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Abstract Proper data sampling of a continuously varying

quantity that describes the occurrence of a natural process

leads to a simpler equivalent representation. This repre-

sentation consists of a sequence of discrete data, which is

more suitable to be mathematically handled and allows one

to maintain essential information provided by the original

signal. The discrete values of the sequence obtained by

sampling differ from one another by finite quantities. In the

ideal case, the original representation should be perfectly

reconstructed by a backward procedure. The rules that

should be respected to satisfy this basic condition are very

simple, but require the decomposition of the signal into a

suitable set of elementary components. This may be per-

formed by applying to the sequence the algorithm called

Discrete Fourier Transform (DFT). The direct result of the

transformation consists of the spectrum of the signal, which

can be analyzed in many ways. The mathematics to make

the FT algorithm work, eventually in an as fast as possible

way (FFT—Fast Fourier Transform) is perhaps of less

interest to the chemists and will not be treated here. Rather,

the aim is to address the reader about what FT allows to

obtain.

Keywords Sampling � Discretisation � Analog-to-digital
conversion � Windowing � Fourier analysis

Introduction

Several books [1–3] are devoted to the theory and practice

of signal sampling. Proper data sampling procedures allow

to extract information of an event or a signal in the form of

individual data. Those data can be arranged in one or more

columns, which are usually named vectors or matrices.

Signal sampling constitutes a basic issue in a variety of

situations. Correct sampling is necessary for obtaining the

sequence of data that correctly account for whatever phe-

nomenon we want to examine. In the simplest case, a

continuous trace reports the values of a given quantity that

depends on a single variable. The dependent variable

depends on a single independent variable, which is the case

of a univariate signal.

Whatever variable is appropriate to describe the occur-

rence of a dynamic natural process (change in temperature

at passing time or at varying location, change in volume at

varying external pressure, change in distance from the

ground of a falling body, etc.), the relevant values change

progressively by increments that are so small to be hardly

conceivable.

Signals are broadly defined as a sequence of measurements that can

either be continuous or discrete. Often, sequences are captured at

varying intervals in time, frequency, wave numbers, or distance.
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The most part of the natural processes, as well as most

of the human-driven ones, occur continuously. This means

that subsequent steps are different from each other to such

a small extent not to be perceivable or directly measurable

by any human senses and even instruments, in agreement

with the term ‘conceivable’ used above. Mathematicians

define the whole matter as follows: the infinitesimal change

in the quantity y describing the event is indicated by dy and

corresponds to an infinitesimal change of the independent

variable (e.g., time), dt.1 For this reason, dy and dt are the

general symbols used for infinitesimal changes in y and

t quantities, respectively. To account for what happens ‘at a

given instant’, rather than over a finite interval, they should

be preferred to Dy and Dt, that indicate finite variations.

This notwithstanding, the rate at which the event occurs is

a finite quantity, because the ratio between the two

infinitesimal changes expresses a finite value: dy/dt. The

concept of instantaneous rate, mathematically corre-

sponding to the value of the local tangent to a function

expressing the dependence of y on t, is well known to

express a (finite) rate. On the contrary, the Dy/Dt incre-
mental ratio represents the medium rate within the Dt in-
terval, more or less close to the instantaneous rate in the

mid point of Dt. Noteworthy, the expression ‘at a given

instant’ may refer to a ‘time instant’, to a ‘space instant’ or

whatsoever ‘independent variable instant’, represented by

t, chosen here to describe the progress of any event under

observation.

The most direct way to monitor the changes occurring

in the course of an event consists in ‘recording’ it by our

own senses, that follow the movement of an object, the

increase or decrease of loudness of a sound, the increase

or decrease of the temperature (H) in the surrounding

environment, etc., at flowing time or at changing the

location, or whatsoever variable. By considering common

instruments used to follow the evolution of the last

exemplified event, the temperature may be measured on

the basis of the ‘standardized’ change in volume of a

liquid or of a gas: the continuous changes in temperature

over time are transduced into the corresponding continu-

ous changes in volume, which may be read or even

recorded. In other words, two subsequent H temperature

values differ from each other by an infinitesimal amount,

dH, similarly to the corresponding change in volume,

dV of the liquid or the gas used, and are recorded at

infinitesimal time difference, dt.

Data sampling

Simple signals

Once we choose to read the temperature with a ther-

mometer at given constant Dt intervals, every minute,

every hour, or every day, we are sampling H on the

independent variable time. It will be clear from the fol-

lowing how crucial the sampling operation is.

Criteria for correct sampling are mandatory. Correct sam-

pling means picking up any significant changes of the moni-

tored quantity: we fill in a matrix consisting of two columns

(for instance, time, t, and temperature,H) and of asmany rows

as many readings are made. No meaningful change inH over

time is lost only if sampling is correctly performed. On the

other hand, incorrect sampling implies to miss information

aboutwhatwe are observingwith respect to the event goingon.

For instance, we can choose to collect air samples at a cross-

road, to determine the NOx content due to the emission of the

cars.Let samplingoccurmanually every hour, the time interval

being conditioned by the lack of an in situ suitable gas sensor.

No possibility to shift the workers’ shifts, due to untouchable

time of lunch! However, let the rush hour occur just within the

interval between two subsequent sampling operations: the

peak of air poisoning is lost…. Similarly, in a space-located

example, a sourceof poisoningmaybeunidentified if thewater

sampling sites within a basin are not properly chosen.

A visual example of how a critical issue proper sampling

can be illustrated by sequences of pictures. Figure 1S in

Supplementary Material describes the rotation of a needle

at a velocity such that two subsequent pictures are taken at

constant time intervals (sampling interval or sampling

period, Dt), lower than that required to cover half a round

(Dt\ TP/2, where TP is the rotation period, i.e., the time of

a complete round). The needle rotates clockwise and

looking at the sequence of pictures the perception of the

direction of rotation is correct. On the other hand, if Dt is
not lower than the time requested by half a round (Dt C TP/

2), the rotation appears to occur counter clockwise: alias-

ing has occurred. In the same Fig. 1S, a point corre-

sponding to the extremity of the needle is plotted vs. the

time corresponding to the different positions: a sine (or

cosine, depending on the starting point) function is depic-

ted.2 The difference in the independent variable, t, between

two subsequent maxima, i.e., the period of the trigono-

metric function, coincides with that of rotation, namely the

time difference between two subsequent equal positions of

the needle. Correct or incorrect sampling of the needle

1 In the present article, apart from the actual meaning (time, space or

whatever else) we choose to indicate the independent variable with t.

2 It may be useful to remind the basics of sine and cosine functions,

expressed as follows in the general terms: y(t) = A cos (2pm ?/)
and y’(t) = B sin (2pm?/) where A and B represent the amplitude of

the relevant functions. m is the circular frequency, expressed in s-1,

and / angle is the phase, in rad, such that 0 B /\ 2p.
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rotation corresponds to correct or incorrect sampling in the

corresponding trigonometric functions in Fig. 1S: the

effect of aliasing is also shown with respect to the period of

the sine and cosine functions.

In the all-day life, a practical example of incorrect

sampling is found in old-fashioned western movies, where

the recorded individual pictures (the individual samples) of

the film are taken at constant time intervals, Dt, that are
longer than that required to avoid aliasing: it may happen

that the spokes in the wheels of a coach seem curiously to

rotate in the opposite sense with respect to that pre-

dictable on the basis of the direction of the coach itself. An

analogous effect can be observed in videos of propellers of

an aircraft or of vanes of a fan.

The condition under which a sequence of pictures, taken

at constant Dt sampling intervals, is suitable to represent

the process properly, is expressed by the so-called Nyquist3

criterion in terms of Dt, TP, and the relevant frequencies

msampland m, respectively. Making reference to the example

of the rotating needle of Fig. 1S, the well known Eq. (1)

describes the relation between rotation period, TP, and

frequency of rotation, m:

v ¼ 1

TP
ð1Þ

Similarly, the relation between the sampling interval, Dt,
and the corresponding sampling frequency, msampl, is given by:

vsampl ¼
1

Dt
ð2Þ

The Nyquist criterion expresses the condition for a

correct sampling that can be written in different forms, all

expressing the same condition:

Dt\
TP

2
ð3Þ

i.e.:

Dt\
1

2m
ð4Þ

or:

vsampl [ 2v ð5Þ

Summarizing and integrating: TP, in seconds (s), the

period, is the time required by the sine or cosine function to

assume equal values in subsequent cycles, i.e., the time

between two identical positions of the needle. The sam-

pling period Dt is expressed in s, and corresponds to the

time elapsed between two subsequent samplings, i.e., in the

example of a film, between two subsequent pictures. Fre-

quencies, m and msampl, are expressed in s-1 (also referred to

as Hertz, Hz). m corresponds to the number of maxima of

the sine or the cosine function in 1 s; in the cited example it

corresponds to the circular frequency that is the number of

rotations of the needle per time units. The sampling fre-

quency, msampl, corresponds here to the number of sam-

plings, i.e., of pictures, per s.

In Fig. 1 examples are shown of sine functions with

different frequencies, sampled in agreement or in dis-

agreement with the Nyqvist criterion.

Equations (3–5) are valid whenever an event may be

described by a single sine or cosine function, depending on

the initial condition chosen. However, it very often hap-

pens that a signal is too complex to be accounted for by a

single sine or a cosine function. Whenever the signal is a

complex one, the correct sampling period, Dt, is given

quantitative meaning by defining the frequency in the

frame of the analysis of the signal, as it will be explained in

the following sections. This requires the transformation of

the signal from the original domain (for instance, time or

space domain), into the corresponding frequency domain.

Complex signals

In a complex periodic signal more individual sines and

cosines at different frequencies have to be summed to each

other to account for the whole process. Nothing is lost in

the relevant description, only once Dt is lower than half the

shortest period, corresponding to the highest frequency of

the individual signals.4 The sine and cosine individual

functions are called components that, altogether, describe

the overall periodic event. Equations (3) and (4) become,

respectively:

3

Harry Theodor Nyquist was born in Nilsby, Sweden in 1889. He was

a physicist, electrical and communications engineer, making funda-

mental contributions to telecommunications, electronics, and infor-

mation theory. He developed theoretical background for analog-to-

digital conversion of signals, which is closely related to the Nyquist

criterion discussed here. He also developed the Nyquist diagrams,

which are familiar to those working in impedance spectroscopy.

4 It is evident that in the real world it is not always clear or easy to

say what the shortest period is. In this case, oversampling is

necessary. The issue is treated in the following.
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Dt\
TPmin

2
ð6Þ

and

Dt\
1

2mmax

ð7Þ

where TPmin and mmax are referred to the individual signal

with the shortest period, corresponding to the highest

frequency.

Noteworthy, the Nyquist criterion is often expressed

directly with reference to a signal consisting of different

components, in the form of Eq. (7). It follows that the

definition of the useful lower limit for the sampling fre-

quency, msampl, is:

msampl [ 2mmax ð8Þ

As an example, in Fig. 2, four trigonometric functions

(individual signals) are used to build up the complex signal

[4].

Actually, in the frame of an experiment it is often

requested to follow the opposite path, i.e., to identify the

sine and cosine linear combination suitable to reconstruct a

complex signal.

As it was mentioned at the beginning of the article,

similar to what happens for many natural events, an

instrumental signal may vary continuously: it may be

recorded by a system suitable to register continuous

changes of the measured quantity as a function of a suit-

able independent variable. This is an analog recorder. As

an example, the changes in atmosphere composition at

varying the location or in agreement with seasonal varia-

tions, which is an analog process, may be monitored by an

analog recorder (see Fig. 3).

Sampling the analog signal of the recorder is necessary

to obtain discrete data, i.e., numbers, suitable for computer

handling: the computer is a digital device5 that manipulates

digital data. Proper sampling of the continuous signal is

necessary to perform proper analog-to-digital (ADC) con-

version: computers should be fed with vectors or sequences

of data.6 As an example, Fig. 4 shows how the continuous

signal constituting a chromatogram is actually sampled,

stored and displayed as a sequence of discrete data.

Recalling that the original continuous signal should be

reconstructed from the sequences of discrete points

obtained by sampling, some practical ways to operate

should be exposed. Aiming at a good reconstruction of the

continuous signal by interpolation of the points constituting

the sampled sequence, it is strongly advisable to follow a

general rule of thumb, i.e., to pick up 10 points for every

cycle of the highest frequency present in a signal. This

practical rule, also referred to as ‘Real World Sampling

Theorem’ [5], implies a suggested sampling frequency

Fig. 1 The same sampling period on simple sine signals (blue lines)

possessing different frequency values. Sampling atDt ¼ 1
2m (a);Dt[

1
2m

(b); Dt\ 1
2m (c). Aliasing occurs in (a) and in (b) (see red-dashed trace)

Fig. 2 The complex signal in the top part of the figure (Y, in red

color) is given by the sum of two sine functions (s1 and s2) and two

cosine functions (c1 and c2), each one with different amplitude and

frequency values

5 Actually, analog computers also exist. An analog computer uses

continuously varying electrical, mechanical, or hydraulic quantities to

model the problem to solve. However, in 1950s and 1960s the advent

of digital computers made analog computers obsolete, except for very

specific applications like the flight computer in aircraft, which is still

in widespread use in the 21st century.
6 Numerical Analysis has progressively ‘substituted’ for Analysis,

formulating algorithms that may be translated into computer

programs. For the last forty years numerical analysis has shown an

impressive growth, in coincidence with increasing diffusion and

computational power of small computers. Numerical Analysis

algorithms are much simpler for non-mathematicians. It happens that

iterative procedures, often applied in numerical solution of mathe-

matical problems, require many subsequent steps, are hence repeti-

tive, long and even boring, which is however far from constituting a

problem for a modern personal computer.

18 Page 4 of 12 ChemTexts (2016) 2:18

123



much higher than the minimum value fixed by the Nyquist

criterion. By following this choice, a piecewise interpola-

tion procedure [6] consisting of a series of quadratic or

even linear equations will give back the original signal with

quite good accuracy. On the contrary, by adopting the

minimum sampling frequency fixed by the Nyquist crite-

rion, interpolation to reconstruct the original signal is much

more demanding and computationally intensive.

A further complication arises whenever a signal is an even

more complex one, the highest frequency present being not

always the same along the occurrence of the event. It is evi-

dent that changes of the sampling period may be suitable to

avoid sampling, storing and elaborating redundant, mean-

ingless data. Sectioning in some way different portions of the

signal, looking at it through a window, may be advantageous.

This operation (windowing), will be described in a further

contribution, in a more general frame. An effective approach

to economically handle a small number of data, as that

described hereafter, may be followed in specific situations.

Any technicians, (skilful) chemistry students, and

researchers, are well aware of a practical case of proper (or

improper) sampling in the course of a trivial laboratory oper-

ation. When performing a pH-metric titration by hand, using a

graduated glass burette, they read pH values different from

each other by discrete quantities, in correspondence to subse-

quent additions of discrete volumes V of titrant. It is very

important, to represent the titration curve accurately in themost

critical part, i.e., close to the endpoint, that the larger the change

in the measured pH, DpH, the smaller the corresponding finite

volume of titrant added, DV. The sampling frequency neces-

sary to correctly describe the titration curve has to increasewith

increasing the rate at which pH changes, expressed by

DpH/DV. If we do not ‘sample the event’ properly, the

description of the titration procedure is unsatisfactory: wemay

lose the most significant points of the relevant pH vs. V curve.

Figure 5 shows an example of a similar titration curve

and of the relevant derivative, which well accounts for the

occurrence of smooth and of rapid changes in correspon-

dence to different parts of the titration curve. Different

sampling frequencies are suitable to adequately describe

the curve ‘locally’: the Nyqvist criterion requires different

sampling frequencies for different segments of the signal.

The way how, in general, automatic titration systems

work is quite interesting in this respect. If the additions are

made by finite volume increments, the computer managing

the titration decreases each titrant addition when pH

changes rapidly, in order not to lose data in these parts of

the pH vs. V curve close to the endpoint.

Fig. 3 Some examples of

analog recorders. Left analog

recording thermometer (from

https://www.weather.gov/unr/

1943-01-22); right XY analog

oscilloscope (from http://www.

gwinstek.com/upload/website/

8d7367f7d206f3d63218396a

b8a9a178.jpg)

Fig. 4 Zooming shows how a

chromatographic peak, collected

by an analog recorder, may be

converted into a sequence of

discrete data (highlighted in

red). They can be displayed as

such or interpolated by a proper

algorithm to lead back to a

continuous trace
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The case of a continuously varying signal may be rep-

resented once more by an automatic titrator in which the

titrant volume addition is realised by a continuous flow. A

procedure in which pH is sampled at discrete times may be

adopted: the titrant flow is slowed down when DpH
increases. The two-column matrix of pH and corresponding

V values is efficiently managed by the computer. The

procedure is quite different from what usually happens in

nature: we can not slow down the occurrence of a natural

event so easily, as we slow down the titrant flux!

It is often of basic importance to know the rate at which

the measured quantity changes, possibly ‘before’ the

changes occur. In this case, we must have, in a way or

another, a good idea about the ‘shape’ of the signal: it is not

trivial to plan an ‘online’ effective way to proceed, unless

we have access to a signal that is representative of what we

are going to sample. Otherwise, the event has to proceed

smoothly enough not to present sudden, unexpected chan-

ges. The trend of the potentiometric pH vs. V titration is

once more helpful to illustrate what happens in this respect.

The curve sends us ‘messages’ about its mind to change

more rapidly. It does not exhibit discontinuities, so that the

extent of the subsequent additions and of the parallel

readings may be modulated ‘online’: the higher the DpH/
DV change at the n-th titrant addition, the lower will be the

DV at the (n ? 1)th addition.

More about sampling: more about discretization

or Analog-to-Digital Conversion (ADC)

An instrumental signal is often represented by a more or

less complex function of one (or even more) independent

variable(s). The sequence of sampled data sent to the

computer should bear the whole information content of the

continuous trace; in principle, proper sampling implies that

a suitable interpolation of the sampled points is capable to

fit the continuous signal.

It is obvious that whenever no indication is possible with

respect to a variation of the sampling frequency in corre-

spondence to different portions of the signal (as it is the

case of the automatic titrant), it is necessary to fix a con-

stant suitable sampling frequency that obeys the Nyquist

criterion over the whole signal.

To account for how the sampling operation on a con-

tinuous (univariate) signal is usually dealt with in dedi-

cated textbooks, the definition of the delta function, also

called impulse, or Dirac delta function, d, is necessary

[1, 2]. It is defined as an infinitely high, infinitely thin

spike, subtending a unitary area: it constitutes the limit of

the sequence of zero-centred normal distribution as the

standard deviation tends to 0. These properties make the d
function suitable to pick up the value of a continuous

function, f(t), at a given t value.7 An array of d functions

shifted from 0 to be spaced from each other by Dt units,
extending from -? to ??, describes the so-called comb

function: a sampling function extended over the whole

possible range of the signal (see Fig. 6).

Sampling of a continuous signal by adopting Dt sam-

pling period may be then represented by the scheme in

Fig. 7, which is expressed by the following notation:

xðkÞ ¼ f ðtÞcombDtðtÞ ¼
Xþ1

k¼�1
½f ðtÞdðt � kDtÞ� ð9Þ

In conclusion, the operation leading to a sequence x(k) is

performed by sampling the continuous signal, represented

here by f(t), through a train of equally spaced unit impulses,

as expressed by the comb function in Fig. 6, with Dt sam-

pling period (Fig. 7), computed in agreement with Nyquist

criterion. As a result, the continuous signal f(t) is converted

into a sequence x with index k, x(k), which corresponds to

the discretization of f(t), i.e., to the conversion of the

analog signal f(t) into a digital (discrete) signal x(k). Fig-

ure 8 a reports a continuous signal, which is correctly

sampled in Fig. 8 b and undersampled in Fig. 8c, leading to

the clearly misleading sequence in Fig. 8d. The already

discussed aliasing phenomenon has occurred in this case.

On the other hand, the inverse path is possible by the

interpolation operation, which performs Digital-to-Analog

Conversion. Scheme 1 sketches the operations that have

been described in the foregoing.

Fig. 5 Titration curve of 10 mL NaOH 0.1 M with HCl 0.1 M,

considering different sampling periods (a); derivative of the titration

curve (b)

7 The d(t) function only exists at t = 0 and is defined as follows:

d t � t0ð Þ ¼ 0 when t 6¼ t0, and
R t2
t1
f ðtÞdðt�t0Þdt¼f ðt0Þ for t1\

t0\t2. The impulse function can be used to ‘extract’ from a function

f(t) only the value at time t0.
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Transform techniques

Generally, in mathematics, a transform means a mathe-

matical operation to be applied on a function. We are

familiar with some transform procedures, such as the log-

arithmic transform: some calculations are made easier by

transforming the variables into their logarithms. For

example, multiplications and divisions are substituted by

sums and subtractions, respectively. Furthermore, in some

cases logarithms allow more compact and effective repre-

sentation of data over a wide range, as it happens in the

case of the acidity of a solution, expressed by pH, which is

the logarithm of the reciprocal of the hydrogen ion activity.

When dealing with a signal, either a continuous signal

described by a function f(t) or a discrete signal represented

by a sequence x(k), the meaning of transform generally

assumes quite a different meaning. Essentially, calculating

the transform of a signal leads to an alternative represen-

tation of the information contained in the signal itself,

using an alternative domain. To give the reader an intuitive

explanation of this obscure definition, it could be useful to

recall Fig. 2: the red signal (Y) represents the values of a

dependent variable measured as a function of an indepen-

dent variable, e.g., time. In other words, Y represents the

measured values in the time domain. However, Y can be

also represented as the sum of the four blue signals (s1, s2,

c1 and c2), that correspond to two sine and two cosine

functions with different frequencies and amplitudes.

Therefore, an alternative representation of the same signal

Y could consist in reporting the amplitudes of sines and

cosines as a function of their frequencies. This is a possible

example of transform of the signal, from the original

domain (time) to an alternative domain (frequency). In this

case, the sine and cosine functions are used as building

blocks to fit the original signal: each sine and cosine

function with a given frequency contributes to the original

signal with a weight equal to its amplitude. In other words,

Fig. 6 The comb function, defined in Eq. (9) for Dt = 1

Fig. 7 Sampling of a continuous signal by adopting a Dt sampling period equal to 1
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sines and cosines with different frequencies and with uni-

tary amplitude constitute an orthogonal set of functions8

that can be used as a basis set: a set of basis functions

constituting the building blocks to reconstruct the original

signal. Each one of these functions can be properly

weighted by multiplying it by a coefficient (the amplitude),

and the sum of all the weighted basis functions gives the

original signal.

In the real world, however, generally it is not possible to

represent exactly the original signal through the combina-

tion of a finite number of functions, conversely to what is

reported in the example of Fig. 2. Therefore, a linear

combination of the basis functions will be calculated, in a

way that the resulting g(t) function approximates, as close

as possible the f(t) function representing the original signal.

While doing this, g(t) will be calculated in a way to keep as

low as possible the number of basis functions, and to

achieve at the same time best approximation of f(t).

Let u0(h) be the vector bearing the proper coefficients of

the basis set, i.e., the weights of each basis function s0h(t).
If only the first N coefficients are different from zero or if

the first N coefficients are sufficient to obtain a satisfactory

representation of the function f(t), then g(t) will be defined

as the linear combination given by:

g tð Þ ¼
XN

h¼0

u0ðhÞs0hðtÞ ð10Þ

Similarly, when passing from the continuous function

f(t) to the sequence x(k), the sequence x̂(k) approximating

x(k) is defined according to:

x̂ kð Þ ¼
XN�1

h¼0

u hð ÞshðkÞ ð11Þ

where u(h) is the coefficient vector and the sh(k) are the

sequences that constitute the basis set.

Once the basis set is chosen, the coefficients of the

different elements are found by the so-called transform

techniques [7, 8]

Fig. 8 Continuous signal (a);
correct sampling (b);
undersampling (c); sequence of

undersampled data (d)

Scheme 1 Analog-to-digital conversion (ADC) and digital-to-analog

conversion (DAC)

8 Sine and cosine functions with different frequencies are an

orthogonal set of functions since their inner product over any closed

interval of length 2p is equal to zero, i.e.: $ 0?1p
2p?1p cos (nt) cos (mt)dt =

$ 0?1p
2p?1p sin (nt) sin (mt)dt = $ 0?1p

2p?1p cos (nt) sin (mt)dt = 0, where

l is a real number, n and m are positive integers [ 0, and n =

m. The last one of the three integrals (product of sine and cosine

functions) is equal to 0 also for m = n. Orthogonality implies that no

overlap of information is present between the components of the set of

functions, therefore leading to non-redundancy.
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The Fourier9 analysis

Functions

The inverse property exhibited by the logarithmic trans-

form is also a property of the Fourier Transform (FT)

[5, 9, 10]. At first, let’s consider FT applied to a signal

represented by a function: inverse Fourier Transform

(FT-1) reconstructs back the original signal (see Fig. 9).

Noteworthy, perfect reconstruction requires that the fre-

quencies of the trigonometric functions are all multiples of

a single fundamental frequency.

It has been mentioned above that the transform of a

complex signal consists of the calculation of individual

signals whose sum gives back the complex signal itself or

its approximation, g(t), according to Eq. (10). One possible

approach is to choose, as individual signals, sine and cosine

functions: sine and cosine constitute the basis set of FT. As

defined in footnote h and sketched in Fig. 10, they consti-

tute an orthogonal basis set. The sum of a proper number of

these trigonometric functions with suitable angular fre-

quencies and amplitudes reconstructs the complex signal,

avoiding overlapping information, thanks to the reciprocal

orthogonality. It does not seem redundant to once more

underline that orthogonality constitutes a fundamental

request for best effectiveness of the representation: the

information content of each one of the two functions of a

couple with the same argument does not bear anything

redundant. Sines and cosines constitute the most widely

used set of elementary functions. An operator, specifically

the Fourier Transform algorithm, constitutes the tool for

computing the amplitudes to assign to each individual sine

and cosine component.

Being f(t) a continuous function of the t variable, the FT

operator applied to the f(t) function generates the r(v)

function in the so-called alternative (to t) frequency (v)

domain; r(v) is in turn a continuous function of the v

variable. On the other hand, the inverse transformation

operator, FT-1, regenerates f(t) from r(v):

r mð Þ ¼ FT f tð Þ½ � ð12Þ

f tð Þ ¼ FT�1 r mð Þ½ � ð13Þ

v is a variable expressing frequency: r(v) gives quantitative

account for the frequency content of f(t). The procedure

that allows the determination of the frequency content of a

signal, namely the Fourier analysis, is suitable to draw the

spectrum of the signal, i.e., to represent the signal by the

relevant frequencies. In other words, a signal f(t) in the

original domain is transformed in r(v), defined in the rel-

evant frequency domain, through the FT algorithm.

As already cited, Fig. 2 reports a continuous signal,

expressed by the f(t) function, together with the sine and

cosine components necessary to draw it. It is a relatively

simple function: only two sine and two cosine functions are

necessary to account for it (see Table 1). The relevant

spectra, in terms of cosine and sine coefficients for four

different frequency values, are reported in Fig. 11.

The complex signal in Fig. 2 can be expressed by:

g tð Þ ¼ 3sin 2p10tð Þ þ 2sin 2p2:5tð Þ þ 2cos 2p25tð Þ
þ 4cos 2p1tð Þ ð14Þ

In the present case, g(t) coincides with f(t).

Summarizing, we can list the amplitudes of the cosine

functions (Ai) and of the sine functions (Bi) together with

the corresponding frequencies, vi, as reported in Table 1.

Fig. 9 Fourier Transform (FT) of a signal and inverse Fourier

Transform (FT-1) of the corresponding spectrum

9

Jean-Baptiste Joseph Fourier was born in Auxerre, France, in 1768

and died in Paris, in 1830. He was a mathematician and physicist,

especially known for elaborating the mathematic tools of Fourier

series and, in general, of Fourier analysis. He also developed relevant

applications to problems of heat transfer and vibrations.
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The spectra reported in Fig. 11 are, therefore, the plots of

the A and of the B amplitudes vs. v.

Quite important operations are easier to perform on

spectra than on the corresponding original signals. Fur-

thermore, the analysis of the spectra is often more user-

friendly than the signal itself: the spectra contain all

information that is often more hidden in the original sig-

nals. Figure 12 reports some examples of instrumental

signals (left-hand side) that are generally examined by

looking at the corresponding spectra (right-hand side).

Sequences

Let’s now consider a signal represented by a sequence x(k),

consisting of N equally spaced points (where N is an even

number), so that 0 B k\N. Whenever we analyze a digital

signal, i.e., on sequences of data, eventually obtained by

proper sampling an originally continuous signal as defined

in Eq. (9), we have to use the Discrete Fourier Transform

(DFT) algorithm. The spectrum of the original signal is

accounted for by representations that will be described

hereafter: the analysis of the spectrum of the signal is

actually necessary to perform correct sampling, according

to the Nyqvist criterion illustrated above [see Eq. (8)].

At this point, the reader is supposedly worried about an

evident dilemma, which requires inserting an important

consideration. The dilemma is: in front of the necessity to

properly sample a continuous signal, we must calculate its

spectrum. However, to calculate its spectrum, we should

properly sample the signal. Which came first, the chicken

or the egg? By reporting exactly from Ref. [5]: ‘‘The way

out from this dilemma is to use common sense and a little

intuition. That is, to sample a function when we do not

Fig. 10 Sines and cosines are

orthogonal to each other: plot of

sin h vs. cos h (upper left), with

h varying from 0 to 2p, together
with the corresponding values

of sin h and of cos h as a

function of h. In the lower right

plot, the area corresponding to

positive values of sin h cos h
(red) is equal to the area

corresponding to negative

values of sin h cos h (blue);

hence, the integral of sin h cos h
over the interval from 0 to 2p is

equal to 0

Table 1 Cosine (A) and sine

(B) coefficients of the basis

functions used to generate the

complex continuous signal of

Fig. 2

Basis functions m A B

c2 1 4 0

s2 2.5 0 2

s1 10 0 3

c1 25 2 0

The names of the basis func-

tions are the same as those used

in Fig. 2
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know his bandwidth (the difference between the upper and

lower frequencies) a priori, we should choose the sampling

rate such that a smooth curve drawn through the samples

will ‘strongly resemble’ the original function. If we follow

this original rule of thumb, then for most practical appli-

cations the function will be sampled fine enough.’’.

Once this issue has been pointed out, let us go back to

FT of sequences. The general expression for the sines and

cosines suitable to account for the x(k) sequence,10 in

agreement with what has been discussed for the Fourier

analysis, makes use of an integer h such that 0 B h BN/2.

Therefore, h accounts for discrete values of m; the terms

with different frequency are also called harmonics, or

simply frequencies. If N points constitute the sequence in

the original domain, N harmonics exactly describe the

signal in the frequency domain. The product 2ph describes,

at increasing h within the interval given:

1. a null frequency term, i.e., a constant term, accounting

for the offset of the signal;

2. a unitary frequency, i.e., a frequency for a period as

long as the whole x sequence;

3. a frequency corresponding to a period of one half the

length of x, and so on, until, for h = N/2, the highest

possible frequency.

The knowledge of N values of the x(k) sequence allows

the solution of a system consisting of N equations with

N unknowns

FT algorithm furnishes the values for Ah and Bh coef-

ficients, constituting the sine and cosine amplitudes at

different frequencies, respectively, that are necessary to

account for every point of the x(k) sequence. The series of

cosines accounts for the symmetric portion of the sequence,

and that of sines the antisymmetric one (see the sine and

Fig. 11 Spectra of the complex continuous signal reported in Fig. 2: cosine (A) and sine (B) coefficients

Fig. 12 Near infrared interferogram (a) and corresponding spectrum (b); NMR free induction decay (FID) signal (c) and corresponding

spectrum (D)

10 For simplicity, in this paper we made use of sines and cosines to

describe how FT works. Actually, representation through sines and

cosines is equivalent to alternative representations, such as through

modulus and phase of vectors or through complex numbers, making

use of the Euler’s formulas. For the relationships existing among the

different representations, the reader is referred to Ref. [5].
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cosine functions in Fig. 10). The value of the generic x(k)

point of the sequence is given by:

x kð Þ ¼
XN=2

h¼0

Ah cos
2phk
N

þ Bh sin
2phk
N

� �
ð15Þ

where, for h = 0 the cosine term equals 1 and the sine term

equals 0, so that the A0 term is multiplied by 1, i.e., is

constant, and B0 is absent. Similarly, for h = N/2, BN/2 is

absent. Therefore, the term A0 is a constant term, often

referred to as continuous component.11

The cosine and sine coefficients, constituting the spec-

trum of the signal, are given by:

Ah ¼
2

N

XN�1

k¼0

x kð Þcos 2phk
N

0� h�N=2 ð16Þ

and

Bh ¼
2

N

XN�1

k¼0

x kð Þsin 2phk
N

0\h\N=2 ð17Þ

Therefore, the spectrum of the x(k) sequence consists of

N/2 ? 1 cosine terms (actually, N/2 true cosine

terms ? the continuous component) and N/2 - 1 sine

terms.

Summarizing, in Eq. (15) all coefficients Ah and Bh

defined in Eqs. (16) and (17) are multiplied by the corre-

sponding trigonometric functions with a given k value,

leading to the corresponding x(k) point of the sequence.

It is noteworthy that, for given treatments of the signal

that will be considered in the Part 2 of this contribution,

such as the application of low-pass filters, the plot of the

vector modulus Mh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
h þ B2

h

� �qh i
vs. frequency, m, is

sufficient to apply the filter properly.

Conclusions and perspectives

This contribution, devoted to the treatment of analog and

digital signals, discusses how the analog representation of a

natural event or of a response of an instrument can be

reversibly translated into digital form, i.e., into a sequence,

which brings the same information content. Practical

indications are given with this respect. One of the ‘trans-

form techniques’, the Discrete Fourier Transform, is

especially popular and the characteristics of the frequency

spectrum, obtained by this algorithm, are discussed.

In an upcoming part of this contribution, additional

advantages and tools made available once a signal is

‘Fourier transformed’ will be discussed, with specific

attention to situations that are most familiar to chemists.

Mathematic operations, such as convolution and deconvo-

lution of sequences, are much less known by chemists than

the four basic arithmetic operations. This notwithstanding,

they are more or less ‘hidden’ inside many instrumental

signals (spectra, chromatograms, etc.), which chemists deal

with every day and can constitute a powerful tool for

effective treatment of data.
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