;Catþ þ Ds;sol/
���0
c;An� ¼ 0. Hence, in Eq. (59) both

terms of the right side are zero and thus Ds;sol/ CatþAn�ð Þ is
also zero. The partition constants Kp;Catþ and Kp;An� are

defined for a zero potential difference, as was done in the

case of the partition constants of ions between two liquid

phases; see discussion following Eq. (26). Hence, it is not

surprising that in the end a zero potential difference results,

but it shows that the entire description is consistent.

If the concentration of the cations or anions in the

solution is changed by addition of a salt containing the

same cation or anion (e.g. by addition of silver nitrate or

sodium chloride to the saturated solution of silver chlo-

ride), a potential difference at the salt|solution interface

builds up. Since the term
Ds;sol/

���0
c;CatþþDs;sol/

���0
c;An�

2
in Eq. (59) is

zero, but the anion and cation concentrations are no longer

equal, this equation can be used to calculate the potential

difference at the salt|solution interface:

Ds;sol/ CatþAn�ð Þ ¼
RT

2F
ln

cAn�;sol
cCatþ;sol

þ RT

2F
ln

fAn�;sol
fCatþ;sol

ð60Þ

When anion addition is considered, the concentration

cCatþ;sol can be substituted by

cCatþ;sol ¼
Ksp

cAn�;sol
: ð61Þ

Inserting Eq. (61) in Eq. (60) gives

Ds;sol/ CatþAn�ð Þ ¼
RT

2F
ln
c2An�;sol
Ksp

þ RT

2F
ln

fAn�;sol
fCatþ;sol

: ð62Þ

Equation (62) nicely shows that the potential difference

at the salt|solution interface Ds;sol/ CatþAn�ð Þ ¼ /sol; CatþAn�ð Þ
�/s; CatþAn�ð Þ becomes positive. In the case of addition of

the cations to the solution (e.g. addition of silver nitrate to

the saturated solution of silver chloride), the potential

difference is

Ds;sol/ CatþAn�ð Þ ¼
RT

2F
ln

Ksp

c2
Catþ;sol

þ RT

2F
ln

fAn�;sol
fCatþ;sol

; ð63Þ
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i.e. the potential difference becomes negative. Figure 6

illustrates the dependencies (62) and (63) for the case of the

silver halides AgCl, AgBr and AgI. Since the interfacial

potential difference is defined as Ds;sol/ CatþAn�ð Þ ¼
/sol; CatþAn�ð Þ � /s; CatþAn�ð Þ, a positive sign of

Ds;sol/ CatþAn�ð Þ means a negatively charged surface of the

silver halides with respect to solution, and vice versa. In the

case of titrations of halides with silver ions, the sign of

Ds;sol/ CatþAn�ð Þ changes at the equivalence point. Before the
equivalence point Ds;sol/ CatþAn�ð Þ has a positive sign, i.e.

the solid AgX is negatively charged. After the equivalence

point, when silver ions are in excess, Ds;sol/ CatþAn�ð Þ has a
negative sign, i.e. the surface of the silver halides is posi-

tively charged. This is used in the Fajans methods [18–20]

of indication using adsorption indicators, where, as an

example, fluorescein anions are used as they are adsorbed

on the positively charged surface of silver halides. The

adsorption changes the colour of the silver halide

precipitate, which serves as indication of the equivalence

point. In Fig. 6 deviations between concentrations and

activities are not taken into account.

At this point, it is interesting to note the similarities of

the solid salt|solution interface with the processes under-

lying the function of the glass electrode: whereas in the

case of the silver halides, the cations and anions are cap-

able of partitioning, in the case of the glass electrode, only

the cations, i.e. the protons, can partition and the anions, i.

e. the “surface silicate groups”, are unable to partition

because they are immobile. This results in the well-known

pH response of the Galvani potential difference at glass|-

solution interfaces [21–23].

Conclusions

In this lecture text the partition of salts between two

immiscible solution phases is presented, and the equation

describing the Galvani potential difference across the liq-

uid|liquid interface is derived. The meaning of standard

potentials of transfer of single ions from one solution phase

to the other is discussed on the basis of an extrathermo-

dynamic assumption. Further, some experimental details of

the determination of the standard potentials of ions are

mentioned. Finally, the equilibrium of a solid salt phase

with its saturated solution phase is presented on the basis of

ion partition equilibria, and the resulting surface charge of

the solid phase is discussed in connection with adsorption

indicators.

In this text, the structure of the double layers at the

interfaces could not be considered.
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