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Abstract This short paper deals with the close relation of

the Gibbs–Helmholtz (G–H) equation to entropy. It is

shown that the G–H equation is readily derived from the

entropy equivalent of the Gibbs function, the Massieu

function. This derivation is also compared to another

simple and straightforward derivation which uses mostly

pure mathematical operations for multivariate functions,

without revoking the Massieu function. Finally, the so-

called ‘‘compensation effect’’ is also treated in some detail,

citing a critical paper which testifies that this effect is an

artefact; it simply reflects the relation between the Gibbs

function, the enthalpy, and the entropy.
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ChemTexts has published a couple of papers [1, 2] con-

cerning the Gibbs–Helmholtz (G–H) equation. Though the

obvious meaning of the equation suggests a relation

between the Gibbs function and the enthalpy (or Helmholtz

function), these papers also suggest that the equation

expresses interrelations of entropy and enthalpy.

Here, we would like to show the close connection of the G–

H equation to entropy, which readily provides an alternative

way for the derivation of the equation as well. In addition, we

also compare this derivation to a more conventional formal

mathematical one that also reveals the relationship. Finally,

we also discuss in some detail the so-called ‘‘compensation

effect’’ which relates entropy and enthalpy.

The G–H equation in one of its most substantial forms [2]

oðG=TÞ
oT

� �
P; n

¼ � H

T2
ð1Þ

is an expression of the derivative of the function G/T,

whose variables are the temperature T, the pressure P, and

the composition vector n that contain the amount of all the

components constituting the thermodynamic system (G is

for the Gibbs function and H for the enthalpy). For the sake

of simplicity, let us drop the composition vector as a

variable in further considerations, thus restraining the

validity to constant composition.

The G/T (T, P) function is closely related to the entropy.

Let us consider the entropy function S (U, V) which is the

characteristic function to use in calculations of equilibria in

isolated systems. The total differential of this function can

be given as

dS ¼ 1

T
dU þ P

T
dV: ð2Þ

Let us perform Legendre transformations on this func-

tion by changing the variable U to the derivative of S with

respect to U (i.e., 1/T), and similarly V to P/T (this is the

analogue of transforming the function U (S, V) into G(T, P)

using the same kind of Legendre transformations). The

resulting function Y (1/T, P/T) is called the Massieu func-

tion, and it is the entropy-based equivalent of the energy-

based Gibbs function:

Y ¼ S� 1

T
U � P

T
V ; ð3Þ

with its total differential

dY ¼ �U d
1

T

� �
� V d

P

T

� �
: ð4Þ

& Ern}o Keszei

keszei@chem.elte.hu
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It is easy to see that the Massieu function relates to the

Gibbs function G = U - TS ? PV as Y = - G/T. Thus,

finding the derivative of Y with respect to T would lead to

the G–H equation. As a first step, let us formally write the

differential form of Eq. (3):

dY ¼ dS� T dU � U dT

T2
� TðP dV þ V dPÞ � PV dT

T2
:

ð5Þ

Let us then substitute the right side of Eq. (2) into the

above expression:

dY ¼ 1

T
dU þ P

T
dV � T dU � U dT

T2

� TðP dV þ V dPÞ � PV dT

T2
: ð6Þ

Upon elimination of terms that sum to zero, after rear-

rangement, we obtain

dY ¼ U þ PV

T2
dT � V

T
dP: ð7Þ

We can recognise that the first term contains the

derivative of Y (i.e., of -G/T) with respect to T multiplied

by the increment dT, and that U ? PV is identical with the

enthalpy H, thus we can readily write

oðG=TÞ
oT

� �
P

¼ � H

T2
; ð8Þ

which is the G–H equation.

The above derivation of the G–H equation clearly shows

the close relation of this equation to the entropy equivalent

of the Gibbs function. Thus, we can recognise that it is also

closely related to the temperature derivative of the energy-

based Gibbs function which is -S. This relation is also

reflected in the identity:

oH

oT

� �
P

¼ T
oS

oT

� �
P

¼ CP: ð9Þ

We can see that once identifying the Massieu function

(which is often used in statistical thermodynamics), an easy

three-step derivation leads to the G–H equation.

However, a more formal and only slightly more com-

plicated way of the derivation of the G–H equation also

shows the relation of this equation to entropy. Let us start

with a formal derivation of the function G/T considering it

as a ratio of the functions G and T:

oðG=TÞ
oT

� �
P

¼
T oG

oT

� �
P
�G oT

oT

� �
P

T2
: ð10Þ

Let us substitute unit for the derivative in the second

term and factor out 1/T:

oðG=TÞ
oT

� �
P

¼ 1

T

oG

oT

� �
P

� G

T

� �
: ð11Þ

Recalling that the partial derivative of the G(T, P)

function with respect to T is -S, we can substitute it in the

form derived from the definition

G = U - TS ? PV = H - TS as

�S ¼ G� H

T
; ð12Þ

thus obtaining the equation

oðG=TÞ
oT

� �
P

¼ 1

T

G� H

T
� G

T

� �
; ð13Þ

which readily leads to the G–H equation in the usual form:

oðG=TÞ
oT

� �
P

¼ � H

T2
: ð14Þ

Finally, let us write a few words also about the entropy–

enthalpy ‘‘compensation effect’’. It is either used in

chemical kinetics to account for activation enthalpies and

entropies or in chemical thermodynamics to account for

reaction enthalpies and reaction entropies. Both notions are

quite spread, mostly in the biochemical literature. In its

most precise form, it says that there is a linear relationship

between DH and DS for changes in experimental variables,

which is typically considered as an inherent property of

complex biochemical systems. However—as explained in

detail by a recent paper of Sharp [3]—‘‘S–H compensa-

tion… is insensitive to the details of the model, thus

revealing little extra-thermodynamic or causal information

about the system’’.

According to this paper, the ‘‘compensation effect’’

typically works if DG is close to zero, compared to either

DH or TDS, which is trivial, as DG = DH – TDS holds.

Thus, it reflects nothing more than this identity—which is

based on the same close relation between G/T and S, as we

can easily see by rearranging it to D(G/T) = D(H/T) - DS.
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