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Abstract This study is intended to give the reader a brief

overview of the mathematical background to the thermody-

namic theory of surfaces and interfaces. Some general aspects

of the thermodynamics of systems with interfaces are dis-

cussed, and a concise treatment of interfaces within the

framework of classical thermodynamics is provided. First, to

introduce the reader to the topic, a reasonably simple ther-

modynamic treatment of interfaces, together with a brief

description of the models widely used in the literature, is

presented, the characteristics of the Gibbs ‘‘dividing plane’’

model and the Guggenheim ‘‘interphase’’ model are outlined,

and a derivation of the Gibbs adsorption equation is given. In

the subsequent sections, several important mathematical

concepts (e.g., theory of homogeneous functions and partly

homogeneous functions, Euler’s theorem and the Gibbs–

Duhem equation, Legendre transformation) and various

functional relationships of the thermodynamics of surfaces and

interfaces are summarized, with particular attention to some

alternative formulations. Some of the mathematical principles

and methods are explained using illustrative examples.

Keywords Interfacial thermodynamics � Gibbs model �
Guggenheim model � Homogeneous functions � Partly

homogeneous functions � Euler’s theorem � Legendre

transformation � Gibbs–Duhem equation

Introduction

Despite the advent of surface-sensitive techniques, ther-

modynamic measurements remain a valuable tool for the

investigation of surfaces and interfaces.

Many (heterogeneous) systems of practical importance

can only be described by complex thermodynamic models

including interface(s). For instance, electrodes are, in fact,

capillary systems, because the interactions between the

different phases take place via the surface region. Thus, the

understanding of the thermodynamics of these interfaces is

of importance to all surface scientists and electrochemists.

The aim of the present study is to give a brief overview

of the mathematical background, some important mathe-

matical concepts, and various functional relationships

underlying the thermodynamic theory of interfaces (theory

of homogeneous functions and partly homogeneous func-

tions, Euler’s theorem and the Gibbs–Duhem equation,

Legendre transformation). The mathematical principles are

explained and illustrated with some typical examples.

First, to introduce the reader to the topic, a reasonably

simple thermodynamic treatment of interfaces, together

with a brief description of the models widely used in the

literature, is presented (more detailed discussions can be

found in several reviews and research papers [1–16]).

Basic concepts and notions related
to the thermodynamics of interfaces

Models of the interfacial region

Interfacial thermodynamics is the study of the application

of thermodynamics to interfacial phenomena, addressing

topics, including adsorption, interfacial energies, interfacial
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tension, and superficial charge, and about relations among

them [see e.g., 1–18]. Adsorption of one or more of the

components, at one or more of the phase boundaries of a

multicomponent, multiphase system, is said to occur if the

concentrations in the interfacial layers are different from

those in the adjoining bulk phases. Consequently, the

overall stoichiometry of the system deviates from that

corresponding to a reference system of (hypothetical)

homogeneous bulk phases whose volumes and/or amounts

are defined by suitably chosen dividing surfaces, or by a

suitable algebraic method (see later).

The classic work is that of Gibbs [19]; a paper by

Guggenheim and Adam [20] discusses the physical inter-

pretation of surface excesses, and Guggenheim [21] has

given a good summary of interfacial thermodynamics

emphasizing a viewpoint somewhat different from that of

Gibbs.

In many studies, the plane ideally marking the boundary

between two phases is called the interface. Although

interfaces are always dealt with from a thermodynamic

point of view, if attention is actually focused on only one of

the two phases, the plane marking the boundary between

the phase and the environment is often called the surface of

the phase (see e.g., [22]). The two words (i.e., ‘‘interface’’

and ‘‘surface’’) are often used synonymously, although

interface is preferred for the boundary between two con-

densed phases and in cases where the two phases are

named explicitly, e.g., the solid/gas interface [23].

The region between two phases where the properties

vary between those in the bulk is the ‘‘interfacial’’ or

‘‘interface’’ region, and sometimes it is called the

‘‘interphase.’’

An interface or interphase does not exist in isolation,

and valid thermodynamic conclusions can only be drawn

by considering the system, namely the interface and the

two bordering regions, as a whole. Provided that the radius

of curvature is large, the interface/interphase may be

regarded as a plane and its energy then differs from that of

a bulk phase by a term expressing the contribution of

changes of energy due to a change of the area of contact.

Edge effects can be eliminated by considering a section of

an interface in a larger system. There is no clear boundary

between the interfacial region and the bulk of the phases,

so that the thickness of the interphase depends on the

model chosen to describe this region. The geometric area is

represented by the product of the length and breadth of a

rectangle enclosing part of a surface. Many properties of a

system, for example, concentration of a particular species,

vary as a function of the distance perpendicular to the

surface, as shown in Fig. 1.

The classical Gibbs approach is based on a model in

which a real interface layer is replaced by a dividing

surface [19]. Gibbs found it mathematically convenient to

consider an idealized system depicted in Fig. 1b, with

properties identical with those of the whole real system.

The ‘‘surface of discontinuity’’ or ‘‘dividing surface’’ in the

idealized system is a two-dimensional region whose posi-

tion is determined by the requirements that the property

under consideration should maintain a uniform value in

each bulk phase right up to the dividing surface. This

corresponds to equating the two shaded areas in Fig. 1b. A

disadvantage of this approach is that the position of the

dividing surface alters according to the property

considered.

In the Guggenheim model, two dividing surfaces, one at

each boundary, are employed (Fig. 1c). It is assumed that

there is a ‘‘surface’’ or ‘‘interfacial’’ layer of finite thickness

(s) bounded by two appropriately chosen surfaces parallel to

the phase boundary, one in each of the adjacent homoge-

neous bulk phases. A layer of this kind is sometimes called a

Guggenheim layer or ‘‘interphase.’’ A disadvantage is that

terms dependent on surface volume are present in the

equations, but it is difficult to assign values to these terms. (It

should be noted that for very highly curved surfaces, i.e.,

when the radius of curvature is of the same magnitude as s,
the notion of a surface layer may lose its usefulness.)

Given a system, subsystems consisting of a segment of

the interface and finite volumes of the adjacent phases can

be selected. In principle, these subsystems should not be

geometrically regular in shape; however, the rectangular

parallelepiped-shaped domain is usually the most expedi-

ent selection. In two dimensions, the macroscopic subsys-

tem selected for investigation is represented by the ABCD

rectangle (Fig. 1).

Usually, the thickness of the interface or local values of

physical quantities (parameters) cannot be measured. That

is the reason why integrated quantities (which are acces-

sible experimentally, or can be calculated from experi-

mental data) are used for the thermodynamic

characterization of interfaces. Generally, these quantities

are given by the expression:

Wr ¼
Zbb

aa

Y nð Þ dn; ð1Þ

where n is the coordinate perpendicular to the plane of the

interface, Y is the function of n, Wr is the integrated

physical quantity, and aa and bb are the two adjacent

(homogeneous) phases.

Let the area of the surface or interface in the system

defined according to the above concepts be denoted by A,

and the internal energy by U. The volume V of the system

is the sum of the volumes of the two phases aa and bb, and

the volume of the inhomogeneous region is as follows:
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V ¼ Vaa þ Vbb þ V inh: ð2Þ

The internal energy can be given as

U ¼ Uaa þ Ubb þ Uinh: ð3Þ

Of course, this division is completely arbitrary, since the

values on the right-hand sides of Eqs. (2) and (3) depend on

the (arbitrary) choice of the dividing surface(s). In the

Guggenheim model, the volume Vr of the interfacial layer is

Vr ¼ sA: ð4Þ

The Gibbs dividing surface (or Gibbs surface) is a

geometrical surface chosen parallel to the interface and

used to define the volumes of the bulk phases. That is

Fig. 1 A schematic representation of the interfacial region, the Gibbs

‘‘dividing surface’’ (‘‘surface of discontinuity’’ or ‘‘mathematical

plane’’) and the ‘‘interfacial layer’’ concept (‘‘interphase’’) proposed

by Guggenheim. a The real system, b the Gibbs model of the

interface, and c the Guggenheim model of the interface. On the right-

hand side: the macroscopic subsystems selected for investigation are

represented by the ABCD rectangles
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V ¼ Vaa þ Vbb: ð5Þ

This means that the volume of the ‘‘surface phase is’’

Vr : 0.

Adsorption

As already discussed above, the Gibbs interface is a two-

dimensional homogeneous phase without thickness (i.e.,

the interface is regarded as a mathematical dividing sur-

face). In Guggenheim’s approach, the interface is consid-

ered to be a surface phase with finite thickness and volume

treated in a way analogous to bulk phases, except that the

thermodynamic equations contain terms related to the

contributions of changes of energy due to changes of area

and electrical state of the interface.

The two apparently different approaches can be essen-

tially characterized by the following procedure:

a) There is an idealized surface or surface phase sepa-

rating two homogeneous bulk phases (see Fig. 1).

The bulk phases are in equilibrium with the surface

phase.

b) Two separated reference systems a and b thought to

be noninteracting homogeneous bulk phases have to

be chosen (see Fig. 2), the conditions of temperature,

pressure, and composition being identical to those in

the adsorption equilibrium. Both reference phases

consist of suitably defined amounts of the compo-

nents. Each of the chosen reference amounts is

characterized by its respective molar or specific

properties.

c) Any extensive property of the reference systems is

simply the sum of the contributions from the

reference amounts, without any contributions from

interactions with the interfacial layer in the real

system.

The surface excess quantities are then the respective

differences between the real system and the chosen refer-

ence systems (or reference phases). As explained above,

this can be done, e.g., in the Gibbs sense of the total

extensive quantity minus its amount residing in hypothet-

ical bulk phases that are uniform up to a mathematical

dividing surface, or in the Guggenheim sense of excesses

over the average bulk amount in a boundary zone (‘‘surface

phase’’) of finite but small thickness. Obviously, if the

Gibbs model is used for the definition of surface excesses,

the reference amounts in the two reference phases are

thought to be contained in and making up the volume of the

actual real system, but can equally well be thought to be

quite independent and spatially apart one from the other.

On the other hand, however, the volume of the chosen

reference amounts is not necessarily equal to the volume of

the real system. It is even not necessary that the corre-

sponding phases are effectively present in their chosen

reference states within the real system. In principle, this is

why the Gibbs and the Guggenheim approaches can be

considered as equivalent. Nevertheless, there is an impor-

tant restriction in the Guggenheim approach replacing the

condition of equivalent volumes in the Gibbs method: the

reference systems must be chosen in such a manner that the

remaining ‘‘surface phase’’ has a constant thickness. Thus,

this restriction essentially affects the choice of the geo-

metrical shape of the reference systems. However, since

the reference systems are homogeneous bulk phases, their

thermodynamic properties are independent of the shape.

For this reason, a set of appropriate reference systems can

be always selected without loss of generality. This con-

sideration determines implicitly the selection of thermo-

dynamic systems ‘‘with cylindrical shape’’ [24], a

‘‘parallelepiped’’ [25], or simply as a ‘‘section’’ of the

interface cut out by perpendicular planes [26–28].

The surface excess amount or Gibbs adsorption of

component i is ni
r, which may be positive or negative, and

is defined as the excess of the amount of this component

actually present in the system over that present in a refer-

ence system of the same volume as the real system and in

which the bulk concentrations in the two phases remain

uniform up to the Gibbs dividing surface.

Fig. 2 Scheme of the ‘‘real system’’ with the inhomogeneous

‘‘interfacial region’’ (inh) and the ‘‘model system.’’ In the Gibbsian

model, there is a hypothetical ‘‘dividing surface’’ (r) (in the

Guggenheim model a hypothetical, three-dimensional surface phase,

see Fig. 1) which is separating two homogeneous bulk phases aa and

bb (that are in equilibrium with the surface region). The two reference

systems are a and b
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nri ¼ ni � nai � n
b
i ¼ ni � naxai � nbx

b
i

¼ ni � naxaai � nbx
bb
i ; ð6Þ

where ni is the total amount of component i in the ‘‘real’’

system, xi
a and xi

b are the mole fractions in phases a and b,

respectively, and na and nb are the total amounts of the

components (‘‘total number of moles’’) in the reference

systems. It is clear from Eq. (6) that the surface excess

amount is well defined only when na and nb are fixed. It

can be also seen that with different na and nb values we

have different values for ni
r.

According to the above considerations, the surface

excess Xr of any extensive property X is calculated as

Xr ¼ X � Xa � Xb; ð7Þ

where X denotes the value of the extensive property for the

whole system and Xa and Xb are the values for the refer-

ence systems.

The relation that gives the internal energy U as a

function of the extensive parameters is a fundamental

relation. If the fundamental relation of a particular system

is known, all conceivable thermodynamic information

about this system can be ascertained [29]. The internal

energies of the reference phases are given by

Ua ¼ Ua Sa;Va; na1 . . .n
a
m

� �
ð8Þ

and

Ub ¼ Ub Sb;Vb; nb1 . . .n
b
m

� �
: ð9Þ

The internal energy (U) of the system depends on the

entropy (S), volume (V), amounts n1…nm of the compo-

nents 1,…m, and the surface area (A):

U ¼ U S;V ;A; n1. . .nm
� �

: ð10Þ

The excess of the internal energy is given by

Ur ¼ U � Ua � Ub; ð11Þ

and the excess of the entropy is

Sr ¼ S� Sa � Sb: ð12Þ

The excess internal energy function

Ur ¼ Ur Sr;Vr;A; nr1 . . .n
r
m

� �
ð13Þ

is a homogeneous function of degree one with respect to all

variables (see ‘‘Homogeneous functions’’ section, espe-

cially Examples #1 and #4), if Vr : 0 (Gibbs model), or

Vr = As (Guggenheim model), since it is evident that

Ur kSr; kVr; kA; knri . . .kn
r
m

� �
¼ kUr Sr;Vr;A; nri . . .n

r
m

� �
ð14Þ

for all k[ 0 real numbers.

Therefore, according to Euler’s theorem (see ‘‘Homo-

geneous functions’’ section and Example #4), and in the

framework of the Gibbs model

Ur ¼ TrSr þ cAþ
X
i

lri n
r
i ; ð15Þ

where c is the intensive (interfacial) parameter conjugate to

the extensive variable A.

Due to the thermodynamic equilibrium

Tr ¼ Ta ¼ Tb ¼ Taa ¼ Tbb ¼ T ; ð16Þ

and

lri ¼ lai ¼ lbi ¼ laai ¼ lbbi ¼ li: ð17Þ

According to the equations like the two above, it is not

necessary to use superscripts to distinguish T, l1 … lm, in

the different equilibrium phases because these must have

uniform values throughout a, b, aa, bb, and r (due to the

equilibrium assumptions).

In the two reference phases, the following relationships

are valid:

Ua ¼ TSa � pVa þ
X
i

lin
a
i ; ð18Þ

and

Ub ¼ TSb � pVb þ
X
i

lin
b
i : ð19Þ

According to Eq. (15), the intensive parameter (c) is

defined by

c ¼ oUr

oA

� �
Sr;nr

1
...nrm

: ð20Þ

Although this expression is mathematically correct, it is

not really useful for practical purposes. Equation (15)

expresses the dependence of the energy U on the basis of

independent variables Sr, A, n1
r … nm

r. This set of inde-

pendent variables is not by any means the most convenient.

It is usually preferable to use T as an independent variable

instead of S. If the experiment is such that the external

conditions are constant temperature and constant pressure,

the most convenient potential function to use is the Gibbs

free energy function, G(T,p,n1 … nm), obtained from

U(S,V, n1 … nm) by two subsequent Legendre transfor-

mations (see ‘‘Adsorption’’ section and especially Example

#12):

Ga ¼ Ua þ pVa � TSa ð21Þ

and

Gb ¼ Ub þ pVb � TSb: ð22Þ

Consequently
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Ga ¼
X
i

lin
a
i ð23Þ

and

Gb ¼
X
i

lin
b
i : ð24Þ

The excess Gibbs free energy function is given as

Gr ¼ cAþ
X
i

lin
r
i ; ð25Þ

and c is defined by

c ¼ oGr

oA

� �
T ;nr

1
...nrm

: ð26Þ

Unfortunately, this definition of c is still not appropriate

for experimental studies or to confirm experimental results

since Gr(T, A, n1
r … nm

r) remains ill-defined and arbitrary

(because n1
r … nm

r clearly depend on the selection of the

reference systems). The Gibbs free energy function for the

whole system can be expressed as

G ¼ cAþ
X
i

lin
a
i þ

X
i

lin
b
i þ

X
i

lin
r
i

¼ cAþ
X
i

li nai þ n
b
i þ nri

� �
: ð27Þ

This means that c can also be defined in terms of the

Gibbs free energy function of the whole system as

c ¼ oG

oA

� �
T ;p;n

1
...nm

; ð28Þ

or in terms of the Helmholtz (free) energy function as

c ¼ oF

oA

� �
T ;V ;n1...nm

; ð29Þ

when the Helmholtz energy or ‘‘free energy’’ function is

defined as the Legendre transform of the internal energy

function (F = U - T�S). On the other hand—still

remaining in the framework of the Gibbs model—it should

be noted that since no volume term appears in Eq. (15),

there is no distinction between the surface Helmholtz and

Gibbs free energies.

According to the above discussions, Gr is a partly

homogeneous function of degree one (see ‘‘The Gibbs–

Duhem equation’’ section) in the variables A and n1
r … nm

r.

The expression for the total differential of Gr is

dGr ¼ oGr

oT

� �
A;nr

1
...nrm

dT þ oGr

oA

� �
T ;nr

1
...nrm

dA

þ
X
i

oGr

oA

� �
T ;A;nr

j 6¼i

dnri : ð30Þ

Taking into account that oGr

oT

� �
A;nr

1
...nrm

¼ �Sr, oGr

oA

� �
T ;nr

1
...nrm

¼ c, and oGr

oA

� �
T ;A;nr

j 6¼i

¼ li, Equation (30) can be written as

dGr ¼ �SrdT þ cdAþ
X
i

lidn
r
i : ð31Þ

The differential of Eq. (25) is

dGr ¼ cdAþ Ad cþ
X
i

lidn
r
i þ

X
i

nri dli: ð32Þ

There are thus two (general) expressions for dGr

(Eqs. 31 and 32), both of which are correct. This can only

be the case if

SrdT þ Adcþ
X
i

nri dli ¼ 0: ð33Þ

Equation (33) is the so-called Gibbs–Duhem equation

for interfaces (see ‘‘The Gibbs–Duhem equation’’ section).

At constant temperature

�Adc ¼
X
i

nri dli: ð34Þ

Dividing both sides of Eq. (33) by A yields

�dc ¼
X
i

nri
A

dli ¼
X
i

Ci dli; ð35Þ

where Ci is the surface excess concentration of species

i. Equation (35) is commonly called the Gibbs adsorption

equation.

In the case of liquid/liquid interfaces, the interfacial

intensive parameter (c) can be identified with the interfacial

tension. (Note that in case of solid/liquid interfaces there is

some controversy in the literature concerning the correct

name of c, e.g., it is sometimes called ‘‘specific surface

energy’’ or ‘‘surface stress’’ [1, 16, 26, 30, 31]).

There are two important points that should be addressed

here:

1. In the case of ionic components (charged species),

‘‘electrochemical potentials’’ (~li) may be used instead of

‘‘chemical potentials’’ in the corresponding equations.

2. It follows from Eq. (6) (which is the definition

equation of the surface excess amounts) that the Ci

values are uncertain, since they depend on the arbitrary

selection of na and nb.

Nevertheless, for the analysis of the experimental data

we need measurable physical quantities that do not depend

on the size of the reference phases.

The following procedure can be used for this purpose.

At constant T and p, the Gibbs–Duhem relationships for the

two reference bulk phases areX
i

xai dli ¼ 0 ð36Þ

andX
i

x
b
i dli ¼ 0: ð37Þ
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Using the above two relationships, it is possible to

express dl1 and dl2 (i.e., the differential changes of the

chemical potentials of two selected components) as a

function of the other dli values and the mole fractions at

constant temperature and pressure:

dl1 ¼ � xa2
xa1

dl2 �
X
i 6¼1;2

xai
xa1

dli: ð38Þ

and

dl2 ¼ � x
b
1

x
b
2

dl1 �
X
i 6¼1;2

x
b
i

x
b
2

dli: ð39Þ

Combining Eq. (35) with Eqs. (38) and (39), we obtain

�dc ¼ 1

A

X
i6¼1;2

nri þ xa2x
b
i � x

b
2x

a
i

xa1x
b
2 � xa2x

b
1

nr1 þ x
b
1x

a
i � xa1x

b
i

xa1x
b
2 � xa2x

b
1

nr2

 !
dli

ð40Þ

or

�d c ¼
X
i 6¼1;2

Ci þ
xa2x

b
i � x

b
2x

a
i

xa1x
b
2 � xa2x

b
1

C1 þ
x
b
1x

a
i � xa1x

b
i

xa1x
b
2 � xa2x

b
1

C2

 !
dli:

ð41Þ

By taking into account that

Ci ¼
1

A
ni � naxai � nbx

b
i

� �
; ð42Þ

we have

�dc ¼ 1

A

X
i6¼1;2

ni þ n1

xa2x
b
i � x

b
2x

a
i

xa1x
b
2 � xa2x

b
1

þ n2

x
b
1x

a
i � xa1x

b
i

xa1x
b
2 � xa2x

b
1

 !
dli

ð43Þ

or

�dc ¼
X
i 6¼1;2

Ci þ C1

xa2x
b
i � x

b
2x

a
i

xa1x
b
2 � xa2x

b
1

þ C2

x
b
1x

a
i � xa1x

b
i

xa1x
b
2 � xa2x

b
1

 !
dli:

ð44Þ

Equation (44) can be written in the simpler form:

�dc ¼
X
i 6¼1;2

C0
idli; ð45Þ

where Ci

0
denotes the (relative) surface excess of compo-

nent i with respect to the two selected components, and

C0
i ¼ Ci þ C1

xa2x
b
i � x

b
2x

a
i

xa1x
b
2 � xa2x

b
1

þ C2

x
b
1x

a
i � xa1x

b
i

xa1x
b
2 � xa2x

b
1

: ð46Þ

It is clear that the Ci

0
values do not depend on the

selection of the reference systems (that is, on the selection

of na and nb).

Therefore, the Ci
’ values can be determined as

C0
i ¼ � o c

oli

� �
T ;p;lj 6¼i

¼ � 1

RT

o c
o ai

� �
T ;p;aj 6¼i

ð47Þ

(or more exactly C0
i ¼ � o c

dli i 6¼1;2ð Þ

� �
lj6¼i

¼ � 1
RT

o c
o ai i 6¼1;2ð Þ

� �
T ;p;aj 6¼i

), where ai denotes the relative activity of

component i.

Equation (45) (Gibbs adsorption isotherm also called

the Gibbs adsorption equation) is one of the most impor-

tant results from interfacial thermodynamics, and it is used

all the time in physical chemistry and surface science.

In the following sections, we will briefly review the

relevant mathematical background necessary for some of

the derivations presented above.

The mathematical background of interfacial
thermodynamics

Homogeneous functions

Definition

Let f (x1, x2, …, xm) be a real function of variables x1, x2,

…, xm. The function f is a homogeneous function if for all

values of the factor k[ 0

f kx1; kx2; . . .; kxmð Þ ¼ sðkÞf x1; x2; . . .; xmð Þ; ðM:1Þ

where the function s(k) is usually called the scaling func-

tion, and is given by s(k) = kn.

In other words, a homogeneous function is a function of

one or several variables that satisfies the following condi-

tion: when all independent variables of a function are

simultaneously multiplied by the same (arbitrary) factor,

the value of the function is multiplied by some power of

this factor. That is, if

f kx1; kx2; . . .; kxmð Þ ¼ knf x1; x2; . . .; xmð Þ ðM:2Þ

for all k[ 0, then f is said to be a homogeneous function of

degree n. The degree n can take on any value (positive,

negative, or zero). A function f is linearly homogenous if it

is homogeneous of degree 1.

If for a function f the equation

f kx1; . . .; kxm; y1; . . .; ywð Þ ¼ knf x1; . . .; xm; y1; . . .; ywð Þ
ðM:3Þ

is true, then we say that this function is homogeneous of

degree n in the variables x1, x2, …, xm. Such functions are

called partly (or partially) homogeneous functions [1]. (It

should be noted that it is possible for functions to be

homogeneous of different degree in different variables, but
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here we restrict our attention to functions for which

Eq. (M.2) or Eq. (M.3) holds).

Some remarks to the definition of homogeneous functions

Remark #1 A homogeneous function of degree n gives

rise to a set of derivative functions that are homogeneous in

the same set of variables and of degree n - 1, that is,

partial derivatives of a homogeneous function of degree

n are homogeneous functions of degree n - 1.

Proof Differentiating both sides of Eq. (M.2) with respect

to xi (for i = 1,…, m), we get

k
of kx1; . . .; kxmð Þ

okxi
¼ kn

of x1; . . .; xmð Þ
oxi

; ðM:4Þ

and then dividing both sides of Eq. (M.4) by k we obtain

of kx1; . . .; kxmð Þ
okxi

¼ kn�1 of x1; . . .; xmð Þ
oxi

: ðM:5Þ

Hence the derivatives of f are homogeneous of degree

n - 1.

For example, in case of a homogeneous function of the

first degree f kx1; kx2; . . .; kxmð Þ ¼ kf x1; x2; . . .; xmð Þ the par-

tial derivative with respect to xi is
of kx1;...;kxmð Þ

okxi

okxi
oxi

¼
k
of x1;...;xmð Þ

oxi
, and therefore

of kx1;...;kxmð Þ
okxi

¼ of x1;...;xmð Þ
oxi

.

Remark #2 Suppose that the domain of definition of the

function f lies in the first quadrant, x1[ 0,…, xm[ 0, and

contains the whole ray (kx1,…, kxm), k[ 0, whenever it

contains (x1,…, xm), i.e., it is assumed that for every

point (x1,…, xm) in the domain of f, the point (kx1,…, -

kxm) also belongs to this domain for any k[ 0. Then f is

homogeneous of degree n if and only if there exists a

function g of m-1 variables defined on the set of points of

the form (x2/x1,…, xm/x1) such that for all (x1,…, xm) in the

domain of definition [see for example refs. 32, 33]:

f x1; . . .; xmð Þ ¼ xn1g x2=x1; . . .; xm=x1ð Þ: ðM:6Þ

Proof Let f (x1, x2, …, xm) be a homogeneous function of

degree n of variables x1, x2, …, xm such that for all k[ 0

f kx1; . . .; kxmð Þ ¼ knf x1; . . .; xmð Þ: ðM:7Þ

Obviously

f x1; x2; . . .; xmð Þ ¼ f x1;
x2

x1

x1; . . .;
xm

x1

x1

� �
: ðM:8Þ

If we set k = 1/x1, we have

f x1; x2; . . .; xmð Þ ¼ xn1f 1;
x2

x1

; . . .;
xm

x1

� �
: ðM:9Þ

This means that f is represented by

f ¼ xn1g
x2

x1

; . . .;
xm

x1

� �
ðM:10Þ

with some function g. Since, conversely, every function

f formed by means of an appropriate function g of m - 1

variables satisfies the condition of homogeneity, the

expression (M.10) represents the totality of homogeneous

functions of degree n.

Euler’s theorem

Euler’s Theorem states that the differentiable function f of

m variables is homogeneous of degree n, then the following

identity holds:

nf x1; x2; . . .; xmð Þ ¼
Xm
i¼1

xi
of

oxi
: ðM:11Þ

Proof Let f be a homogeneous function of degree n such

that

f jx̂1; jx̂2; . . .; jx̂mð Þ ¼ jnf x̂1; x̂2; . . .; x̂mð Þ; ðM:12Þ

and k 6¼ 0; 1
k
¼ j; xi ¼ 1

k
x̂i ¼ jx̂i; kxi ¼ x̂i.

Evidently

f jx̂1; jx̂2; . . .; jx̂mð Þ ¼ f x1; x2; . . .; xmð Þ

¼ 1

k

� �n

f kx1; kx2; . . .; kxmð Þ; ðM:13Þ

and

knf x1; x2; . . .; xmð Þ ¼ f kx1; kx2; . . .; kxmð Þ
¼ f x̂1; x̂2; . . .; x̂mð Þ; ðM:14Þ

i.e., f(x1, x2, …, xm) is also a homogeneous function of

degree n.

Differentiating each side of formula (M.12) with respect

to j, we have the following relationship:

of jx̂1; jx̂2; . . .; jx̂mð Þ
ojx̂1

x̂1 þ
of jx̂1; jx̂2; . . .; jx̂mð Þ

ojx̂2

x̂2 þ � � �

þ of jx̂1; jx̂2; . . .; jx̂mð Þ
ojx̂m

x̂m ¼ njn�1f x̂1; x̂2; . . .; x̂mð Þ:

ðM:15Þ

Introducing j ¼ 1
k
; xi ¼ jx̂i; x̂i ¼ kxi; Eq. (M.15)

combined with Eq. (M.14) can be rewritten as

of x1; x2; . . .; xmð Þ
ox1

kx1 þ
of x1; x2; . . .; xmð Þ

ox2

kx2 þ � � �

þ of x1; x2; . . .; xmð Þ
oxm

kxm ¼ n
1

k

� �n�1

knf kx1; kx2; . . .; kxmð Þ:

ðM:16Þ
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This means that

Xm
i¼1

of x1; x2; . . .; xmð Þ
oxi

xi ¼ nf x1; x2; . . .; xmð Þ; ðM:17Þ

or obviously

Xm
i¼1

of x̂1; x̂2; . . .; x̂mð Þ
ox̂i

x̂i ¼ nf x̂1; x̂2; . . .; x̂mð Þ; ðM:18Þ

which is exactly Euler’s theorem.

(Alternatively, by differentiating Eq. (M.2) with respect

to k we get

o

ok
f kx1; kx2; . . .; kxmð Þ ¼ o

ok
knf x1; x2; . . .; xmð Þ ðM:19Þ

and thus

Xm
i¼1

of kx1; kx2; . . .; kxmð Þ
okxi

xi ¼ nkn�1f x1; x2; . . .; xmð Þ:

ðM:20Þ

Then, setting k = 1

Xm
i¼1

xi
of x1; x2; . . .; xmð Þ

oxi
¼ nf x1; x2; . . .; xmð Þ ðM:21Þ

which was to be proved).

We can show that the converse theorem also holds, that

is if the function f of the real variables x1, x2, …, xm
satisfies the identity (M.11), then the function f is homo-

geneous of degree n.

Let us fix (x1, x2, …, xm) and define the function g of a

single variable t as

gðtÞ ¼ t�nf ðtx1; . . .; txmÞ � f ðx1; . . .; xmÞ: ðM:22Þ

Differentiating each side of this equation with respect to

t, we get

dgðtÞ
dt

¼ �nt�n�1f ðtx1; . . .; txmÞ

þ t�n
Xm
i¼1

xi
df ðtx1; . . .; txmÞ

dtxi
: ðM:23Þ

By Euler’s theorem, we have

Xm
i¼1

of tx1; . . .; txmð Þ
otxi

txi ¼ nf tx1; . . .; txmð Þ; ðM:24Þ

so that

ogðtÞ
ot

¼ �nt�n�1f ðtx1; . . .; txmÞ þ t�n 1

t
nf ðtx1; . . .; txmÞ

¼ 0:

ðM:25Þ

Thus g(t) is constant for all t. It is clear that g(1) = 0,

and therefore g(t) = 0 for all t, and with Eq. (M.22) we get

t�nf ðtx1; . . .; txmÞ � f ðx1; . . .; xmÞ ¼ 0; ðM:26Þ

and so

f ðtx1; . . .; txmÞ ¼ tnf ðx1; . . .; xmÞ ðM:27Þ

for all t[ 0, which means that f is homogeneous of degree

n.

(Alternative proof: Let g(t) = f(tx1, …, txm). After dif-

ferentiation with respect to t and by taking into account

Eq. (M.11), we see that

ogðtÞ
ot

¼ x1

of tx1; tx2; . . .; txmð Þ
otx1

þ x2

of tx1; tx2; . . .; txmð Þ
otx2

þ � � � þ xm
of tx1; tx2; . . .; txmð Þ

otxm

¼ 1

t
tx1

of tx1; tx2; . . .; txmð Þ
otx1

þ tx2

of tx1; tx2; . . .; txmð Þ
otx2

�

þ � � � þ txm
of tx1; tx2; . . .; txmð Þ

otxm

	

¼ n

t
f tx1; tx2; . . .; txmð Þ ¼ n

t
gðtÞ

:

ðM:28Þ

This means that

dgðtÞ
dt

¼ n

t
gðtÞ: ðM:29Þ

After integration, we obtain for any t[ 0

ln gðtÞj j ¼ n ln t þ c; ðM:30Þ

where c is an integration constant, which is independent on

t. This means that

gðtÞ ¼ ectn: ðM:31Þ

Choosing t = 1, we see that g(1) = ec and consequently

g(t) = g(1)tn, i.e., Eq. (M.27) holds).

Some remarks to Euler’s theorem

Extensive variables in thermodynamics are those that

depend linearly on the size of the system. This means that

if a system is composed of several subsystems, the value of

the extensive variable (‘‘extensive quantity’’) for the

composite system is calculated by summing over the sub-

systems. As a consequence, extensive thermodynamic

functions are homogeneous functions of degree n = 1

(homogeneous linear functions) with respect to their

extensive arguments, i.e.,

f kx1; . . .; kxmð Þ ¼ kf x1; . . .; xmð Þ; ðM:32Þ

and so

Xm

i¼1

of

oxi
xi ¼ f x1; . . .; xmð Þ: ðM:33Þ
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According to Eq. (M.5), partial derivatives of a homo-

geneous linear function are homogeneous functions of

degree n = 0 (homogeneous function of 0th degree), i.e.,

f kx1; . . .; kxmð Þ ¼ f x1; . . .; xmð Þ ðM:34Þ

and

Xm

i¼1

of

oxi
xi ¼ 0: ðM:35Þ

Example #1 Let us consider the following function:

f x; y; zð Þ ¼ � x3

yz
: ðE:1:1Þ

Since

f kx; ky; kzð Þ ¼ � kxð Þ3

kyð Þ kzð Þ ¼ k � x3

yz

� �
¼ kf x; y; zð Þ;

ðE:1:2Þ

the function f (x,z,y) is homogeneous of the first degree in

the variables x, y, and z. The partial derivatives are
of
ox
¼ � 3x2

yz
, of
oy
¼ x3

y2z
, and of

oz
¼ x3

yz2.

Thus, applying Euler’s theorem

f x; y; zð Þ ¼ of

ox
� xþ of

oy
� yþ of

oz
� z

¼ � 3x2

yz

� �
xþ x3

y2z

� �
yþ x3

yz2

� �
z ¼ � x3

yz
:

ðE:1:3Þ

Example #2 We know that partial derivatives of a

homogeneous function of degree n are homogeneous

functions of degree n - 1.

The partial derivative of the function f (which is a

homogeneous function of degree 1, as defined by

Eq. (E.1.1)) with respect to x is

fx ¼
of

ox
¼ � 3x2

yz
: ðE:2:1Þ

The function fx is a homogeneous function of degree 0 in

the variables x, y, and z, since

fx kx; ky; kzð Þ ¼ � 3 kxð Þ2

kyð Þ kzð Þ ¼ � 3x2

yz
¼ fx x; y; zð Þ: ðE:2:2Þ

The partial derivatives are ofx
ox

¼ � 6x
yz

, ofx
oy

¼ 3x2

y2z
, and

ofx
oz
¼ 3x2

yz2 , that is

� 6x

yz

� �
xþ 3x2

y2z

� �
yþ 3x2

yz2

� �
z ¼ 0 ðE:2:3Þ

in accordance with Euler’s theorem.

The Gibbs–Duhem Equation

If the function f (x1, x2, …, xm) is homogeneous of degree

n = 1 with respect to the variables x1, x2, …, xm, then one

has the identity (M.2):

f kx1; kx2; . . .; kxmð Þ ¼ kf x1; x2; . . .; xmð Þ:

Let us set of
ox1

¼ p1, …, of
oxm

¼ pm, etc., and apply Euler’s

theorem to the function f.

We will obtain

f ¼ x1p1 þ x2p2 þ � � � þ xmpm: ðM:36Þ

It results from this formula that the functions

p1, p2, …, pm are quantities (functions) of the same type as

the quotient of energy or work by charge, mass, etc., and

hence these are quantities (functions) of the same type as a

potential, e.g., in thermodynamics, if f is the internal

energy function (U, see ‘‘Models of the interfacial region’’

and ‘‘Adsorption’’ sections), and the xi-s are the amounts of

substances, we can call them partial molar internal ener-

gies of the constituents 1, …, m in the system (thermody-

namic or chemical potentials).

According to the considerations outlined above, the func-

tionsp1, p2, …, pm are homogeneous functions of degree zero

in the variables x1, x2, …, xm. To each of these functions, we

can apply Euler’s theorem, and we will find the identities

x1

op1

ox1

þ x2

op1

ox2

þ � � � þ xm
op1

oxm
¼ 0

..

.

x1

opm

ox1

þ x2

opm

ox2

þ � � � þ xm
opm

oxm
¼ 0:

ðM:37Þ

The identities

opi

oxj
¼ opj

oxi
; ðM:38Þ

which result from the definition of the functions (the mixed

second partial derivatives are equal), permit the substitu-

tion of equations

x1

op1

ox1

þ x2

op2

ox1

þ � � � þ xm
opm

ox1

¼ 0

..

.

x1

op1

oxm
þ x2

op2

oxm
þ � � � þ xm

opm

oxm
¼ 0;

ðM:39Þ

and therefore

x1dp1 þ x2dp2 þ � � � þ xmdpm ¼ 0: ðM:40Þ

This relation is known as Gibbs–Duhem equation or

Gibbs–Duhem relation.
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Historical outlook Duhem was a great admirer of Gibbs,

and extended a number of Gibbs’ ideas. According to

Miller [34] most probably Duhem was the first to use

Euler’s theorem explicitly to prove the Gibbs–Duhem

equation. The first references appear in his book ‘‘Le

Potentiel Thermodynamique’’ which was published in 1886

[35]. It is altogether fitting that his name be appended to the

Gibbs–Duhem equation.

(An alternative derivation of the Gibbs–Duhem equa-

tion: consider an arbitrary function of

x1; x2; . . .; xm : f x1; x2; . . .; xmð Þ: ðM:41Þ

The total derivative (full derivative) of f(x1, x2, …, xm)

with respect to x1 is

df

dx1

¼ of

ox1

þ of

ox2

dx2

dx1

þ � � � þ of

oxm

dxm

dx1

¼ p1 þ p2

dx2

dx1

þ � � � þ pm
dxm

dx1

; ðM:42Þ

where p1 ¼ of
ox1

, p2 ¼ of
ox2

, pm ¼ of
oxm

, etc.

Multiplying both sides of the equation by the differential

dx1:

df ¼ of

ox1

dx1 þ
of

ox2

dx2 þ � � � þ of

oxm
dxm

¼ p1dx1 þ p2dx2 þ � � � þ pmdxm: ðM:43Þ

The result will be the differential change df in the

function f. The differential of the form

df ¼
Xm
i¼1

pi x1; x2; . . .; xmð Þdxi ðM:44Þ

is called the total differential or the exact differential of the

function f.

According to Eq. (M.33)

Xm
i¼1

pixi ¼ f x1; . . .; xmð Þ: ðM:45Þ

In order to get an expression for df /dx1 from (M.45)

comparable with that in (M.42), we must differentiate

(M.45) ‘‘generally,’’ that is

df

dx1

¼ p1 þ x1

op1

ox1

þ p2

ox2

ox1

þ x2

op2

ox1

þ � � � þ pm
oxm

ox1

þ xm
opm

ox1

:

ðM:46Þ

There are thus two (general) expressions for df /dx1,

both of which are correct. This can only be the case if

x1

op1

ox1

þ x2

op2

ox1

þ � � � þ xm
opm

ox1

¼ 0 ðM:47Þ

or

x1dp1 þ x2dp2 þ � � � þ xmdpm ¼
Xm
i

xidpi ¼ 0; ðM:48Þ

which is the Gibbs–Duhem equation).

Example #3 Consider the function

f x; y; zð Þ ¼ � x3

yz
; ðE:3:1Þ

which is homogeneous of degree 1 (see Example #1).

The partial derivatives with respect to x, y, and z are

f 0x ¼
of

ox
¼ � 3x2

yz
; f 0y ¼

of

oy
¼ x3

y2z
; andf 0z ¼

of

oz
¼ x3

yz2
:

The partial derivatives of fx
0
, fy

0
, and fz

0
with respect to x

can be given as

of 0x
ox

¼ � 6x

yz
;

of 0y
ox

¼ 3x2

y2z
and

of 0z
ox

¼ 3x2

yz2

In accordance with Eq. (M.39)

x
�6x

yz
þ y

3x2

y2z
þ z

3x2

yz2
¼ �6x2 þ 3x2 þ 3x2

yz
¼ 0: ðE:3:2Þ

Alternatively, we can formally write

df 0x ¼
�6xyz � dxþ 3x2z � dyþ 3x2y � dz

y2z2
ðE:3:3Þ

df 0y ¼
3x2y2z � dx� 2x3yz � dy� x3y2 � dz

y4z2
ðE:3:4Þ

and

df 0z ¼
3x2yz2 � dx� x3z2 � dy� 2x3yz � dz

y2z4
: ðE:3:5Þ

Thus,

xdf 0x þ ydf 0y þ zdf 0z ¼
�6x2y2z2 � dxþ 3x3yz2 � dyþ 3x3y2z � dz

z3y3

þ 3x2y2z2 � dx� 2x3yz2 � dy� x3y2z � dz

z3y3

þ 3x2y2z2 � dx� x3yz2 � dy� 2x3y2z � dz

z3y3
¼ 0

ðE:3:6Þ

in accordance with the Gibbs–Duhem equation (M.40).

Example #4 Consider the internal energy function U de-

fined by

U ¼ U S;V ; n1; . . .; nmð Þ; ðE:4:1Þ
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where S is the entropy, V is the volume, and ni (i = 1,…,m)

is the chemical amount of component i. Since U is a

homogeneous function of degree 1 with respect to all of its

variables

U kS; kV ; kn1; . . .; knmð Þ ¼ kU S;V ; n1; . . .; nmð Þ; ðE:4:2Þ

The temperature (T), pressure (p), and the chemical

potentials li (i = 1,…,m) of the components are

T ¼ oU
oS

� �
V ;n1;...;nm

, p ¼ � oU
oV

� �
S;n1;...;nm

, li ¼ oU
oni

� �
S;V ;ni 6¼m

re-

spectively. (In the above equations, ni denotes the set

[n1,…,nm] (i = 1,…,m) and nj=i denotes all the elements

(variables) in [n1,…,nm] except for the ith.) According to

Euler’s theorem

U ¼ TSþ ð�pVÞ þ
X
i

lini: ðE:4:3Þ

The Gibbs–Duhem relation is written as

�SdT þ Vdpþ n1dl1 þ � � � þ nmdlm ¼ 0: ðE:4:4Þ

It follows that T, p, and li cannot be independently

variable, i.e., the intensive variables are not independent. If

we know m - 1 of them, the value of the mth can be

determined from the Gibbs–Duhem equation. It is partic-

ularly useful in its application to changes at constant

temperature and pressure, and it may be written as

Xm
i¼1

nidli ¼ 0: ðE:4:5Þ

Partly homogeneous functions of degree 1

A function f is called ‘‘partly homogeneous’’ of degree 1 in

terms of m among m ? w variables if

f kx1; . . .; kxm; y1; . . .; ywð Þ ¼ kf x1; . . .; xm; y1; . . .; ywð Þ
ðk[ 0Þ;

ðM:49Þ

i.e., the function f is homogeneous with respect to certain

variables (x1, x2, …, xm), but not homogeneous with respect

to all of the variables. These functions are important as

they are frequently encountered in thermodynamics [36].

Let us introduce new variables

zi ¼ x1 � yi ðM:50Þ

and the function f̂ as

f̂ x1; . . .; xm; z1; . . .; zwð Þ ¼ f x1; . . .; xm;
z1

x1

; . . .;
zw

x1

� �
:

ðM:51Þ

We can prove that f̂ is homogeneous of the first order

with respect to all of its variables. According to Eq. (M.51)

f̂ kx1; . . .;kxm;kz1; . . .;kzwð Þ ¼ f kx1; . . .kxm;
kz1

kx1

; . . .;
kzw

kx1

� �

¼ f kx1; . . .kxm;
z1

x1

; . . .;
zw

x1

� � :

ðM:52Þ

On the other hand, f is a homogeneous linear function

with respect to (x1, x2, …, xm). Thus

f kx1; . . .; kxm;
z1

x1

; . . .;
zw

x1

� �
¼ kf x1; . . .; xm;

z1

x1

; . . .;
zw

x1

� �
:

ðM:53Þ

By taking into account the definition of f̂ ;

f̂ kx1; . . .; kxm; kz1; . . .; kzwð Þ ¼ kf̂ x1; . . .; xm; z1; . . .; zwð Þ
ðM:54Þ

which was to be proved.

The partial derivatives of f and f̂ with respect to xi, yi,

and zi are, respectively, given by

f xi ¼ of

oxi

� �
xj6¼i;yj

; f
y
i ¼ of

oyi

� �
xj;yj 6¼i

; f̂ xi ¼ of̂

oxi

 !

xj6¼i;zj

;

f̂ zi ¼ of̂

ozi

 !

xj;zj 6¼i

ðM:55Þ

For i = 1,…,m, the partial derivatives of f̂ are given as

f̂ xi ¼ of̂

oxi
¼ of

oxi
¼ f xi ðM:56Þ

and for j = 1,…,w

f̂ zj ¼ of̂

ozj
¼ of

oyj
� 1

x1

¼ f
y
j � 1

x1

: ðM:57Þ

Thus, the total derivative of f̂ is

of̂

ox1

¼ of

ox1

þ of

oy1

� �z1

x2
1

� �
þ of

oy2

� �z2

x2
1

� �
þ � � � þ of

oyw

� �zw

x2
1

� �
: ðM:58Þ

Using Eqs. (M.50) and (M.55, M.56), Eq. (M.58) can be

rewritten in the form

f̂ x1 ¼ f x1 þ f
y
1 � �y1

x1

� �
þ f

y
2 � �y2

x1

� �
þ � � � þ f yw � �yw

x1

� �

ðM:59Þ

and with Eq. (M.57)

f̂ x1 ¼ f x1 �
Xw
i¼1

f̂ zi yi: ðM:60Þ
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Since f̂ is homogeneous of the first degree with respect to

all of its variables, and its partial derivatives are homoge-

neous of degree zero, we can apply Euler’s theorem. Hence

f̂ ¼
Xm
i¼1

xif̂
x
i þ

Xw
j¼1

zjf̂
z
j ðM:61Þ

and

0 ¼
Xm
i¼1

xidf̂
x
i þ

Xw
j¼1

zjdf̂
z
j : ðM:62Þ

With Eqs. (M.51) and (M.56–M.62), we have

f ¼ x1 f x1 �
Xw
j¼1

f
y
j

x1

yj

 !
þ
Xm
i¼2

xif
x
i þ

Xw
j¼1

x1yj
f
y
j

x1

; ðM:63Þ

and

0 ¼ x1d f x1 �
Xw
j¼1

f
y
j

x1

yj

 !
þ
Xm
i¼2

xidf
x
i þ

Xw
j¼1

x1yjd
f
y
j

x1

:

ðM:64Þ

Consequently

f ¼
Xm
i¼1

xif
x
i ¼

Xm
i¼1

xi
of

oxi

� �
xj 6¼i;yj

ðM:65Þ

and

0 ¼
Xm
i¼1

xidf
x
i �

Xw
j¼1

f
y
i dyi: ðM:66Þ

The latter relation is the Gibbs–Duhem equation for

‘‘partly homogeneous functions.’’

Example #5 The function

f ¼ � x2

y
wþ u5x ðE:5:1Þ

is not fully homogeneous, since

f kx; ky; ku; kwð Þ 6¼ knf x; y; u;wð Þ: ðE:5:2Þ

(If the powers of x, y, u, and w are added, the first term

on the right-hand side of the expression yields 2, and the

second term 6.)

However, if u and w are constant, the sum of the powers

of x and y for each term is 1. Therefore, the function is

partly homogeneous (with respect to x and y), so that

f kx; ky; u;wð Þ ¼ kf x; y; u;wð Þ: ðE:5:3Þ

The partial derivatives with respect to x and y are

f 0x ¼
of

ox
¼ � 2xw

y
þ u5 ðE:5:4Þ

and

f 0y ¼
of

oy
¼ x2w

y2
: ðE:5:5Þ

Thus, applying Euler’s theorem

f x; y; u;wð Þ ¼ � 2xw

y
þ u5

� �
xþ x2w

y2

� �
y ¼ � x2w

y
þ u5x:

ðE:5:6Þ

The partial derivatives with respect to u and w are

f 0u ¼
of

ou
¼ 5u4x ðE:5:7Þ

and

f 0w ¼ of

ow
¼ � x2

y
: ðE:5:8Þ

We can formally write

x � df 0x ¼
�2wyx � dx� 2x2y � dwþ 2x2w � dy

y2
þ 5u4x � du;

ðE:5:9Þ

and

y � df 0y ¼
2xwy2 � dxþ x2y2 � dw� 2x2wy � dy

y3
: ðE:5:10Þ

Similarly

f 0u � du ¼ 5u4x � du; ðE:5:11Þ

f 0w � dw ¼ � x2

y
� dw: ðE:5:12Þ

Thus,

xdf 0x þ ydf 0y � f 0udu� f 0wdw

¼ �2wyx � dx� 2x2y � dwþ 2x2w � dy

y2
þ 5u4x � du

þ 2xwy2 � dxþ x2y2 � dw� 2x2wy � dy

y3

� 5u4x � du� � x2

y
� dw

� �
¼ 0

ðE:5:13Þ

in accordance with the Gibbs–Duhem equation for ‘‘partly

homogeneous functions’’ (Eq. M.66).

Example #6 The function

f ¼ � x2

y
wþ u3x ðE:6:1Þ

is not fully homogeneous, since f(kx, ky, ku, kw) =

knf(x, y, u, w).
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Let us introduce new variables a = x�u and b = x�w,

i.e., u = a / x and w = b / x, and the function f̂ as

f̂ ¼ � x2

y

b
x
þ a

x

� �3

x ¼ � xb
y
þ a3

x2
: ðE:6:2Þ

Since

f̂ kx; ky; ka; kbð Þ ¼ � kx � kb
ky

þ kað Þ3

kxð Þ2
¼ k � x � b

y
þ a3

x2

� �

¼ kf̂ x; y;a; bð Þ;
ðE:6:3Þ

it is obvious that f̂ is a homogeneous function of degree 1

with respect to all of its variables (x, y, a, b).

Example #7 Let us consider the Gibbs free energy func-

tion G defined by

G ¼ G T ; p; n1; n2; . . .; nmð Þ; ðE:7:1Þ

where T is the temperature, p is the pressure, and ni
(i = 1,…,m) is the chemical amount of component i. At

given (constant) T and p, the function G is partly homo-

geneous of degree one in terms of the variables n1,…,nm.

We thus have

G T ; p; kn1; . . .; knmð Þ ¼ kG T; p; n1; . . .; nmð Þ: ðE:7:2Þ

The total differential of G is given as

dG ¼ oG

oT

� �
p;ni

dT þ oG

op

� �
T ;ni

dpþ
Xm
i¼1

oG

oni

� �
T ;p;nj6¼i

dni:

ðE:7:3Þ

The entropy (S), volume (V), and the chemical potentials

li (i = 1,…,m) of the components are S ¼ � oG
oT

� �
p;ni

,

V ¼ oG
op

� �
T ;ni

, and li ¼ oG
oni

� �
T ;p;nj 6¼i

, respectively. Thus,

Eq. (E.7.3) can be rewritten as

dG ¼ �SdT þ Vdpþ
Xm
i¼1

lidni: ðE:7:4Þ

According to Euler’s theorem

G ¼
X
i

lini: ðE:7:5Þ

In order to obtain an expression for dG from (E.7.5)

comparable with that in (E.7.3), we must differentiate

(E.7.5). This gives

dG ¼
Xm
i¼1

lidni þ
Xm
i¼1

nidli; ðE:7:6Þ

and by comparing Eq. (E.7.6) with Eq. (E.7.4) we obtain

the following important relation (i.e., the Gibbs–Duhem

equation):

SdT � Vdpþ
X
i

nidli ¼ 0: ðE:7:7Þ

Legendre transformation

(The transform is named after the French mathematician

Adrien-Marie Legendre (1752–1833).)

Let f (x1, x2, …, xm) be an arbitrary analytic function of

variables x1, x2, …, xm. The differential of f is

df ¼ of

ox1

dx1 þ
of

ox2

dx2 þ � � � þ of

oxm
dxm

¼ p1dx1 þ p2dx2 þ � � � þ pmdxm: ðM:67Þ

Consider a new function g of the variables p1 and x2,

x3,…,xm:

gðp1; x2; . . .; xmÞ ¼ f x1ðp1Þ; x2; . . .; xmð Þ � p1x1ðp1Þ;
ðM:68Þ

where p1 ¼ of
ox1

. A necessary condition is the existence of a

one-to-one relation between p1 and x1, that is, the function

p1(x1, x2, …, xm) can be inverted to give x1(p1) (This

means that p1 is bijective).

The new function g(p1, x2, …, xm) is called the Legen-

dre transform of the function f(x1, x2, …, xm). A Legendre

transform converts from a function of one set of variables

to another function of a ‘‘conjugate’’ set of variables. In

general, this is a special transformation that allows us to

replace variables in a function in a consistent manner.

The differential of g(p1, x2, …, xm) is

dg ¼ df � x1 p1ð Þdp1 � p1 x1; x2; . . .; xmð Þdx1: ðM:69Þ

With Eq. (M.67)

dg ¼ �x1 p1ð Þdp1 þ
of

ox2

dx2 þ � � � þ of

oxm
dxm: ðM:70Þ

Formally, the total differential of g is

dg ¼ og

op1

dp1 þ
og

ox2

dx2 þ � � � þ og

oxm
dxm: ðM:71Þ

Comparing Eqs. (M.70) and (M.71) x1 ¼ � og
op1

, of
ox2

¼ og
ox2

,
of
ox3

¼ og
ox3

, etc. Let us take a look at some simple examples to

see how this works.

Example #8 One-dimensional Legendre transformation

Consider an arbitrary function of x : f (x). We know that

locally the slope of this curve is precisely its derivative

with respect to x, so the change in the function f (x) at the

point x for a small change in the argument dx is

df ¼ of

ox
dx � p xð Þdx; ðE:8:1Þ

where p ¼ of xð Þ
ox

¼ f 0 xð Þ, as usual. Now suppose that we

want to find a function that reverses the roles of the slope

and infinitesimal, i.e., a function g(p) such that
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dg = x dp (where we now view x as a function of p defined

by the inverse of p = f’(x)). We can see that the function

g ¼ f pð Þ � px pð Þ ðE:8:2Þ

(the Legendre transform) has the desired property:

dg ¼ df � xdp� pdx ¼ �xdp: ðE:8:3Þ

Notice that since g(p) is a function of p only, we must

have

dg pð Þ
dp

¼ �x: ðE:8:4Þ

Consequently, we have a pair of functions f(x) and

g(p) related in the following way:

f xð Þ ! g pð Þ ¼ f xðpÞð Þ � x pð Þp . . . x pð Þ : df xð Þ
dx

¼ p;

g pð Þ ! f xð Þ ¼ g pðxÞð Þ � p xð Þx . . . p xð Þ : dg pð Þ
dp

¼ �x;

ðE:8:5Þ

where f(x) and g(p) are Legendre transforms of each other.

There is a certain symmetry here, and the same transfor-

mation takes us back and forth.

Consider the function f(x) = ax2. In this case

p ¼ df xð Þ
dx

¼ 2ax, and x ¼ p
2a

. The Legendre transform of f is

L½f ðxÞ� ¼ f ðxÞ � p � x ¼ ax2 � 2ax2 ¼ p2

4a
� p2

2a
¼ � p2

4a
¼ gðpÞ:

ðE:8:6Þ

On the other hand, g pð Þ ¼ � p2

4a
,

dg pð Þ
dp

¼ � p
2a
¼ �x, and

the Legendre transform of g(p) is given as

L½gðpÞ� ¼ gðpÞ � p � ð�xÞ ¼ � p2

4a
þ p2

2a
¼ p2

4a
¼ ax2

¼ f ðxÞ:
ðE:8:7Þ

Remark To avoid the minus sign in Eq. (E.8.4), the

Legendre transform can alternatively be defined as

g ¼ px� f ðE:8:8Þ

(for functions of several variables: g(p1, x2, …, xm) = p1-

x1(p1) - f(x1(p1), x2, …, xm)), in which case the Legendre

transform is its own inverse, since f = px - g, rather than

being the negative of its inverse. This opposite-sign alter-

native definition has the advantage that it gives rise to the

symmetric identity f ? g = px which in words says that

the sum of a function and its Legendre transform equals the

product of the conjugate pair of variables. It is worth to

emphasize the dimensional consistency of this identity.

f ? g is actually a function of either p or x but not both,

because one variable implicitly depends on the other via a

Legendre transform.

Usually, the definition given in Eq. (M.68) is preferred

in thermodynamics.

Example #9 Consider the function

f ðx; zÞ ¼ x2 þ y2: ðE:9:1Þ

The partial derivatives are of
ox
¼ 2x ¼ p1, of

oy
¼ 2y ¼ p2,

x ¼ p1

2
, and y ¼ p2

2
.

The Legendre transforms of f are

gðx; p2Þ ¼ x2 þ y2 � p2 � y ¼ x2 þ p2
2

4
� p2

2

2
¼ x2 � p2

2

4
;

ðE:9:2Þ

gðp1; yÞ ¼ x2 þ y2 � p1 � x ¼
p2

1

4
þ y2 � p2

1

2
¼ y2 � p2

1

4
;

ðE:9:3Þ

gðp1; p2Þ ¼ x2 þ y2 � p1 � x� p2 � y ¼
p2

1

4
þ p2

2

4
� p2

1

2
� p2

2

2

¼ � 1

4
ðp2

1 þ p2
2Þ:

ðE:9:4Þ

Example #10 Consider the function

f x; y; zð Þ ¼ � x3

yz
: ðE:10:1Þ

The partial derivatives are of
ox
¼ � 3x2

yz
¼ fx,

of
oy
¼ x3

y2z
¼ fy,

and of
oz
¼ x3

yz2 ¼ fz.

The variable y can be expressed as y ¼ x3=2

z1=2f
1=2
y

.

Define the new function f2 (x, fy, z) as follows:

f2 x; fy; z
� �

¼ � x3

yz
� yfy ¼ �

x3z1=2f 1=2
y

zx3=2
� x3=2

z1=2f
1=2
y

fy

¼ �
2x3=2f 1=2

y

z1=2
: ðE:10:2Þ

It is obvious from this definition that f2 is the Legendre

transform of f with respect to y. Taking into account that

of2

oz
¼ �2x3=2f 1=2

y � 1

2
z�3=2

� �
¼

x3=2f 1=2
y

z3=2
¼ fz; ðE:10:3Þ

and

z ¼
xf 1=3

y

f
2=3
z

; ðE:10:4Þ

the Legendre transformation of f2 (with respect to z) yields
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f3 x; fy; fz
� �

¼ f2 x; fy; z
� �

� zfz

¼ �
2x3=2f 1=2

y

x1=2f
1=6
y

f 1=3
z �

xf 1=3
y

f
2=3
z

fz ¼ �3xf 1=3
y f 1=3

z :

ðE:10:5Þ

Alternatively, Eq. (E.10.5) can be derived directly by

performing two successive Legendre transformations

f3 x; fy; fz
� �

¼ f x; y; zð Þ � yfy � zfz ðE:10:6Þ

with f x; y; zð Þ ¼ � x3

yz
, of

oy
¼ x3

y2z
¼ fy,

of
oz
¼ x3

yz2 ¼ fz, y =

xfy
-2/3fz

1/3, and z = xfy
1/3fz

-2/-3.

Thus

f x; y; zð Þ � yfy � zfz ¼
�x

xf
�2=3
y f

1=3
z � xf 1=3

y f
�2=3
z

� xf�2=3
y f 1=3

z

� fy � xf 1=3
y f�2=3

z � fz
¼ �3xf 1=3

y f 1=3
z :

ðE:10:6Þ

We remark that while f is a homogeneous function of the

first degree in the variables x, y, and z (see Example #1),

the Legendre transforms f2(x, fy, z) and f3(x, fy, fz) are only

partly homogeneous (the first with respect to x and z, and

the second with respect to only x).

Example #11 Consider the function

f x; y; u;wð Þ ¼ � x2w

y
þ u5x: ðE:11:1Þ

Since fy ¼ of
oy
¼ x2w

y2 , the Legendre transformation of

f with respect to y yields

Ly f x; y; u;wð Þ½ � ¼ f2 x; fy; u;w
� �

¼ �2xw1=2f 1=2
y þ u5x:

ðE:11:2Þ

Note that f (x,y,u,w) is a partly homogeneous function of

degree one in the variables x and y. The Legendre

transform is also a partly homogeneous function, but only

with respect to x.

Consider the function

f x; y; u;wð Þ ¼ � x2

y
þ u5xþ w2: ðE:11:3Þ

Since fy ¼ of
oy
¼ x2

y2, and therefore y ¼ x

f
1=2
y

, the Legendre

transformation of f with respect to y yields

f2 x; fy; u;w
� �

¼ �
x2f 1=2

y

x
þ u5xþ w2 � x

f
1=2
y

x2fy

x2

� �

¼ �2xf 1=2
y þ u5xþ w2: ðE:11:4Þ

Example #12 The Gibbs free energy function

(G(T, p, n1, …, nm)) is obtained from the internal energy

function (U = U(S, V, n1, …, nm)) via appropriate

Legendre transformations as

G ¼ U � TSþ pV ; ðE:12:1Þ

where S is the entropy, V is the volume, p is the pressure,

T is the temperature, and ni is the chemical amount of

component i. p and T are given, respectively, as p ¼ � oU
oV

and T ¼ oU
oS

. Note that the function G is a typical example

of a partly homogeneous function (see ‘‘The Gibbs–Duhem

equation’’ section).
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