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Abstract Many processes and phenomena in chemistry,

and generally in sciences, can be described by first-order

differential equations. These equations are the most

important and most frequently used to describe natural

laws. Although the math is the same in all cases, the stu-

dent may not always easily realize the similarities because

the relevant equations appear in different topics and con-

tain different quantities and units. This text was written to

present a unified view on various examples; all of them can

be mathematically described by first-order differential

equations. The following examples are discussed: the

Bouguer–Lambert–Beer law in spectroscopy, time con-

stants of sensors, chemical reaction kinetics, radioactive

decay, relaxation in nuclear magnetic resonance, and the

RC constant of an electrode.

Keywords Differential equations � Bouguer–Lambert–

Beer law � Time constants � Chemical kinetics �
Radioactive decay � Nuclear magnetic resonance � RC

constant

Introduction

‘‘Differential equations are extremely important in

the history of mathematics and science, because the

laws of nature are generally expressed in terms of

differential equations. Differential equations are the

means by which scientists describe and understand

the world’’ [1].

The mathematical description of various processes in

chemistry and physics is possible by describing them with

the help of differential equations which are based on simple

model assumptions and defining the boundary conditions

[2, 3]. In many cases, first-order differential equations are

completely describing the variation dy of a function y(x)

and other quantities. If y is a quantity depending on x, a

model may be based on the following assumptions: The

differential decrease of the variable y is proportional to a

differential increase of the other variable, here x, i.e.

-dy * dx. This decrease -dy should depend on the

function y itself: -dy * ydx, and together with a so far

unknown constant a, results in the equation

dy ¼ �aydx ð1Þ

Thus follows the ordinary linear homogeneous first-

order differential equation:

dy

dx
þ ay ¼ 0 ð2Þ

The characteristics of an ordinary linear homogeneous

first-order differential equation are: (i) there is only one

independent variable, i.e. here x, rendering it an ordinary

differential equation, (ii) the depending variable, i.e. here y,

having the exponent 1, rendering it a linear differential

equation, and (iii) there are only terms containing the
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variable y and its first derivative, rendering it a homoge-

neous first-order differential equation.

This equation can be solved when, e.g. the boundary

conditions are such that y varies between y0 and y, when x

varies between 0 and x. Following a separation of vari-

ables, the integration of Eq. 2 gives:

dy

y
¼ �adx ð3Þ

Zy

y0

dy

y
¼ �a

Zx

0

dx ð4Þ

ln
y

y0

¼ �ax ð5Þ

y ¼ y0e�ax ð6Þ

Equation 6 describes the exponential decrease of y as a

function of x.

This formalism will now be applied to some special

cases which occur frequently in chemistry, and finally all

discussed cases will be compared in a table.

The Bouguer–Lambert–Beer Law

The intensity of electromagnetic radiation (e.g. visible

light), i.e. exactly the radiant flux I (unit W, watt or J s-1,

joule per second), diminishes along the path length

x through a homogeneous absorbing medium (e.g. a col-

oured solution). Figure 1 depicts a cuvette and the changes

in radiant flux along the optical path length.

The differential decrease -dI of radiant flux by passing

through the differential length increment dx is supposed to

be proportional to the actual value of I at xi. To understand

this, we must consider the physical background of the

decrease of radiant flux: If the radiation is understood as a

flux of photons, the absorption of radiation is the loss of

photons due to their ‘‘capture’’ by absorbing particles

(molecules, atoms or ions) in the cuvette. Clearly, the

effectivity of capture must be proportional to the number of

particles per volume, i.e. their concentration c in mol L-1,

as the probability that a photon hits a particle will be

proportional to its concentration. However, not each hitting

leads to an absorption event (capture of a photon). To take

into account the probability that a collision of a photon

with a particle leads to its capture, one defines an effective

cross section of the particles. This cross section has the unit

of an area because one may understand it as an effective

target area for the photons in contrast to the geometric

target area which a particle exposes to the photon flux.

Instead of using the effective cross section, one may define

a constant j (Greek letter kappa) which theoretically can

have values between 0 and 1, giving the fraction of suc-

cessful absorption events. j is a value specific for the

particles and specific for the photon energy Ephoton, and

thus the frequency m (Greek letter nu) of the radiation, with

m = Ephoton/h (h is the Planck constant

6.62606957(29) 9 10-34 Js), and the wavelength k (Greek

letter lambda) with k ¼ hclight

�
Ephoton (clight being the

velocity of light in the respective medium).

From the preceding discussion follows that the differ-

ential equation

�dIðxÞ ¼ IðxÞjcdx ð7Þ

adequately describes the decrease of radiation flux. Since j
is specific for the energy of absorbed photons, this equation

Fig. 1 Electromagnetic radiation is trespassing a cuvette filled with a

homogeneous absorbing medium. I0 is the radiant flux before entering

the cuvette, I is the radiant flux leaving the cuvette, �dI is the

differential decrease of radiant flux by passing through the differential

length increment dx at xi

Fig. 2 The decay of radiation flux when passing through the

absorbing medium
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relates to monochromatic radiation (radiation with one

constant frequency, i.e. photon energy). The meaning of

Eq. 7 can be understood with the help of Fig. 2: If xe marks

the overall length which the electromagnetic radiation

passes through the absorbing medium, and the intensity

(radiation flux) of the incident light is I0 (at x ¼ 0), then at

a path length xi the intensity of light will have dropped to Ii

and the slope of IðxÞ ¼ f ðxÞ, i.e. dIðxÞ
dx

will be proportional

to Ii and j and c.

Integration of Eq. 7 and some rearrangements have to be

performed as follows:

� dIðxÞ
IðxÞ ¼ jcdx ð8Þ

�
ZI

I0

dIðxÞ
IðxÞ ¼ jc

Zxe

0

dx ð9Þ

� ln
I

I0

¼ jcxe ð10Þ

ln
I0

I
¼ jcxe ð11Þ

log
I0

I
¼ 1

ln 10
jcxe � 0:4343jcxe ð12Þ

The ratio log I0

I
is called absorbance A, and the product

0:4343j is called the molar absorption coefficient e (Greek

letter epsilon) or molar absorptivity. The path length of the

radiation xe is usually given the symbol l. The Bouguer–

Lambert–Beer Law is thus normally written as:

A ¼ ecl ð13Þ

Outside of this purely mathematical analysis, it needs

to be mentioned that Eq. 13 has a restricted range of

validity: it is a good description of real systems only

at low concentrations. At higher concentrations

(sometimes already above 10-5 mol L-1) intermo-

lecular interactions of the absorbing particles, and

chemical equilibria can lead to deviations (apparent

variations of the molar absorption coefficient). Fur-

ther, another contribution to the absorption coeffi-

cient depends on the refractive index n of the

solution. Because the refractive index may signifi-

cantly vary with the concentration of the dissolved

analyte, it is not e, which is constant, but the molar

refraction and the term en=ðn2 þ 2Þ2 should be used

instead of e [4].

The time constant of a sensor

Sensors measure a physical or chemical quantity and

transduce it to an output signal which is read, monitored

or stored. Possible physical quantities are temperature,

pressure, radiative flux, magnetic field strength, etc.

Chemical quantities are mainly concentrations and activ-

ities of molecules, atoms and ions. The recorded signals

are usually voltages or currents. The most typical feature

of a signal is that the results are one dimensional, e.g. the

output signal is a single quantity, i.e. one measures only

that signal and not a dependence of that signal on another

given quantity. Most devices for chemical analysis pro-

duce two-dimensional read-outs, e.g. optical spectra in

which the absorbance is displayed as a function of

wavelength (E ¼ f ðkÞ), voltammograms in which currents

are displayed as function of electrode potential or X-ray

diffractograms, in which the intensity of diffracted rays is

displayed as function of diffraction angle, etc. In modern

instrumentation, one has even expanded the

Fig. 3 A comparison of the three common dimensionalities of analytical devices
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dimensionality to three, when, as an example, optical

spectra (E ¼ f ðkÞ) (or mass spectra, i.e. ion intensities

versus the mass-to-charge ratio of ions) are displayed as a

function of elution time of a chromatogram. Figure 3

gives a comparison of the common dimensionalities of

analytical measurements.

Since any measurement needs time, there is nothing like

an instantaneous establishment of a signal. This is easy to

see when using a sensor, e.g. a pH electrode: There is

always a certain time period in which the reading changes

until we finally have the impression that a constant end

value is reached. The same is true also for two- or three-

dimensional measurements, but we cannot easily detect it

because the variation of the measured signal (e.g. the

absorbance) anyway changes as a function of the varied

quantities (e.g. the wavelength) and thus with time. Nor-

mally, the wavelength is changed with the so-called scan

rate dk=dt (rate of recording the spectrum), and generally

(see Fig. 4), the quantity x is varied with a scan rate dx=dt

(which may be also zero). Whether we measure at each

wavelength really the end value of the absorbance can be

only seen if we decrease the rate at which the wavelength is

changed (in the extreme even keeping the wavelength

constant). Referring to Fig. 4, this means in general terms,

that a variation of the scan rate dx=dt may give a repro-

ducible and identical response only below a certain limiting

rate ðdx=dtÞlimit. If that rate is exceeded, the signal cannot

establish its true value and the spectra are distorted (the

signal lags behind) (cf. Fig. 4).

Figure 4 shows impressively that it is important to know

the rate at which the signal is established for a given x

value. In case of a sensor, i.e. a one-dimensional device

where no parameters like x or y are changed, the time

change of the signal can be studied following a

concentration step. The introduction of the sensor into a

solution can be regarded as a concentration step. Figure 5

depicts two different kinds of response of a sensor on a

concentration step.

Figure 5 depicts two basic types of time responses of

sensors. The different sensor behaviours shown in B and C

can be modelled with the help of different differential

equations. Whereas the response curve shown in B can be

modelled with a first-order differential equation; the curve

shown in C needs higher-order differential equations [5]. At

this point, it is necessary to note that it is impossible to realize

a concentration step with infinite rate of concentration rise, as

shown in Fig. 5a. This means, when the temporal response

properties of a sensor are studied, this concentration rise has

to be much quicker than the response of the sensor. Further,

also the response shown in Fig. 5b is to some extend an

idealization, and in reality there may be always a sluggish

response at the start, but it may be on such short time scale

that it escapes our recognition. The response curve shown in

Fig. 5b can be modelled as follows:

S ¼ Smax � zðtÞ ð14Þ

z is a time-dependent quantity for which we write the

first-order differential equation

a1

dz

dt
þ a2zðtÞ ¼ 0 ð15Þ

Integration and rearrangements follow:

Zz

z0

dz

zðtÞ ¼ �
a2

a1

Z t

0

dt ð16Þ

ln
zðtÞ
z0

¼ � a2

a1

t ð17Þ

Fig. 4 Possible distortion of a

spectrum when the rate of

changing x with time above a

limiting value ðdx=dtÞlimit
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zðtÞ
z0

¼ e
�a2

a1
t ð18Þ

zðtÞ ¼ z0e
�a2

a1
t ð19Þ

and with Eq. 14 follows:

S ¼ Smax � z0e
�a2

a1
t ð20Þ

Obviously, z0 should be equal to Smax, because then we

can write:

S ¼ Smax � Smaxe
�a2

a1
t ¼ Smax 1� e

�a2
a1

t
� �

ð21Þ

Since the term 1� e
�a2

a1
t

� �
should not have a unit, it

follows that the ratio a2

a1
must be a reciprocal time, and we

may write Eq. 21 using the definition a1

a2
¼ s (Greek letter

tau), i.e. a2

a1
¼ 1

s:

S ¼ Smax 1� e�
t
s

� �
ð22Þ

The quantity s is called the time constant of the sensor.

At t ¼ s, the signal S has the value

S ¼ Smaxð1� e�1Þ ¼ Smax 1� 1
e

� �
� 0:632Smax. In other

words, after elapse of s, the signal has reached 63.2 % of

its ‘‘final value’’. Equation 22 implies of course that the

signal will never reach a constant value, but the increments

of the function z in Eq. 14 may become meaninglessly

small as the time progresses. Because of the e-function of

Eq. 22, one can give simple relations between the time to

reach 50, 63.2, 90, 99 % (and any other values) of Smax:

t63:2% ¼ s ¼ 1:44t50% ð23Þ
t50% ¼ 0:69s ð24Þ
t90% ¼ 2:3s ð25Þ
t99% ¼ 4:6s ð26Þ

Figure 6 shows the response curve of Fig. 5b with a

scale giving the response in percentage.

The time constant s is an important parameter of a

sensor. However, in practice, one is much more interested

in the time necessary to reach 90 or 99 % of the final value,

i.e. t90% and t99%, as the signal reached after that time is

often regarded as a good estimate of the true signal value.

Thanks to the exponential dependence of the signal on time

(Eq. 22), these time data can easily be calculated from the

time constant s according to the Eqs. 25 and 26.

In case of flow-through detectors, one can also calculate

the so-called response volume, which is simply the volume

of solution flowing through the detector within t ¼ s. It can

be calculated by vresponseðsÞ ¼ s � f , where f is the flow rate,

e.g. in ml s-1 [6]. Of course, one can also calculate the

response volumes relating to 90 or 99 % of the signal, i.e.

vresponseðsÞ ¼ t90% � f or vresponseðsÞ ¼ t99% � f , respectively.

The response volumes of a flow-through detector can be

larger or also smaller than the geometric volume of the

detector. This depends on their construction and principle

of function.

We have already mentioned that the response type

shown in Fig. 5c is observed in many experimental cases.

Fig. 5 a The concentration is stepped from zero to a constant value.

b The signal of the detector starts to respond immediately when the

step is made, and the slope of the response over time continuously

decreases until it finally approaches a constant final value. The

response curve has no turning point. c The sensor starts slowly to

respond (but with increasing rate/slope), and after a turning point the

response slows down (decreasing slope) until it approaches the final

value

Fig. 6 Time response of a sensor when it can be modelled with a

first-order differential equation
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For analytical applications, the most important information

to know is, how long the sensor needs to acquire, e.g. 90 or

99 % of the final value. Thus, it is much less important to

exactly describe the complete response curve from begin-

ning to the end, which would be only possible by solving

higher-order differential equations and characterizing the

response by more than one time constant. Therefore, a

frequently used approach is as follows: one analyses only

the later part of the response (i.e. the part after the turning

point) using Eq. 22, and introduces a delay time tdelay after

which this equation is assumed to be followed. The

response is then described by

S ¼ Smax 1� e�
t�tdelay

s

� �
ð27Þ

The response of a sensor of the type shown in Fig. 5c

and in Fig. 7 can also be described with the help of two or

more time constants using an equation like the following

(here with two time constants):

S ¼ S1 1� e
� t

s1

� �
þ S2 1� e

� t
s2

� �
ð28Þ

The crucial point is that there should be a model sup-

porting the use of two or more time constants, as otherwise

the fitting of such curve may be mathematically correct but

meaningless, as not supported by a model. A somewhat

exotic physico-chemical example where the fitting of a

response with an equation of the type of Eq. 28 is based on

a physical model is the spreading of a liposome on a

mercury electrode [7]: When the liposome interacts with

the mercury surface, it disintegrates and forms an island of

adsorbed lipid molecules. This is accompanied by a change

of double layer capacity, which can be measured as a

current transient. Integration of the current transient gives

the charge transient following Eq. 28 and the form of the

curve shown in Fig. 7.

The origin of time constants is a very complex topic

needing extensive explanations. Here, it may suffice to

mention some possible time depending processes which

can contribute to the measured time constant: (a) diffusion

of particles towards the sensing surface (e.g. in some

electrochemical sensors), (b) convection, when a sensor

chamber (cuvette) has to be filled with solution (e.g. in

optical sensors as used in chromatography), (c) chemical

reactions, esp. in biosensors where enzymatic reactions

may be rather slow. Despite these chemical or physico-

chemical sources of time constants, one should never forget

that each part of a measuring system, from the amplifier to

the recorder, has its own time constant. The modern

instrumentation of chemical analysis normally have so

small constants that they are irrelevant for the measurement

they have been developed for, and the chemical and

physico-chemical sources will dominate; however, it is

good to remember that any measuring system involves time

constants, which occasionally may affect the measurement.

Coming back to the example of spectroscopy (Fig. 4), it

should be mentioned that even modern scanning (!) optical

spectrometers may come to their limits if one tries a too

fast recording.

Chemical reaction kinetics

Chemical reaction kinetics is the study of rates of chemical

processes (reactions). The goal is to find the relations

between the concentrations c of educts or products of a

chemical reaction (as depending variable) and the time t (as

independent variable). In general, all chemical reactions

can be described mathematically by first-order differential

equations. Their solutions, however, depend directly on the

nature of the chemical reaction itself. The latter is char-

acterized by the so-called reaction order, which has

nothing what so ever to do with the order of a differential

equation. The reaction order of a chemical reaction is

simply defined by the sum of exponents of concentrations

occurring in the rate law.

In the following, a first-order chemical reaction, typical

for thermal decompositions or isomerization reactions, is

explained in more detail.

Simple reactions like the transformation of A to B (A ?
B) can be described by the differential equation:

�dcA ¼ k � cA � dt ð29Þ

This first-order differential equation describes also a

first-order reaction in chemical kinetics, due to the expo-

nent 1 of the concentration cA. Following a separation of

variables, the integration results in:

ZcAt

cA0

dcA

cA

¼ �k

Z t

0

dt ð30ÞFig. 7 Time response of a sensor which exactly has to be described

by a higher-order differential equation, but which is approximated by

assuming first-order behaviour after a delay time tdelay
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The result

ln
cAt

cA0

¼ �kt ð31Þ

can be also written in the exponential form:

cAt
¼ cA0

e�kt ð32Þ

The half-time, i.e. the time within which the concen-

tration decreases to 50 % of the initial concentration

(Eq. 33), is then given by Eq. 34:

ct1=2
¼ 1

2
c0 ð33Þ

t1=2 ¼
ln 2

k
; ð34Þ

which is only dependent on the rate constant k.

In the majority of chemical reactions, however, more

than one educt is involved, e.g.

A þ B! C þ D: ð35Þ

These are second-order reactions in chemical kinetics,

because the sum of exponents of concentrations of A and B

in the rate law (see Eq. 36) is two. In case of a simple

reaction, first-order differential equations are resulting for

the math description:

� dcA

dt
¼ k � cA � cB ð36Þ

For equal initial concentrations of A and B (or also for a

dimerization), Reaction 35 can be written as

2A! C þ D, ð37Þ

with the differential equation

� 1

2

dcA

dt
¼ k � c2

A ð38Þ

This first-order differential equation is no longer a linear

one, so it will not be considered here. Moreover, in the case

of unequal initial concentrations the solution of the dif-

ferential equation (Eq. 36) has to be developed by expan-

sion into partial fractions. For the latter two situations the

reader is advised to consult textbooks of chemical kinetics

(e.g. [8]).

The radioactive decay

Radioactive decay refers to nuclear conversions of atoms

accompanied by emission of either electromagnetic radia-

tion (gamma radiation) or particles (e.g. alpha particles, i.e.

helium-4 nuclei; beta particles, i.e. electrons or positrons;

protons, fission products, etc.). Although these are physical

processes, they are considered here because the radioactive

decay plays an important role in chemistry, e.g. in isotope

dilution analysis, activation analysis, and in labelling mol-

ecules in kinetic studies, etc. There exists a variety pathways

of nuclear conversions: alpha decay, beta decay, spontane-

ous fission, electron capture, internal conversion, etc., to

name but a few. For a comprehensive overview, see [9, 10]. It

is very interesting to note that among the more than 3,000

isotopes, there are only 265 stable isotopes, all others being

radioactive! Here, we shall treat the simplest case, the decay

of a radioactive isotope which is not produced during the

decay (by another decay or by nuclear activation). The

activity A of a sample containing this isotope is defined as the

number of atoms disintegrating per time unit, i.e. the rate of

decay. The differential expression is:

A ¼ � dN

dt
ð39Þ

Since each disintegration is completely independent of

any other, and because it is a completely stochastic process,

the rate of disintegration is simply proportional to the

absolute number of radioactive atoms N:

� dN

dt
¼ kN ð40Þ

k (Greek letter lambda) is a proportionality constant

called the decay constant. Equation 40 is a first-order dif-

ferential equation which we can also write similar to Eq. 2:

dN

dt
þ kN ¼ 0 ð41Þ

Separation of variables leads to:

dN

N
¼ �kdt ð42Þ

Integration of Eq. 42 should be done in the limits of N0

(initial number of radioactive atoms) and Nf (final number

of radioactive atoms), when the time runs from 0 to t:

ZNf

N0

dN

N
¼ �k

Z t

t¼0

dt ð43Þ

The result is:

ln Nf � ln N0 ¼ �kt ð44Þ

ln
Nf

N0

¼ �kt ð45Þ

Nf ¼ N0e�kt ð46Þ

Equations 39 and 40 show that generally it holds that

A ¼ kN ð47Þ

This must also hold for N0 and Nf , so that multiplication

of Eq. 46 with k yields:

Af ¼ A0e�kt ð48Þ
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The last equation shows that the activity of a sample

decays in the same way as the number of radioactive atoms.

Equation 46 can be used to calculate the so-called half-

time t1=2 of an isotope: it gives the time in which half of the

initial number of radioactive atoms has decayed:

Nðt1=2Þ ¼
N0

2
¼ N0e�kt1=2 ð49Þ

This means that

1

2
¼ e�kt1=2 ð50Þ

with the result:

t1=2 ¼
ln 2

k
� 0:693

k
ð51Þ

If an isotope decays on two different pathways, the overall

decay constant is the sum of the two individual decay con-

stants. Here is an example: 40
19K decays on two pathways:

40
19K�!kEC 40

18Ar

40
19K�!

kb 40
20Ca

The indices b (Greek letter beta) and EC indicate a b-

decay and an electron capture decay, respectively.

The differential equation for the overall decay is:

� dNK

dt
¼ dNAr

dt
þ dNCa

dt
¼ kECNK þ kbNK ¼ ðkEC þ kbÞNK

¼ koverallNK

ð52Þ

Relaxation in nuclear magnetic resonance

In an external magnetic field B0, the macroscopic magneti-

zation vector M0 of the spin system is oriented parallel to the

external field, i.e. per definition in z-direction (Mz). Starting

an NMR experiment, this equilibrium state of the spin system

is disturbed: By applying a 90� radio frequency pulse (B1 in

x-direction), the macroscopic magnetization is rotated on the

y-axis or after a 180� pulse the magnetization is turned to �z

(cf. Fig. 8). As a result, the occupation numbers of the spin

energy levels are changed. Switching off this perturbation by

the additional field B1, the spin system returns to its thermal

equilibrium state by relaxation. Felix Bloch [11] described

two different relaxation processes with (i) the spin–lattice or

longitudinal relaxation time T1, describing the relaxation in

the direction of the external magnetic field B0, and (ii) the

spin–spin or transversal relaxation time T2, describing the

relaxation perpendicular to the external magnetic field B0. For

these relaxation processes, first-order mechanisms are

assumed, both from the viewpoint of kinetics (cf. Chapter 4)

and from the viewpoint of mathematics [12]:

dMz

dt
¼ �Mz �M0

T1

ð53Þ

dMy

dt
¼ �My

T2

ð54Þ

and

dMx

dt
¼ �Mx

T2

ð55Þ

These equations represent the time dependence of

magnetization along the three space directions with the rate

constants 1=T1 and 1=T2 for the two relaxation processes

mentioned.

A typical experiment for the determination of the spin–

lattice (or longitudinal) relaxation time T1 is the so-called

inversion recovery experiment. Here, first a 180� pulse

turns the macroscopic magnetization vector M0 from þz to

�z (see Fig. 8). Then, a 90� pulse is necessary to enable the

signal detection in y-direction.

The quantitative description of this experiment starts

from Eq. 53. Introducing a new dependent variable y as

y ¼ Mz �M0 ð56Þ

and

dy ¼ dMz ð57Þ

Equation 53 can be rewritten as

dy

dt
¼ � y

T1

ð58Þ

Separation of variables and integration leads to:

Zy

y0

dy

y
¼ � 1

T1

Z t

0

dt ð59Þ

Fig. 8 Orientation of the macroscopic magnetization before (þM0)

and after (�M0) a 180� pulse. At t ¼ 0 follows that Mz ¼ �M0
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At t ¼ 0 the definition of y in Eq. 56 gives y0 ¼ �2M0

as initial condition. Integration and re-substitution of y

result in

ln
Mz �M0

�2M0

� �
¼ � t

T1

ð60Þ

or in the exponential notation

M0 �Mz ¼ 2M0e�t=T1 ð61Þ

Mz ¼ M0ð1� 2e�t=T1Þ ð62Þ

Equations 61 and 62 present explicit dependencies of

the magnetization Mz in z-direction on time. This time-

dependent behaviour is schematically illustrated in Fig. 9.

The mathematical solution of the differential equations

(Eq. 54) for the determination of the spin–spin (or trans-

versal) relaxation time T2 is obvious and is exemplarily

given for the time-dependent behaviour of the magnetiza-

tion My in y-direction (cf. Eq. 54). Separation of variables

and integration gives Eqs. 63–65:

ZMy

M0

dMy

My

¼ � 1

T2

Z t

0

dt ð63Þ

ln
My

M0

¼ � t

T2

ð64Þ

My ¼ M0 � e�t=T2 ð65Þ

For t ¼ 0, the magnetization My in y-direction equals M0,

which is the initial value immediately after the 90� pulse.

Equations 64 and 65 can now be used to determine the

spin–spin relaxation time T2, which is a measure how fast

the transversal magnetization disappears. Experimentally,

the well-known spin-echo method developed by Hahn [13]

is used to determine T2.

The RC constant of an electrode

When a metal electrode is in contact with an electrolyte

solution, a double layer is formed at the interface. It has a

complex structure with the charged metal side and the

oppositely charged solution side. The double layer has the

property of a capacitor, as charge can be stored on both

sides, always equal amounts with opposite signs. Of

course, it is also possible that no net charge is on both sides

and this situation is referred to as the potential of zero

charge (given versus a reference potential). Most electro-

chemical techniques make use of a changing electrode

potential (linear and non-linear) to measure the current

response. Only rarely the current is deliberately changed or

controlled to measure the response of the electrode

potential. In the potential-controlled experiments, the

double layer is always charged or discharged during the

experiment, depending on the applied potentials, so that

charging currents accompany the so-called faradaic cur-

rents, which result from charge transfer reactions at the

interphase. Thus, the charging or capacitive currents are

normally interfering as they may become dominating when

the compounds undergo the electrochemical reaction are at

very low concentration. Therefore, the double layer

charging is worth to be considered, not to speak about their

great importance for modern capacitors. It is also important

to study capacitive currents because the double layer

charging reveals information about the complex structure

of the solution and metal sides of the interface. Here, we

shall discuss the most simple case: two metal pieces are

inserted in an electrolyte solution, e.g. of potassium nitrate

in water, and there is no compound in the solution other

than KNO3 and H2O, i.e. only the following ions and

molecules are present: K?, NO�3 ; H2O, H3Oþ; OH� (if

we neglect more complex ions like H5Oþ2 , and also ion

pairs, like [KNO3], which are present only in extremely

small concentrations). If at each electrode in the above

system the potential difference between the metal and the

solution side is insufficient to perform an electrochemical

reaction with all these species, i.e. insufficient to reduce the

protons of water to hydrogen or oxidize the oxygen-con-

taining species to oxygen, any change of the voltage

between the electrodes can only charge or discharge the

double layer of the electrodes. In electrochemistry, such

electrode is called an ideally polarizable electrode. The

current has thus to flow via a resistor, which is formed by

the electrolyte solution into or out of the capacitor formed

by the double layers. All other resistors in the circuit, e.g.
Fig. 9 Development of the macroscopic magnetization in z-direction

Mz in dependence on time following a 180� pulse
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the metal wires, have a much lower resistance than the

electrolyte solution. In such case, we may model the situ-

ation at one electrode by the capacitor ‘‘double layer’’, and

the resistor ‘‘solution’’ in series (see Fig. 10). (The second

electrode can be treated in the same way). Let us suppose

that the double layer is initially completely discharged (the

electrode rests at the potential of zero charge), i.e. there is

no charge separated by the two capacitor plates. In a

potential step experiment (i.e. when the electrode potential

is stepped from one value to another), the double layer is

charged (the capacitor is loaded). At the beginning (t ¼ 0),

the current flows only through the resistor, and upon

charging the current decays to zero, when the capacitor is

charged to its potential difference DE.

According to Kirchhoff’s law, the overall potential dif-

ference across the resistor and capacitor is the sum of two

potential drops:

DE ¼ DEresistor þ DEcapacitor ð66Þ

For the potential drop across the resistor follows (Ohm’s

law):

DEresistor ¼ RI ð67Þ

where R is the solution resistance and I the current.

The potential drop across the capacitor is:

DEcapacitor ¼
q

C
ð68Þ

where q is the charge, and C the capacitance of the

capacitor ‘‘double layer’’ (which in fact is depending on the

electrode potential, what we may neglect here).

Substituting the terms from Eqs. 67 and 68 in Eq. 66

yields:

DE � RI � q

C
¼ 0 ð69Þ

Solving this equation for I gives:

I ¼ DE

R
� q

RC
ð70Þ

Since the current is the first derivative of charge over

time (I ¼ dq=dt), one can write Eq. 70 also as follows:

dq

dt
¼ DE

R
� q

RC
¼ � 1

RC
ðq� C � DEÞ ð71Þ

dq

dt
þ 1

RC
ðq� C � DEÞ ¼ 0 ð72Þ

Equation 72 is a nonhomogeneous linear first-order

differential equation. Integration of Eq. 72 in the limits of 0

and q, and 0 and t gives:

Zq

0

dq

q� C � DE
¼ � 1

RC

Z t

0

dt ¼ � t

RC
ð73Þ

At t ¼ 0 follows q ¼ 0 from the assumption that the

electrode is initially at the potential of zero charge. To

solve the integral on the left side, one needs to make the

following substitution:

q0 ¼ q� C � DE ð74Þ

from which follows q ¼ q0 þ C � DE and dq ¼ dq0.

Zq0t

q0
t¼0

dq0

q0
¼ � t

RC
ð75Þ

(This is equal to solving the differential equation
dq0

dt
þ 1

RC
q0 ¼ 0).

½ln q0�q
0
t

q0
t¼0

¼ � t

RC
ð76Þ

Back-substitution q0 ¼ q� C � DE and dq0 ¼ dq and

defining q0t¼0 ¼ �C � DE (this equals to the condition

qt¼0 ¼ 0) lead to:

lnðq� C � DEÞ � lnð�C � DEÞ ¼ � t

RC
ð77Þ

ln
q� C � DE

�C � DE

� �
¼ � t

RC
ð78Þ

� q� C � DE

C � DE

� �
¼ e�t=RC ð79Þ

q� C � DE ¼ �C � DE � e�t=RC ð80Þ

q ¼ �C � DE � e�t=RC þ C � DE ð81Þ

q ¼ C � DEð1� e�t=RCÞ ð82Þ

Since I ¼ dq=dt it follows from Eq. 82 that:

I ¼ dq

dt
¼ � 1

RC
ð�C � DEÞ � e�t=RC ¼ DE

R
� e�t=RC ð83Þ

Since the DE=R must be equal to the initial current I0 at

t ¼ 0, Eq. 83 gives the current transient:

I ¼ I0 � e�t=RC ð84Þ

describing the exponential decay of current following a

potential step. RC is also called the time constant s and one

can write:

I ¼ I0 � e�t=s ð85Þ
Fig. 10 The resistor formed by the electrolyte solution having the

resistance R and the capacitor formed by the double layer of the

electrode having the capacitance C in an electrochemical cell
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Another possibility to solve the nonhomogeneous linear

first-order differential Eq. 72, consists in solving first the

homogeneous equation

dqh

dt
þ 1

RC
qhðtÞ ¼ 0 ð86Þ

yielding qhðtÞ as usual in an exponential form. After that, a

particular solution qpðtÞ of the nonhomogeneous differen-

tial equation can be found applying the equation

qpðtÞ ¼ uðtÞ � qhðtÞ ð87Þ

and its first derivative

q0pðtÞ ¼ u0ðtÞ � qhðtÞ þ uðtÞ � q0hðtÞ ð88Þ

Both expressions for qpðtÞ and for its first derivative

q0pðtÞ are substituted in Eq. 72, which finally leads to the

determination of uðtÞ and thus to qpðtÞ. The complete

solution of Eq. 72 is then the sum of the solution of the

homogeneous differential equation qhðtÞ and the particular

solution qpðtÞ, i.e.

qðtÞ ¼ qhðtÞ þ qpðtÞ: ð89Þ

Both mathematical approaches result in Eq. 85.

In many experiments, it is crucial to know the value of

the RC time constant of the electrode/electrolyte system,

because the charging current may be superimposed to

faradaic currents that are investigated.

For a more detailed understanding of the used electro-

chemical terms, we suggest to consult an electrochemical

dictionary [14].

Conclusions

Table 1 gives an overview of the discussed cases of

application of first-order differential equations to

chemistry.

It should be mentioned that there are many other pro-

cesses in science, which are based on first-order differential

equations, e.g. the so-called ‘‘exponential growth’’ of

bacteria cultures, the barometric formula or Newton’s law

of cooling.
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