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Abstract This article conveys useful key factors to rebuilt

the solidification of polycrystalline materials, as well as the

growth history of organisms and their parts, and to estab-

lish the metrics of the growth. The microscopic analysis of

solids is founded on the classical nucleation theory and on

interconnections between the heat flow pathway and

geometry of grains and interfaces. Particular order of the

grains, such as alignment, indicates non-isotropic heat

transport during solidification, for instance, due to the

presence of extraneous filamentous material or to heat

exchange by convection along definite directions. Mor-

phological analysis is also shown to be valuable to detect

particular thermal effects caused by changes of environ-

mental factors during growth. Relatively to solids, the

growth pattern of living bodies is complicated by mass

transfer between cells and environment. However, several

similarities with non-living matters can be often found.

Keywords Growth � Polymer solidification � Rhythmicity �
Biomimicry � Fungi

Introduction

The simple microscopic observation of solids, in the wider

sense of the term, can reveal amazing structures and tell us

considerably about the surrounding conditions during their

formation, provided that the appropriate reading keys are

accessible. For instance, the growth pattern of the skeleton

in living organisms may record physiological and envi-

ronmental changes [1] which remain imprinted in the final

structure.

Growth is a general process that applies either to phase

transitions and biological processes in living organisms as

bacteria, animals, plants, and parts of them. Decoding the

morphological information contained in a skeleton, as

well as in crystals of synthetic or natural materials, is of

great importance to rebuilt the modality of the whole

growth at the end of the process, especially when direct

observations cannot be made in the intervening period.

Investigations on growth can be very useful not only in

theory but also in practice, to prevent noxious effects as

those related to the development of pathogen microor-

ganisms or to undesired precipitation of solid substances.

It is surprising that the history of a solid, and therefore,

the variations occurred during its growth, can be often

rapidly deduced by a simple look under an optical

microscope, without complex instrumental examinations.

Indeed, structural changes found in naturally occurring

materials, such as minerals and ice, as well as disparities

in the size of annual rings of trees, are either very useful

to discover climate and ambient variations occurred in the

past. Direct analogues to tree rings are coral and shell

bands, since the annual growth increments of these marine

organisms provide a quantitative indication of their age

and water temperature variability [2]. Structural and

morphological analysis can also support the results of
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sophisticated analytical techniques, as those based on

isotopic composition, for dating of ancient finds. Varia-

tion of conditions during the solidification of non-natural

materials, especially polymers, also causes various effects

detectable on different size scales. Indeed, distortions or

modifications of the elemental cell of a crystal lattice on

nanometres scale, with the appearance of polymorphic

forms, are often revealed by X-ray diffraction. Changes in

morphology and size of crystals are also expected, on the

length scale of micrometres, as consequence of experi-

mental changes in solidification procedures and equip-

ment. For instance, temperature spikes during polymer

solidification are evidenced by the presence of rings

within spherulites, which are the basic morphological

units of polycrystalline samples observable through a

polarizing microscope. Usually, polymer spherulites

grown at a constant temperature are not banded. If a

temperature change occurs occasionally, a black ring

within spherulites will separate an external circular cor-

ona from an inner circle grown at a different temperature.

Intermittent temperature changes produce concentring

rings within each spherulite and, depending on the exact

temperature variation with time, the distance between two

successive rings may be constant or variable [3]. Polymer

spherulites, indeed, are often banded, especially when

developed under temperature jumps. A few authors have

found that the radial growth rate of even isothermally

grown banded spherulites is unequal within two succes-

sive bands, since an interchange between slow and fast

rate during crystallization allows the progress of crystal-

lization by rhythmic heat dissipation [4, 5]. It is worth

observing that similar banded growth patterns occur fre-

quently in nature as consequence of temperature or con-

centration gradients. Banding as symptom of rhythmic

growth is, for instance, found in asexual spore production

of fungi, such as Neurospora crassa. As the mycelium

grows along the surface of a solid medium it begins, after

several hours, to form aerial hyphae at the growing front.

This aerial growth continues for several hours and then

stops, allowing surface growth to be restored and con-

tinued for a period of time; afterwards, aerial hyphae are

again formed and so on [6]. The macroscopic effect of this

dual growth is the observation on solid agar media of a

series of conidiating bands (asexual spore formation) that

develop c.a. 22 h apart, alternating with areas of thin fil-

amentous growth referred to as ‘‘interbands’’, either in

Petri plates or long glass tubes (race tubes). Neurospora

crassa shows a periodicity of growth and reproduction

with a period of almost 22 h in the temperature range of

18–30 �C [7]. Since Neurospora is considered to grow on

a surface medium at a constant linear rate, the period of

the rhythm can be calculated from the distance between

consecutive bands, whereas the phase of the rhythm is

determined from the position of the bands relative to the

growth fronts [7]. Although most of the first reports on the

formation of zones in developing fungal colonies indicate

that the zones are caused by a repetitive oscillation of an

environmental factor, several studies have also evidenced

an endogenous origin of the periodic growth in Neu-

rospora crassa. Rhythmic growth behaviors observed in

biological systems are in principle more complicate than

banding in polymers, where the only oscillating parameter

is generally the temperature. Living systems, indeed,

exchange mass and heat through metabolic pathways,

which are networks of chemical reactions mostly cat-

alyzed by enzymes. Temperature oscillations affect either

the kinetics or thermodynamics of reactions, and vice

versa, the heat accompanying reactions may produce local

temperature fluctuations. Indeed, temperature is the sim-

pler factor controlling chemico-physical processes. As a

consequence, even when biological rhythms are con-

trolled by oscillating concentrations of metabolites, they

are not entirely temperature independent [6]. For instance,

when the temperature of a strain of Neurospora grown on

a definite medium in a race tube for 19 days is increased

from 15 to 25 �C, a frequency of bands associated with

conidiation of almost three times the value obtained at

temperature 10 �C lower is produced, although the linear

rate of the mould down the race tube is not significantly

affected [6]. Rhythmic processes in both living and non-

living systems, despite remarkable differences, express

the response of a steady state to chemical or physical

perturbations. For instance, intermittent slowdown of the

growth during polymer crystallization [3, 5, 8] is the most

natural countermove to local superheating effects due to

either heat release at the growth front and slow heat

transfer by conduction. The heat of solidification devel-

oped at the growth front is hardly removed by conduction

in low thermal conductivity substances as polymers, and

the progress of liquid–solid transitions at low undercool-

ing may undergo rhythmic temporary stops. During

solidification of metals, a similar counteraction towards

superheating can be observed by naked eye as increase in

brightness according to a phenomenon called recales-

cence. Indeed, a wave or periodic response of a process

gives the possibility to breakdown the resistance of sur-

roundings to the process itself. In biological systems,

rhythmic patterns as that adopted by Neurospora crassa

clearly reveal adaptation to environmental changes, either

of exogenous or endogenous (i.e., thermal, chemical, or

genetic) origin [9]. In all cases, rhythmic behaviors allow

to overcome temporary kinetic or thermodynamic hin-

drance due to effects, as the accumulation of reaction

products or heat, originated during a process. Tempera-

ture increases within physiological intervals cause gen-

erally faster growth of living bodies as trees, as well as
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major fungal reproduction, since generally high temper-

atures accelerate chemical reactions. A physical process

as solidification instead slows down as consequence of

temperature enhancements, since it is exothermal.

As similarities, also differences between the growth

patterns of living and non-living bodies are useful to

deduce historical events during growth. In some organisms,

the growth can be restricted to special regions, such as at

tips in fungi or near the apex of plant shoots [10]. Mycelial

fungi, being non-cellular according to the most general

meaning of the term, may increase in volume, numbers of

nuclei, and amount of cytoplasm, but cannot enhance in the

number of cells [11]. However, the main difference

between most of living and non-living bodies consists

generally in the way of accommodation of new cells or

fresh material: with a few exceptions, biological organisms

grow mainly by internal increase of cells number and size,

whereas the growth of non-living matter entails the addi-

tion of new material only to the exterior edges. For

instance, polycrystalline solids, such as polymers, show a

tessellated structure resulting from coalescence of several

circular ‘‘crystals’’ called spherulites, originated from liq-

uids by a mechanism of nucleation and external growth

[12], whereas the growth of biological systems generally

entails interior growth and division of pre-existent cells in

already compact tissues. This peculiar growth, besides the

flexibility of the cellular membranes and the presence of

liquid cytoplasm inside cells, makes structures and prop-

erties of non-living materials very different from that of

biological tissues. In spite of these differences, nature may

magisterially harmonize the coexisting growth mechanisms

of complex biological tissues and simple inorganic com-

pounds. An example of concurrent growths is the

enlargement of a shell to re-accommodate a body. Mean-

while, the growth of the internal organism occurs by the

enhancement of the cells number, and the size of the shell

increases by adding material (mostly calcium carbonate) to

the margins. In several gastropods and cephalopods, such

as nautilus, the enlargement of shells occurs by an under-

lying spiral growth, a pathway that allows to increase the

size by adding materials to one end without any change in

the shape. Interestingly, spiral growth has also been

observed in the polymer crystallization [13] and in the

portion of plants, where growth occurs by delivery of pri-

mordia to tips [10]. For instance, the seeds produced in the

centre of sunflowers and then moved towards the boundary

show the most efficient way of filling space by spiral pat-

terns. This spiral growth is likely originated by space

restrictions and ‘‘steric repulsion’’ between contiguous

seeds, since each seed is shifted at a certain angle in

relation of the successive seed [10]. The angle depends on

the radial velocity, the distance of the seed from the centre,

and the period of the growth. The golden angle (c.a.

137.5�), which arises from the ratio between two subse-

quent Fibonacci numbers [14], allows to optimize the space

taken by seeds, maximising the number of seeds per sur-

face unit.

Theoretical background

The study of the relationship between body size and shape

as a function of time [15] is a traditional branch of biology,

since it is very important for the environmental adaptation

and evolution of organisms. When the growth of different

parts, or organs, of an individual organism occurs with

equal rates, so that the ratio between their sizes is constant

throughout the considered lifetime, the growth is defined

isometric and the organism preserves its shape. The growth

of animals is typically allometric, although isometric

growth may also be observed, as in locusts and fishes. As a

consequence of isometric growth, changes in size are not

accompanied by changes in shape or external form [16].

The characteristic of living bodies, relatively to crystals, is

the continuous use and transformation of external materi-

als, or food, for growth. The development of living matters

entails, therefore, a net increase of weight during growth.

On the contrary, crystals grow only at expenses of the

liquid phase (the equivalent of ‘‘food’’ for biosystems) in

which they are immersed and, therefore, if the liquid is not

continuously added, the total weight of the solid–liquid

system remains constant; meanwhile, only the solid phase

increases. This is why the growth of biological system is

generally expresses by the mass, whereas for crystals are

more conveniently used variable quantities proportional to

the mass, such as the linear extension, the volume, or the

solidification heat [12]. As shown in the next paragraphs,

under specific conditions, also the growth of filamentous

fungi may be expressed by following the length of hyphae,

thus avoiding the need of extraction of the mycelium from

the culture medium.

Since the growth may be defined in various ways,

trustworthy comparisons between growth rates of similar

matters may be only based on data attained from equivalent

measuring methods.

Metrics of growth

Polymer crystallization

Direct observations on polymers crystallizing from melt

mainly reveal the gradual growth of circular crystalline

units usually with micrometre dimensions, referred to as

spherulites. The original crystalline embryos producing

spherulites fall in the length scale of nanometres and,

ChemTexts (2016) 2:11 Page 3 of 14 11

123



therefore, are not observable by optical microscopy.

According to the classical nucleation theory, crystalline

nuclei are considered to be shaped as geometrical fig-

ures with the lowest surface energy that is circles or

spheres. Since temperature controls liquid–solid transitions

and crystallization is exothermal, the growth rate depends

on the rate of heat removal from the solid front and

increases with decreasing temperature [17]. The develop-

ment of circular crystalline units throughout crystallization

is only possible if the growth occurs, relatively to heat

transfer, in isotropic media [18]. Indeed, an extending

circle can continuously keep its shape only if the linear

growth rates along all the radial directions are equal;

otherwise, a facet crystal should arise [19]. The assumption

of rounded geometry of the nuclei is justified by the

capability of circles and spheres to ensure the minimum

surface tension. Surfaces have generally a high energy,

since atoms on the boundary cannot entirely satisfy their

tendency to be wholly incorporated in the solid phase. As

shown in Fig. 1, the formation of highly dispersed particles

with a large surface area is not convenient, whereas the

minimization of the particles surface, relatively to the

whole mass or volume of the new phase, is associated to a

lower energy cost. Indeed, only a few nuclei achieve a

critical size to subsequently grow, whereas smaller nuclei

re-dissolve, so that the increase in free energy due to the

creation of surfaces does not exceed the free energy

decrease caused by the formation of solid bulk. Since

crystallization is exothermal and the growth rate depends

on the rate of heat removal from the solid front, the

development of circular crystalline units indicates that the

rate of heat transfer does not depend on the particular

direction, i.e., heat propagation is isotropic.

The instantaneous true growth rate of bi-dimensional

crystals (i.e., the mass of the solid formed in a time unit) is

not readily measurable [12]. The direct measurement of the

mass of the solid produced at various times during

crystallization would entail, beforehand, the recurrent stop

of crystallization and the solid–liquid separation. This is

practically very difficult to achieve or even unattainable.

On the other hand, the rigorous estimation of the growth

rate through visual observations would require the knowl-

edge of the number of spherulites and their specific

dimensions instant by instant. Fortunately, the develop-

ment of the solid phase at a nominally constant temperature

can be followed by simply measuring the advancement of

each side of facet crystals or, for circularly developing

crystals, the length of spherulites radius [19]. We will see

in the next paragraphs that the length of the radius of

spherulites can also be conveniently used, instead of the

mass or other proportional quantities, to study the metrics

of polycrystalline growth. Figure 2 shows, for instance,

that the growth of two spherulites with the same linear

growth rate is not isometric, unless spherulites nucleate

simultaneously. Indicating with r and d, respectively, the
radius of a spherulite at a specific time t and the mass of a

surface unit of polymer, the total mass m of n simultane-

ously growing spherulites can be written as function of

the area AðtÞ of each spherulite by the formula:

m ¼ ndA ¼ ndpr2. By passing to differentials: dm ¼
2ndprdr, that is: dm=dt ¼ 2ndpr dr=dt. In other words,

assuming simultaneous nucleation and considering a

spherulite annulus with infinitesimal thickness and mass

(i.e., the annulus with radii r and r þ dr, and mass ¼ dm),

the instantaneous growth rate dm=dt of a spherulitic sample

can be obtained as a function of r, and hence of t, multi-

plying the number of spherulites n by the mass of a

spherulite surface unit d and by the length 2pr of the inner
circumference of the annulus, and the product again by the

so-called linear growth rate dr=dt (which represents the

rate of increase of the radius r of a spherulite and is gen-

erally constant and uniform in space). To determine an

average value of the true growth rate in a definite time

interval, the mass of a circular corona with finite thickness

Fig. 1 Growth of an almost rounded nucleus with an initial

subcritical dimension. In the first stage, the growth is not effective

since too small nuclei may re-dissolve in the melt. Only when the

number of internal atoms overcomes the number of superficial atoms

a crystal will be developed
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Dm has to be considered. This mass can be obtained, for

planar spherulites, as the product of the mass of polymer

per surface unit and the increment of area of the spherulites

in the considered time intervals. Indicating with r and R,

the radius of the smaller and bigger circumferences defin-

ing an annulus, the area of the annulus DA, is given by

pðR2 � r2Þ and, hence: Dm ¼ dpðR2 � r2Þ. For instance,

the area and the mass of an annulus with unitary thickness

result, respectively, pð2r þ 1Þ and dpð2r þ 1Þ, since

R ¼ r þ 1.

The function rðtÞ can be obtained by photographing at

definite times a crystallizing specimen under a microscope

and measuring the radius of selected spherulites. When the

function rðtÞ is linear, also the true growth rate dm=dt

increases proportionally with time, since the derivative g ¼
dr=dt of the experimental function rðtÞ is constant and can

be easily calculated as the slope of the r � t straight line.

Different from the true growth rate [12], the linear growth

rate of bi-dimensional crystals is indeed generally found to

be time independent (i.e., constant), and a linear trend of

the spherulites radius as a function of the time is experi-

mentally observed. It is worth observing that also the

growth kinetics of microbial colonies and filamentous

fungi may be conveniently followed by measuring the

radial expansion or hyphal elongation in the conventional

Petri dish cultures [20] and often a constant radial growth

rate is also found [21, 22]. Beyond hyphal elongation at the

tips, the growth of fibrous fungi also occurs by branching;

polymer spherulites often grow with a similar splitting

mechanism of radiating lamellae [23]. It should, however,

be observed that tips of fibrillar crystals grow exclusively

at expense of external liquid materials, whereas the

extension of leading hyphae and secondary branches in

fungi seems to entail a short internal diffusion of ‘‘mate-

rial’’ from few segments (septa) behind the tips, before the

building of new portions of mycelium is done at the tips.

Indeed, fungal segments behind the tips do not extend,

even if they can be considered to contribute to the con-

struction of new hyphal walls by allowing the internal

passage of ‘‘food’’ to the tips. However, the assimilation

and utilization of food for new wall construction seem to be

only confined to the surrounding area of the fungal tips.

Therefore, morphological and metric analogies between the

growth of spherulites and mycelia are due to the fact that,

ultimately, both systems incorporate external material or

food directly at their growth fronts. It is also likely that

branching of hyphae occurs in correspondence of seg-

ments, where the food concentration is locally higher [11].

The formation mechanisms of crystals and natural

organisms show several other analogies. Polymer spher-

ulites may be produced not only by two early recognised

mechanisms (namely by radial extension of fibrous crystals

developing lateral branches, in turn able to branch, and by

sheaf-like mechanisms, widely described in the literature

[24, 25]), but also according to spiralizing patterns. Spiral

growth is very common in nature and appears in shells

[26], in a huge number of crystals [27] and even in

galaxies. The addition of new material to crystalline nuclei

in a spiraling way, depending on the type and the pitch of

the spiral, may lead to a growth front almost indistin-

guishable from a circumference. Because boundaries of

spirals with a low pitch may be at first sight indistin-

guishable from circles, only very few authors have recog-

nised polymer spherulites spirally grown [28]. Indeed, the

spiral growth mechanism can be clearly identified by

optical or electronic microscopy only when spherulites

show inner rings or bands and their centres are evidently

shaped as a single or double spiral [29]. A single spiral

spherulite is shown, for example, in Fig. 3.

Isotropic growth of spherulites may be perturbed in the

presence of anisotropic materials, such as fibers, in the

melt. Substances with one dimension much longer than the

r2r1

r3r2

Fig. 2 Two spherulites growing with the same linear growth rate

function GðtÞ, but nucleated at two different times. Indicating with r1
and r2, the respective radius at a time t, and with r2 and r3, the radii at

a time t0, it is evident that r2 ¼ r1 þ Dr and r3 ¼ r2 þ Dr. Therefore,
if r1 6¼ r2, it must also be: r2=r1 6¼ r3=r2 and the growth cannot be

isometric

Fig. 3 Micrograph of a banded spherulite of polyhydroxybutyrate

developed from a liquid blend. Although the spherulite boundary is

hardly distinguishable from a circle, it is possible to identify a spiral

growth pattern looking at the center of the spherulite
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other two are anisotropic not only relatively to the shape

but also with respect to physical properties and generally

show very different thermal conductivities along various

directions [30]. Indeed, fibers are generally able to conduct

heat along their axis much faster than isotropic media [31].

Therefore, when fibers are immersed in polymer melts,

premature nucleation of embryos occurs along their axis

and the crowding of spherulites causes fast coalescence

with lack of circular shape, forcing the original spherulites

to grow further only transversally to the fiber. The easier

nucleation process along a fiber axis reflects the common

ability of fibers to dissipate heat faster than polymer melts

[32]. In other words, in the vicinity of a fiber local tem-

perature decreases are more probable and favour the gen-

eration of embryos of solid phase with sufficient size to

grow. Spherulites with the center laying on a fiber axis

soon collide one another, then they can develop only

transversally to the fiber, finally colliding with late spher-

ulites nucleated in the melt. These latter have linear

dimensions equal or smaller than the transversal dimen-

sions of spherulites nucleated on the fibers. Therefore, as

shown in Fig. 4, the presence of randomly arranged

spherulites smaller than the maximum transversal dimen-

sion of spherulites laying out on a fiber is an evidence of

the high heat diffusivity along fibers [32].

Before to go into the metrics of growth of solids, we can

have a look at real structures of polymers. For instance, in

Fig. 5, the tessellated structure of the natural polymer

polyhydroxybutyrate resulting from coalescence of several

spherulites grown under temperature jumps is shown. Each

spherulite shows occasional rings in the inner region. Tiles

of the final solid structure have different forms and sizes,

and coalescence of two adjacent spherulites may generate a

curve (such as hyperbolas appearing in Fig. 5) at the

interface.

Assuming that spherulites originate from their respec-

tive centres and, once formed, continue to grow circularly

on their outer edges with the same linear rate as defined

before, bigger spherulites must be originated earlier than

smaller ones. Moreover, since circles having identical

dimensions and linear growth rates must originate lines at

the impinged interfaces [19], the presence of curved

interfaces in a tessellated structure is a further evidence of

a time-dependent nucleation process. Besides information

on the dynamics of nucleation and growth, the observation

of polymer solids can provide information on the heat flow

pattern during cooling from melt. As said before, solidifi-

cation is exothermal and, therefore, to avoid re-dissolution

of crystalline nuclei or stop of growth of their fronts, the

developing heat must be rapidly exchanged with the sur-

rounding. In other words, heat has to be eliminated as it is

produced at the growth front to allow further solidification.

Living organisms adopt different mechanisms to keep

constant the body’s temperature. For instance, dogs snug-

gle when it is cold and pant when it is hot. The growth of

circular crystalline aggregates, such as spherulites, entails

that the medium from which they develop is isotropic with

respect to heat propagation that is the rate of heat propa-

gation does not depends on the direction. Isotropic growth

of spherulites allows polymer films to offer the maximum

solid surface for heat exchange, simultaneously bearing the

minimum surface tension. Indeed, compared with other

planar geometrical figures with the same ‘‘exchanging’’

area, circles have the smallest boundary and, therefore, the

minimum surface energy. In conclusion, spherulites arise,

under isotropic conditions along all growth directions,

because of their capability to minimize the energy of

polycrystalline solids.

Spherulite growth and coalescence

The solidification of a bi-dimensional polymer sample,

according to the theory, occurs by nucleation at different

points of the melt and subsequent growth of effective
Fig. 4 Polypropylene crystallizing in the presence of a fiber under

nominally isothermal conditions

Fig. 5 Coalesced spherulites of polyhydroxybutyrate crystallized

under temperature jumps
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nuclei by addition of fresh solid layers to the growth fronts.

Liquid–solid transitions in polymers originate a number of

circular spherulites (one for each successful nucleation

event), whose growth can be observed over the time

through an optical microscope. Usually, nucleation is

instantaneous, that is all nuclei are formed simultaneously,

and all growing spherulites show the same linear rate dr=dt

and the same radius r instant by instant. However, espe-

cially when crystallization occurs by continuous cooling

from melt, the number of effective nuclei may be not

constant but time dependent. In this case, the linear growth

rate is not constant, since it increases with the undercooling

[8, 33]. In any case, when two or more spherulites collide,

there are portions of their boundaries unable to growth

further, whereas portions still in contact with the liquid

phase can continue to grow almost undisturbed. Impinge-

ment breaks the circular symmetry of grains and leads to

the formation of interfaces. Coalescence of spherulites also

causes a gradual decrement (more or less rapid according

to the fraction of the coalesced spherulites) of the mass of

solid formed per unit of time, i.e., of the true rate of the

phase transformation. It is worth to observe that, for a

hypothetical monocrystalline polymer specimen with a

constant linear growth rate, the crystallization rate (ex-

pressed as mass or volume of solids per-unit time) will first

increase continuously with more and more rapidity as the

circumference of the spherulite increases, and then sud-

denly fall to zero, together to the drop of the mass of the

melt. For real polycrystalline solids, the growth rate first

increases, then the increment of the growth rate begins to

decrease and finally, briefly after coalescence, the growth

rate goes down to zero [12].

For the analysis of growth, let us first focus on a poly-

mer specimen hypothetically crystallizing by simple

development of a unique spherulite with a constant linear

growth rate dr=dt ¼ g. By choosing as zero time the

nucleation time of the spherulite, the radius of the spher-

ulite at any time t is given by the equation: r ¼ gt.

Although the spherulite retains its circular form meanwhile

it grows continuously by the addition of fresh materials to

the boundary, the ratio between the radii of the spherulite at

two arbitrary times during crystallization is not constant

but depends on the two chosen times: r1=r2 ¼ t1=t2. The

area A of the spherulite is given by the formula:

A ¼ pr2 ¼ pg2t2, and therefore, it is a function of the

square of the time, whereas its derivative (proportional to

the whole growth rate) is a linear function of time:

dA=dt ¼ 2pg2t. In conclusion, the true growth of a spher-

ulite, showing a constant linear growth rate, depends on the

square of time; consequently, the true growth rate is not

constant but depends on time. As the surface of a spherulite

is proportional to the square of the radius, the ratio

A t1ð Þ=A t2ð Þ ¼ r21
�
r22 between the total areas of a growing

spherulite at two instants t1 and t2 is also dependent on the

choice of the time instants. Indeed, by choosing constant

time intervals, that is:

t1 � t0 ¼ t2 � t1 ¼ t3 � t2 ¼ t4 � t3 ¼ t5 � t4

¼ . . . ¼ tiþ1 � ti ¼ . . .

so that the measurements of the radius at time

t1; t2; t3; t4; t5; . . .ti; . . . will be:

r1; 2r1; 3r1; 4r1; 5r1. . .; ir1; . . .

the ratios between two subsequent areas of a spherulite will

result: 4; 9=4; 16=9; 25=16; . . .ðiþ 1Þ2=ðiÞ2:
The above succession converges to 1 for i ! 1;

therefore, the ratio between consecutive areas of a spher-

ulite, achieved after constant time lapses, can be considered

constant only for a very long observation time. For a

hypothetical monocrystalline sample, coalescence cannot

take place and the unique spherulite will grow until liquid

phase is still available.

For polycrystalline samples with finite dimensions, the

observation time of separate spherulites is limited by

impingement, and therefore, true spherulites likely do not

achieve the dimensions needed for convergence of the

above numerical succession.

Let us estimate the time dependence of the radius

increase Dr ¼ ri � ri�1 of a spherulite in correspondence of

two subsequent i� 1 and i observations. When observa-

tions are taken at constant time intervals Dt, so that:

ti � ti�1 ¼ tiþ1 � ti, also the increase of the radius Dr ¼
ri � ri�1 ¼ riþ1 � ri at any successive time is constant

during the whole crystallization because of the general

constancy of linear growth rate. However, as seen above,

increments of the area of the spherulite (corresponding to

the area of circular coronas) calculated at different crys-

tallization advancements depend not only on the time

lapse but also on the difference between the squares of the

linear dimensions (i.e., the radii) of the spherulite:

A ¼ pðr2i � r2i�1Þ 6¼ pðDrÞ2. We can conclude that different

from the radius, the area of a spherulite does not increase

uniformly with time, i.e., the increment of the area of a

spherulite is not constant at constant time intervals. This is

geometrically evident from the comparison between the

areas of two annuli with equal thickness but surrounded by

two circumferences with different sizes [12, 32]. Figure 2,

for instance, can also be considered as showing the growth

of a unique spherulite after two different Dt time intervals

with equal lengths: the annulus at advanced crystallization

is larger than that early grown. Indeed, as the radius of a

spherulite increases with a null ‘‘acceleration’’, the area

increases with a positive ‘‘acceleration’’ given by the
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formula: d2A=dt2 ¼ 2pg2. Since the third derivative

d3A=dt3 of the function AðtÞ is equal to zero at every time,

the first dA=dt and the third d3A=dt3 derivatives of AðtÞ are
each other in the same relationship as that existing between

the functions rðtÞ and d2r=dt2. Therefore, the analogous of

the function rðtÞ is the first derivative A0ðtÞ ¼ dA=dt of the

function AðtÞ. The derivative A0ðtÞ increases uniformly

with time generating increments DA0 constants at constants
time intervals, i.e., A0ðtiÞ � A0ðtjÞ ¼ A0ðthÞ � A0ðtkÞ for

ti � tj ¼ th � tk, at least when a single spherulite is moni-

tored in the absence of impingement. Since for a

‘‘monocrystalline’’ polymer film, the function representing

the area of the spherulite as a function of time is a stretch of

a parabola, also the mass of a growing solid phase as a

function of time (i.e., the growth of the spherulite) is rep-

resented by a parabola. When multiple nucleation events

occur simultaneously, indicating with n the number of

spherulites, the total area of the spherulites at any time

before impingement will be equal to n times the area of a

single spherulite. In this case, depending on the distance

between adjacent spherulites, early or late coalescence will

occur and the area of the solid will be not more dependent

on that of round-shaped crystallites but on the area of

progressively decreasing portions of spherulites. Therefore,

the mass of a polycrystalline solid increases rapidly with

time, as the dimension of spherulites increases before

impingement, then the rate of increase begins to decline

due to advancement of impingement, finally falling to zero.

Namely, the rate of crystallization begins to decrease as

coalescence prevails over the portions of spherulite

boundaries not yet in contact, achieving the null value when

the whole liquid has been transformed in solid. If nucleation

is time dependent, the increase of the crystallization rate

before impingement is even higher than that found in the

case of instantaneous nucleation, since both spherulites size

and number increase, i.e., either early spherulites and new

appearing spherulites contribute to crystallization growth.

However, it is worth noting that if the final number of

spherulites is the same in two specimens showing different

nucleation types but equal linear growth rates and induction

times (i.e., the time needed for crystallization to start), the

instantaneously nucleated specimen will also show the

higher values of the true growth rate.

Specimens continuously cooled show generally a high

crystallization rate just because of the high contribution to

the growth rate of premature spherulites, since small

spherulites originated later can contribute only marginally

to a crystallization rate enhancement. Indeed, during non-

isothermal crystallization, rðtÞ is not linear and the growth

rate dr=dt, as well as the true growth rate dm=dt, increase

remarkably with decreasing temperature. Moreover, the

qualitative trend of the crystallization rates is the same for

both the cases of instantaneous and non-instantaneous

nucleation: soon after the start of impingement, the crys-

tallization rate begins to slowdown. The volume fractions

of crystallizing samples plotted against time give generally

sigmoid curves. When the crystallization heat develops as a

bump-shaped function, the derived curve representing the

mass fraction of a polycrystalline solid as a function of

time also have a sigmoidal shape [12] and may be used for

the kinetic analysis of the phase transition according to

Avrami [33–35]. Indeed, integration transforms bump-

shaped curves in sigmoid curves. Sigmoid functions are

usually ‘‘linearized’’ using the logarithm of the dependent

variable. It is worth noting that the crystallization rate is

maximum in correspondence of the inflection point of the

sigmoid, i.e., when the total length of the lost growth front

due to impingement is equal to the length of the still

advancing growth fronts of all spherulites.

These intuitive conclusions on the speed of crystalliza-

tion and on the conditions for isometric growth of spher-

ulites can be mathematically derived as explained in the

‘‘Appendixes 1 and 2’’, respectively, for the case of con-

stant and variable linear growth rates.

Growth of filamentous fungi

The basic structure of filamentous fungi is referred to as

hypha, a tubular filament that originates from a spore [36].

As a hypha grows, it repeatedly branches giving rise to a

mass of filaments known as mycelium. For instance, in

Fig. 6, the mycelium of a strain of Stemphylium sp. during

division is shown.

The knowledge of the rates of production of bacteria and

fungi during in situ decomposition processes is very

important not only for environmental analysis and

Fig. 6 Optical micrograph showing brown conidia on conidiophores

formed during the division of a Stemphylium sp. mycelium. The

fungus was grown on a PDA (potato dextrose agar) substrate.

Courteously provided by CREA-PAV Plant Pathology Research

Centre (Rome)
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protection [37], but also because the microorganism

behaviours under different physico-chemical conditions

apply to a wide range of disciplines and medical science

[38]. Growth can be defined in several ways, such as

increase in dry weight, increase in colony radius and rate of

production of spores [39], according to the experimental

criteria and procedures [11]. When the fungal growth is

described by the cumulative weight of the biomass as

function of time, under typical in vitro conditions of fixed

and large amounts of nutrients, a sigmoidal curve is

obtained. There may be a delay before growth starts [40]

with a lag time just after t ¼ 0 (to go deeply into the

glucose concentration and water activity dependences of

the germination rate see Refs. [22, 40]) followed by an

exponential growth and then by a stationary stage. There-

fore, a fungal growth curve can be described by three

parameters: the lag time, defined as the x-axis intercept of

the curve; the maximum growth rate, defined as the slope

of the tangent in the inflection point and the asymptote,

representing the maximum value of growth.

Examples of quantities that follow such growth curves

in living matter are the length or mass of a human, a potato,

or a fish and the extent of a population of fish or

microorganisms [38]. Exponential growth is observed not

only by measuring the fungal mass in submerged cultures,

but also estimating the length (whose logarithm is pro-

portional to time) of germ tubes grown on solid substrates

[11, 41]. When the growth is followed by measuring the

radial extension of Petri plate inoculum as a function of

time, data are generally fitted by lines, that is the growth is

linear and the linear growth rate is constant. As explained

below, a constant linear growth rate of a circular mycelium

originated in the center of a Petri dish conforms with an

exponential, and not linear, growth of the dry mass. Indeed,

the depletion of nutrients inside the colony and their high

availability at the growth front has led to the concept of a

peripheral annulus, where both the increases of hyphal

length and of the number of hypha tips originated by

branching produce an exponential increase of the fungal

mass. In other words, like polymer spherulites, rounded

fungal growth may be considered to occur in outer shells

surrounding an inner mass of non-growing mycelium. The

wideness of the peripheral growth zone depends on the

particular fungus, and usually, in septate fungi, it is con-

siderably shorter than in non-septate fungi [42]. For

instance, the length of the peripheral zone for Penicillium

chrysogenum is 496 lm, whereas for Mucor racemosus is

only 3.41 lm [21, 42]. For some fungi, the cube root,

rather than logarithm, of the dry weight may be found

proportional to time, especially in the final phase of a long

growth experiment. This kinetic change is ascribed to the

aggregation of mycelium in tight pellets, limiting the

movement of nutrients and oxygen within the pellets and

thus narrowing growth of hyphae and branches only at a

very thin, exterior layer of the pellets.

Fungal development is affected by nutritional necessities

and environmental availability. For instance, the ratio C:N in

the growth medium, as well as the presence of some min-

erals, are fundamental to sustain an appreciable fungal

growth [37, 43, 44]. On the other side, environmental fac-

tors, such as water activity, temperature, ph and oxygen

availability, or the presence of inhibitors and waste products,

may strongly affect the fungal growth rate. During growth,

changes in several quantities and, hence, in growth rates,

occur: nutrients diminish and waste products accumulate,

often accompanied by changes in pH andO2 availability. For

easy interpretation of kinetics results, it is necessary to make

most of the parameters constant during growth, varying one

factor at once. It is also needed to select the culture method

most appropriate to the objective of the growth experiment.

For instance, it has been shown that the germ-tube method is

inappropriate to study the effect of nutrients upon growth

[21].

As discussed above, when an axenic strain of a filamen-

tous fungus is inoculated in a Petri dish, the fungal growth

can be followed by measuring the diameter of the colony,

instead of the drymass [39]. This is the most suitable method

to highlight the analogies between the development of fungi

and polymer solids. Indeed, as fibrillar crystals forming

polymer spherulites, hyphae elongate apically also devel-

oping lateral branches, which, once formed, grow them-

selves at the tips. As shown by Trinci [21], the radial growth

rates of circular fungal colonies Kr , equivalent to the linear

growth rates of spherulites, are found to be constant under

specific nutritional and surrounding conditions. In other

words, the radius of fungal colonies, coinciding with the

length of leading hyphae at the peripheral growth zone,

increases linearly with time according to the equation:

R ¼ R0 þ Krðt � t0Þ;

where R is the colony radius or hyphal length at time t, R0

is the colony radius or hyphal length at t0, and Kr is the

constant linear growth rate. Since branching does not

contribute to the radial development of the colony but

contributes to the increment of the fungal mass, the true

growth of the fungus is not linear but exponential.

In submerged shake-flask culture, indeed, the mass of

filamentous fungi is found to grow exponentially according

to the equation:

dM

dt
¼ aM;

where M is the mass of culture at time t and a is a constant,

at a prefixed temperature, known as the ‘‘specific growth

rate’’ (i.e., the growth rate of a unitary mass of culture per-

unit time). Integration of the above equation gives:
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ln
M

M0

¼ at;

where M0 is the mass of organism at an arbitrary time. The

specific growth rate a of an organism may be, therefore,

calculated from the expression:

a ¼ ln 2=td

where td is the doubling or generation time, which repre-

sents the time needed to have an increase of 100 % of the

original mass M0 of the organism (i.e., so that M ¼ 2M0).

This means that if the growth of a colony depends expo-

nentially on the time (i.e., M ¼ M0e
at) and the doubling

time is constant, the specific growth rate a can be related to

the theoretically radial growth rate Krt through the formula

[21, 22]:

Krt ¼ aw;

where w is the experimentally determined width of the

colony’s peripheral growth zone in lm.

The two different fungal growth functions, namely,

linear with respect to the radial and exponential relatively

to the area/volume extensions, are explainable by the

mechanism of hyphal branching. Indeed, only growth of

preexisting hyphae contributes to the radial development;

meanwhile, the increase of the hyphal density due to

branching in the peripheral growth zone does not con-

tribute to the colony’s radial expansion [21, 22]. Moreover,

the contribution of branching to the fungal mass increases

with increasing the radius of the colony, because later

branches may undergo further subdivision. This continuous

process of subdivision of lateral branches of hyphae is

evidently responsible for the exponential increase of the

true growth of fungi.

Conclusions

The growth mechanisms of polymer spherulites have been

described and discussed in comparison with growth of

biological systems. It has been shown that metric consid-

erations allow to correlate kinetics with morphology of

growing systems and their possible interfaces.

The growth mechanism of filamentous fungi under

homogeneous and unrestricted conditions can be compared

to that of polymer spherulites. As several polymer spher-

ulites, circular mycelia grow in the peripheral zone by

concurrent elongation and branching of hyphae, since the

local accumulation of waste products and rhythmic deple-

tion of nutrients at the hyphal apex during linear extension

stimulate branching in directions. where a high concen-

tration of food is still available. Indeed, branches are found

to extend first quickly than the parents hyphae, then the

linear growth rate of branches decreases, eventually falling

to the value of the hyphae from which they are derived.

Because of heat development during liquid–solid trans-

formations, a similar growth mechanism of fibrillar crystals

in polymer spherulites takes place owing to heat accumu-

lation at the tip of radial crystals and the possibility for

crystals to elongate through branching in non-radial

directions, where local lower temperatures favour a faster

heat removal. Spirally grown spherulites may grow even

faster than branched spherulites; because their effective

growth front is larger and heat may be released easily

before enfolding with new solid material.

Acknowledgments The present authors would like to thank CREA-
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the picture of Stemphylium sp.

Appendix 1: Growth of spherulites with constant
linear rates

It is intuitive that spherulites, simultaneously nucleated and

growing with the same linear growth rate, have also equal

dimensions and growth rates at any time. The growth of a

couple of such spherulites is, therefore, isometric for the

whole crystallization, at least before impingement with

neighbours takes place. We will also see that, when two

spherulites do not nucleate simultaneously, isometric grow

is not possible at all, independently of the linear growth rate

values. Moreover, we will establish that simultaneous

nucleation is a necessary and sufficient condition to ensure

isometry, even when the two spherulites grow with differ-

ent, but constant, linear rates. It is worth noting that to

assess if growth is or not isometric, it is necessary to esti-

mate the ratio between the areas of two spherulites at dif-

ferent times. However, for predictions on the metrics of

growth, the ratio between the areas can be conveniently

replaced by the ratio between the radii of growing spher-

ulites. Indeed, the constancy of the ratio ðr1=r2Þ2 between

the areas of two spherulites entails the constancy of the ratio

r1=r2 between the radii of the spherulites, and vice versa.

Considering two growing spherulites 1 and 2 having

respective radii r1, r
0
1 and r2, r

0
2 at two instants t and t0, to

observe isometric growths at two consecutive observations it

must be: r1=r2 ¼ r01=r
0
2, i.e., r1r

0
2 ¼ r01r2 or r1=r

0
1 ¼ r2=r

0
2.This

condition is always valid for instantaneous spherulites growing

with equal growth rates, since for the most part of the growth

(i.e., up to impingement), it results: r1 ¼ r2 and r
0
1 ¼ r02.

To analyse the general case of different nucleation times

and growth rates, let us observe that the sum and the pro-

duct of the radius r and r0 of an expanding circle at two

instants t and t0 are coefficients of one of the set of

parabolas with equation:
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y ¼ 2x2 � 2ðr þ r0Þxþ 2rr0:

The symmetry axes of such parabolas are the vertical lines

with equation: x ¼ ðr þ r0Þ=2, whereas the vertexes are

placed in the points: (ðr þ r0Þ=2, 2rr0 � ðr þ r0Þ2=2). Hence,
the lengths of the radius of a spherulite at two successive

instants can be obtained as solutions of the equation:

x2 � ðr þ r0Þxþ rr0 ¼ 0:

Since the radii of two spherulites nucleated simultane-

ously and growing with constant linear rates can be,

respectively, described by the equations:

y ¼ 2x2 � 2ðr1 þ r01Þxþ 2r1r
0
1

y ¼ 2x2 � 2ðr2 þ r02Þxþ 2r2r
0
2

to obtain the radii of the two spherulites at the two instants

t and t0 it is sufficient to solve the two systems:

y ¼ 2x2 � 2ðr1 þ r01Þxþ 2r1r
0
1

y ¼ 0

(

y ¼ 2x2 � 2ðr2 þ r02Þxþ 2r2r
0
2

y ¼ 0

(

or, equivalently, to solve the two equations:

x2 � ðr1 þ r01Þxþ r1r
0
1 ¼ 0

x2 � ðr2 þ r02Þxþ r2r
0
2 ¼ 0:

For two spherulites nucleated simultaneously and

growing with equal constant rates, it results instant by

instant: r1 ¼ r2 and r01 ¼ r02; therefore, the radii are also

solutions of the systems:

y ¼ 2x2 � 2ðr1 þ r02Þxþ 2r1r
0
2

y ¼ 0

(

y ¼ 2x2 � 2ðr2 þ r01Þxþ 2r2r
0
1

y ¼ 0

(

i.e., the radii are also solutions of the equations:

x2 � ðr1 þ r02Þxþ r1r
0
2 ¼ 0

x2 � ðr01 þ r2Þxþ r01r2 ¼ 0:

Indeed, if two spherulites appear simultaneously and

grow with the same rate (i.e. r1 ¼ r2 and r01 ¼ r02) the two

equations:

y ¼ x2 � ðr1 þ r02Þxþ r1r
0
2

y ¼ x2 � ðr01 þ r2Þxþ r01r2

represent the same parabola and, therefore, the two

systems:

y ¼ x2 � ðr1 þ r02Þxþ r1r
0
2

y ¼ 0

(

;
y ¼ x2 � ðr01 þ r2Þxþ r01r2

y ¼ 0

(

admit the same solutions ðr1 ¼ r2; 0Þ; ðr01 ¼ r02; 0Þ for any

couple of observations ðt; t0Þ. This demonstrates that two

simultaneously nucleated spherulites growing with equal

rates have equal ratio between radii at any time and,

therefore, grow isometrically.

However, the condition of equal linear growth rates is

not necessary to have isometric growth when two spher-

ulites nucleate simultaneously. Indeed, for any couple of

constant linear rates g1 and g2 relative to two instantaneous

spherulites, it is possible to choose as zero time the unique

nucleation instant t01 ¼ t02 ¼ 0, so that it results: r1=r
0
1 ¼

g1t=g1t
0 ¼ t=t0 and r2=r

0
2 ¼ g2t=g2t

0 ¼ t=t0. This also

entails that for any couple of times ðt; t0Þ, it results

r1=r2 ¼ r01=r
0
2, i.e., the growth is isometric at any time, at

least up to impingement.

Vice versa, for two non-simultaneously nucleated

spherulites, t01 6¼ t02, and therefore, it results also:

r1=r
0
2 ¼ g1ðt � t01Þ

�
g1ðt0 � t01Þ 6¼ r2

�
r02 ¼ g2ðt � t02Þ

�
g2ðt0 � t02Þ;

i.e., crystallization cannot be isometric, independently of

the exact values of g1 and g2.

Briefly, we can say that simultaneous nucleation is a

sufficient condition for isometric growth of spherulites;

assuming an instantaneous nucleation, the growth of a

couple of separate spherulites is isometric up to impinge-

ment at any observation time, either if spherulites grow

with the equal or different linear rates. Indeed, for a

spherulite growing with linear rate g, the ratio between two

subsequent measures of the radius is independent of g:

r

r0
¼ gt

gt0
¼ t

t0
:

Hence, for any couple of simultaneous spherulites con-

sidered at two instants t and t0 is verified the condition for

isometric growth:

r1

r01
¼ r2

r02
:

The growth of two separate spherulites not instantaneously

nucleated is instead generally allometric during crystalliza-

tion, since the above condition can never be satisfiedwhatever

be the values of the constant linear rates. Indeed, assuming

that n spherulites, nucleated at different times during crys-

tallization, grow with constant linear rates gn, the radius rn of

each spherulite as a function of time will be given by:

r1 ¼ g1ðt � t01Þ;
r2 ¼ g2ðt � t02Þ; r3 ¼ g3ðt � t03Þ; . . .rn ¼ gnðt � t0nÞ:

ð1Þ
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In (1) t01; t
0
2; t

0
3; . . .t

0
n are, respectively, the times elapsed

for nucleation of each spherulite, theoretically measured

from an arbitrary zero time, and each of Eq. (1) has

physical meaning (i.e., positive radius) only for t[ t0i .

Although t01; t
0
2; t

0
3; . . .t

0
n are not directly measurable, they

can be extrapolated from r � t lines for r ! 0.

From (1), it follows that for any couple p; q of spher-

ulites considered at two times t and t0:

rp=rq ¼ gpðt � t0pÞ=gqðt � t0qÞ for p; q ¼ 1; 2; 3; . . .n

r0p=r
0
q ¼ gpðt0 � t0pÞ=gqðt0 � t0qÞ for p; q ¼ 1; 2; 3; . . .n

and, therefore, the ratios rp=rq is constant (and equal to

gp=gq) only if t0p ¼ t0q. The condition of constancy of the

ratio rp=rq can be only ensured by two spherulites simul-

taneously nucleated; for simultaneous spherulites growing

with the same linear rate g, it results rp ¼ rq for the whole

crystallization and, hence, spherulites are identical at any

time.

In conclusion, a unique constant value of the linear

growth rate is not sufficient to ensure isometric growth of

spherulites, whereas two instantaneous spherulites grow

always isometrically, independently of their exact linear

growth rate values.

Appendix 2: Time- and space-dependent linear
growth rates

We will here calculate, at various times during crystal-

lization, the relative dimensions of spherulites sporadically

nucleated and growing with non-constant linear rate, in

order to assess the conditions under which the ratio

between the radii remains constant with time.

In the general case of non-constant, nor uniform, linear

growth rates GðtÞ, the functions rðtÞ are not lines but

curves. A sudden heating of the growth front might cause a

momentary stop of solidification or even the melting of

material at the growth front [8, 12], with a temporarily

short contraction of spherulites. However, to avoid super-

heating at the growth front, solidification is generally car-

ried out under suitable temperature programs, which ensure

a sudden cooling at a prefixed low temperature (isothermal

crystallization) or a progressive cooling at a prefixed rate

(non-isothermal crystallization). Since there are not large

increases of temperature during regular crystallization

procedures, the functions rðtÞ are strictly monotonically

ascending.

For a time-dependent nucleation and non-constant but

uniform growth rates GðtÞ, indicating with r0n , the radius of

the nth spherulite at a prefixed zero time and assuming that

all spherulites grow instant by instant with the same rate

GðtÞ, independently of the exact type of G� t function the

radius of the nth spherulite at a generic time t will be given

by:

rnðtÞ ¼ r0n þ
Z t

0

GðtÞdt:

It follows, as already shown in the ‘‘Appendix 1’’, that

two spherulites 1 and 2 characterized by the same constant

growth rate function GðtÞ show an isometric growth, that is

a constant r1=r2 ratio, only if they nucleated simultane-

ously, that is if r01 ¼ r02.

More broadly, to have isometric growth of two separated

spherulites up to impingement, the two following condi-

tions must be verified: nucleation has to be instantaneous (a

condition usually characteristic of isothermal crystalliza-

tion) and the ratio between the functions G1ðtÞ and G2ðtÞ
must be constant, that is G1ðtÞ ¼ const � G2ðtÞ at any time.

This latter condition ensures that two simultaneous spher-

ulites mantain proportional sizes for the whole crystal-

lization. Indeed, under both the mentioned conditions, two

primitives r1ðtÞ and r2ðtÞ of the functions G1ðtÞ and G2ðtÞ
exists so that r1ðtÞ=r2ðtÞ ¼ const.

In conclusion, isometric growth of two (or more)

spherulites is possible only if spherulites nucleate simulta-

neously and the relative r � t curves (or lines in the case of

constancy of the linear growth rates) may be obtained one

from another by a contraction or dilatation along the ordi-

nate axis. This means that the r � t curves of two spherulites

intersect the abscisse axis in the same point and the graph of

a spherulite radius can be obtained by moving all points,

relative to a smaller spherulite, away from the t axis to a

multiple of their original distance from the axis. Numeri-

cally, this vertical dilatation entails that the radius of the

larger spherulite at any time is obtained multiplying that of

the smaller spherulite by a same coefficient c[ 1 (see

Fig. 7). Therefore, in the case of non-constancy of the linear

growth rates, instantaneous nucleation is a necessary but not

sufficient condition for isometric growth of spherulites.

It is worth noting that if the ratio between the radii of

two separate P and Q spherulites remains constant during

solidification, also the ratio between the spherulite areas

ðrP=rQÞ2 is constant with time and it remains constant even

if the two spherulites impinge each other, but no coales-

cence occurs with anyone of the other n� 2 spherulites. If

the impingement of all groups of spherulites is considered

to occur simultaneously and uniformly in space and the

distances amongst the centers of adjacent spherulites are

the same in all coalesced particles, these latter have iden-

tical shape and dimension instant by instant. In such an

ideal system, coalesced solid particles are constituted of the

same number of spherulites and their relative growth

remains isometric up to complete crystallization.
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When two spherulites S and Z grow with the same linear

rate, i.e., GSðtÞ ¼ GZðtÞ, but with different dimensions due

to their different nucleation times, their surface increments

in a certain time interval Dt ¼ t0 � t will be given respec-

tively by:

2pðr02S � r2SÞ ¼ 2pðr0S � rSÞðr0S þ rSÞ

2pðr02Z � r2ZÞ ¼ 2pðr0Z � rZÞðr0Z þ rZÞ:

Since ðr0S � rSÞ ¼ ðr0Z � rZÞ, the relative surface increase
of the two spherulites is equal to the ratio between the sum

of the radii of each spherulite at the time t0 and t:

2pðr02S � r2SÞ=2pðr02Z � r2ZÞ ¼ ðr0S þ rSÞ=ðr0Z þ rZÞ:

Defining g as the average linear growth rate of each

spherulite in the interval Dt, the above ratio can be

rewritten as:

ðr0S þ rSÞ=ðr0Z þ rZÞ ¼ ð2rS þ gDtÞ=ð2rZ þ gDtÞ:

If rS 6¼ rZ , i.e., if the two spherulites are not simulta-

neous, the above ratio cannot be constant within the

interval Dt.

Analogously, we can say that the ratio ðrS=rZÞ2 between
the areas of the two spherulites at a certain time t:

r0s þ gðt � t0s Þ
� �2.

r0z þ gðt � t0z Þ
� �2

cannot be constant with time if t0S 6¼ t0Z .

It also follows that two spherulites not simultaneously

nucleated will begin to grow allometrically (with a positive

growth if rS=rZ [ 1, negative if rS=rZ\1), whatever the

growth rate function be. Although spherulites not simul-

taneously nucleated and growing with equal instantaneous

rates maintain, before impingement, their relative

dimensions in the sense that the early spherulite will be

always larger than the late spherulite, the ratio between

dimensions of such spherulites cannot remain constant

during crystallization.

Furthermore, if a number of spherulites grow at different

rates, the size of later spherulites can even overcome that of

a spherulite nucleated earlier but growing slowly. Under

this circumstance, in correspondence of the time te needed

for achievement of identical size, the allometric growth of

a couple of spherulites S and Z might exhibit a change of

the sign or even, under the conditions rSðteÞ ¼ rZðteÞ and

GSðtÞ ¼ const GZðtÞ for t[ te, a change towards isometric

growth for t[ te.

In conclusion, if the growth rate functions of two

spherulites are not constant with time, isometric growth up

to impingement is not possible unless the two spherulites

nucleate simultaneously, and the ratio between their growth

rate functions is constant. In other words, isometric growth

in isothermal crystallization of polymers would be an

exception, rather than the norm, if the growth rate functions

were not constant. If the linear growth rates of two

spherulites are both constant with time, the condition of

constancy of their ratio is also verified and therefore it is

sufficient simultaneous nucleation to ensure isometry.

References

1. Tojo B, Ohno T (1999) Continuous growth-line sequences in

gastropod shells. Paleogeogr Paleoclimatol Paleoecol

145:183–191

2. Jones DS, Arthur MA, Allard DJ (1989) Sclerochronological

records of temperature and growth from shells of Mercenaria

mercenaria from Narragansett Bay, Rhode Island. Mar Biol

102:225–234

3. Raimo M (2004) Influence of temperature changes on crystal-

lization of an ethylene-propylene random copolymer. J Appl

Polym Sci 94:2008–2013

4. Wang Z, An L, Jiang B, Wangh X (1998) Periodic radial growth

in ring-banded spherulites of poly(e-caprolactone)/poly(styrene-
co-acrylonitrile) blends. Macromol Rapid Commun 19:131–133

5. Kyu T, Chiu H-W, Guenthner AJ, Okabe Y, Saito H, Inoue T

(1999) Rhythmic growth of target and spiral spherulites of

crystalline polymer blends. Phys Rev Lett 83:2749–2752

6. Bianchi DE (1964) An endogenous circadian rhythm in Neu-

rospora crassa. J Gen Microbiol 35:437–445

7. Bell-Pedersen D (2000) Review. Understanding circadian rhyth-

micity in Neurospora crassa: from behavior to genes and back

again. Fungal Genet Biol 29:1–18

8. Raimo M (2004) Delay in the growth of polymer spherulites

caused by superheating. J Mater Sci Lett 39:5567–5568

9. Dunlap JC (1999) Molecular bases for circadian clocks. Cell

96:271–290

10. Douady S, Couder Y (1992) Phyllotaxis as a physical self-orga-

nized growth process. Phys Rev Lett 68:2098–2101

11. Griffin DH (1996) Fungal physiology, 2nd edn. Wiley, New

York, pp 102–103

Fig. 7 Example of two functions linked by the relationship:

f1ðxÞ ¼ cf2ðxÞ. The values of one function may be obtained from

those of the other function through the coefficient c

ChemTexts (2016) 2:11 Page 13 of 14 11

123



12. Raimo M (2015) Growth of spherulites: foundation of the DSC

analysis of solidification. Chemtexts 1:13–33

13. Raimo M (2014) Structure and morphology of polyoxymethy-

lene. In: Sigrid L, Visakh PM, Sarath C (eds) Polyoxymethylene

handbook, Chap 6. Scrivener publishing-Wiley, pp 163–191

14. Sigler L (2002) Fibonacci’s Liber Abaci. A translation into

modern English of Leonardo Pisano’s book of calculation,

Springer-Verlag New York, Inc

15. Medawar PB (1941) The ‘laws’ of biological growth. Nature

148:772–774

16. Kent M (2000) Advanced biology. Oxford University Press,

Oxford

17. Raimo M (2011) An overview on the processing of polymers

growth rate data and on the methods to verify the accuracy of the

input parameters in crystallization regime analysis. Progr Cryst

Growth Charact Mater 57:65–92

18. Stefan J (1891) On the theory of formation of ice, in particular in

the polar sea. Annalen der Physik und Chemie (Wiedermann)

42:269–286

19. Raimo M (2007) ‘‘Kinematic’’ analysis of growth and coalescence

of spherulites for predictions on spherulitic morphology and on the

crystallization mechanism. Progr Polym Sci 32:597–622

20. Castro-Longoria E, Brody S, Bartnicki-Garcı́a S (2007) Kinetics

of circadian band development in Neurospora crassa. Fungal

Genet Biol 44:672–681

21. Trinci APJ (1971) Influence of the width of the peripheral growth

zone on the radial growth rate of fungal colonies on solid media.

J Gen Microbiol 67:325–344

22. Trinci APJ (1969) A kinetic study of the growth of Aspergillus

nidulans and other fungi. J Gen Microbiol 57:11–24

23. Shtukenberg AG, Punin YO, Gunn E, Kahr B (2012) Spherulites.

Chem Rev 112:1805–1838

24. Norton DR, Keller A (1985) The spherulitic and lamellar mor-

phology of melt-crystallized isotactic polypropylene. Polymer

26:704–716

25. Gránásy L, Pusztai T, Tegze G, Warren JA, Douglas JF (2005)

Growth and form of spherulites. Phys Rev E 72:0116051

26. Burnaby TP (1966) Allometric growth of ammonoid shells: a

generalization of the logarithmic spiral. Nature 209:904–906

27. Bennema P (1969) The importance of surface diffusion for

crystals growth from solution. J Crys Growth 5:29–43

28. Okabe Y, Kyu T, Saito H, Inoue T (1998) Spiral crystal growth in

blends of poly(vinylidene fluoride) and poly(vinyl acetate).

Macromolecules 31:5823–5829

29. Smereka P (2000) Spiral crystal growth. Physica D 138:282–301

30. Choy CL (1977) Thermal conductivity of polymers. Polymer

18:984–1004

31. Choy CL, Leung WP (1983) J Polymer Sci Polymer Phys Ed

21:1243–1246

32. Raimo M (2015) On the origin of transcrystalline morphology in

polymers and their composites: re-evaluation of different views.

Mater Today Commun 3:137–140

33. Avrami M (1941) Granulation, phase change, and microstructure

kinetics of phase change. III. J Chem Phys 9:177–184

34. Avrami M (1939) Kinetics of phase change. I General theory.

J Chem Phys 7:1103–1112

35. Avrami M (1940) Kinetics of phase change. II Transformation-

time relations for random distribution of nuclei. J Chem Phys

8:212–224

36. Bartnicki-Garcia S, Girbardt M, Bracker C (2015) Outstanding

pioneers in fungal microscopy. Nat Rev Microbiol 13:52–57
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