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Abstract Selective catalytic reduction (SCR) of NOx with
NH3 is a widely used after-treatment technology for reducing
the NOx emissions from diesel engines. Mathematical models
play an important role in analyzing and optimizing SCR reac-
tors and also in controller design. Detailed mathematical
models of SCR reactors consist of a number of coupled dif-
ferential and algebraic equations, which can only be solved
numerically. Due to the limited computational capability of
engine control unit (ECU) and hardware-in-loop (HIL) sys-
tems, it is not practical to solve detailed model equations on
these systems in real time, and hence, there is a need for
reduced-order models. In this work, we provide a systematic
procedure for deriving reduced-order models from detailed
models of a SCR reactor. This systematic procedure consists
of making reasonable assumptions, good input signal design,
and system identification procedure. The reduced-order model
consists of non-stiff system of equations which can be solved
with an explicit solver, is two to three orders of magnitude
faster than the detailed model, and has same level of accuracy
as detailed model. The proposed model remains fundamental-
based, with model parameters directly related to physical and
chemical properties of the catalyst, and can be used on ECU
andHIL systems to predict ammonia storage, NOx conversion
efficiency, and ammonia slip during transient operating con-
ditions. Moreover, it is shown that the model equations can be
easily linearized around various operating points, thus

allowing the development of advanced control strategies
based on linear control theory. Although mainly demonstrated
in the context of SCR reactors, the procedures can be applied
to other monolith reactors as well.

Keywords SCR . Grey box .Model-based control . System
identification . State estimation . Linear control theory

Abbreviations
Af,i (Ab,i) Pre-exponential factor for forward (reverse)

reaction i
C0 Total molar concentration, mol/m3

Ci
in Inlet concentration of species i, mol/m3

Ci
out Outlet concentration of species i, mol/m3

Cpf (Cpw) Heat capacity of fluid phase (wall), J/(kg K)
Cs Site density, mol/m3 washcoat
Df Diffusivity of a species in fluid phase, m2/s
Ds Effective diffusivity of a species in washcoat,

m2/s
h Heat transfer coefficient, W/(m2 K)
ΔH Heat of reaction vector, J/(mol K)
kf Thermal conductivity in fluid phase, W/(m K)
kw Thermal conductivity of wall, W/(m K)
kf,i (kb,i) Forward (reverse) rate constant of reaction i
km External mass transfer coefficient vector, m/s
L Length of the channel, m
Nu Nusselt number
r Reaction rate vector
RΩ One fourth the channel hydraulic diameter, m
Sh Sherwood number
t Time, s
Tf (Ts) Temperature of fluid (solid) phase, K
Tf
in Temperature at channel inlet, K
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u Average velocity, m/s
vT Stoichiometric coefficients vector
Xfm Species mole fraction vector in bulk/fluid phase
Xwc Species mole fraction vector in washcoat
Xfm
in Species mole fraction vector at channel inlet

y Length co-ordinate along washcoat direction
x Length co-ordinate along axial direction
ρf Density of fluid mixture, kg/m3

ρw Density of wall, kg/m3

ε Porosity of washcoat
θ Fractional coverage of vacant sites
δc Washcoat thickness, m
δw Effective wall thickness, m

1 Introduction

Selective catalytic reduction (SCR) of NOx with NH3 is being
used to meet the increasingly stringent government standards
of NOx emissions from diesel engines and it is the most active
research area in all of exhaust emission control. Since the
technology’s first commercial applications in the last decade,
the deNOx efficiency of SCR reactors has increased about ten
times with improvement in catalyst compositions, system de-
sign and control [1]. As efficiencies increase, the operations of
SCR systems are becoming the bottleneck for further perfor-
mance improvement. Thus, SCR system control (including
urea dosing, ammonia slip control, etc.) is attracting more
and more attention. Model-based control is an emerging ap-
proach for achieving better SCR control. Skaf et al. [2] and
Yuan et al. [3] recently reviewed current status on the devel-
opment of SCR control. Reactor modeling usually consists of
two layers of mathematical models–reactor models, which
capture mass and heat transport in the reactors, and reaction
(or kinetic) models, which describe the reaction mechanisms.
In case of SCR reactors, many modeling studies can be found
in the literature [4–7] regarding system analysis, design, and
control. With different level of complexity in the reactor and
kinetic models, these works can be generally categorized into
three groups. The first group of models is mostly developed
by chemists and chemical engineers. From their knowledge in
chemical reactors and chemistry, they propose physics-based
partial differential equation (PDE) models describing the
convection-diffusion-reaction system incorporating detailed
kinetic models to capture all physical and chemical behaviors
of the reactor as accurately as possible [4, 6]. These models
usually result in large number of differential equations de-
manding heavy computational power. Thus, they are more
suitable for offline system analysis and design rather than
real-time control applications. The second group of models
is developed in a more control-oriented way using either
map-based method or linearized black-box models to charac-
terize linearized dynamics [8, 9]. These models lack

adaptability and cannot address the strong non-linearity intro-
duced by the chemical reactions. With rapid growth in com-
putational power, more algebraic and differential equations
can be solved in real time. More physical and chemical details
are introduced into control-oriented models to form the so-
called grey-box models [7]. With reduced 1-D or 0-D reactor
model and simplified kinetics, this group of models seeks
balance between the accuracy provided by detailed models
(white-box model) and the efficiency provided by black-box
models.

Since the focus of our work is development of grey-box
model for SCR, we present a brief review of the work done by
other researchers in this area. Upadhyay and Nieuwstadt [10]
developed a three-state (NH3, NOx, and storage) lumped pa-
rameter model for the purpose of control design. Devarakonda
et al. [11] extended this three-state model to a four-state model
by adding NO2. Hsieh and Wang [12] also used this type of
model but with different set of reactions. Surenahalli et al. [13]
used two storage sites to model the NH3 storage and imple-
mented an extended Kalman filter for estimating internal
states of a SCR rector using NOx and NH3 sensors. The
reduced-order models used in the above references are of ho-
mogeneous/single-phase-type models where surface species
concentrations are assumed to be equal to that of gas phase
(i.e., kinetically controlled regime). It is well known that the
reaction rates are controlled by external (i.e., fluid to wall)
mass transfer at high temperatures, and hence, two-phase
models are needed to accurately predict exit conversions in
high temperature regions [6, 14]. There are other attempts in
developing grey-box models with different approaches which
are reviewed by Yuan et al. [3]. However, instead of a contin-
uous chain connecting detailed and grey-box models, present
grey-box models are rather scattered links. Missing connec-
tions with detailed white-box models, the present grey-box
models cannot take advantage of and adapt to new develop-
ments in detailed reactor and kinetic models.

In this work, a systematic methodology for the develop-
ment of ECU capable grey-box models from detailed reactor
models is proposed. We use this procedure to develop a grey-
box model of a SCR reactor. Since the grey-box model re-
mains fundamental based, there are direct connections be-
tween lumped parameters (in grey-box models) and detailed
parameters (in white-box models). This grey-box model also
captures all of the main qualitative features of the detailed
model. Additionally, a system identification procedure which
uses detailed model to tune the grey-box model is proposed.
The resulting model is then linearized around a certain oper-
ating point and an observer-based state feedback controller is
developed. It is shown that the linearization within a certain
operating range can produce an accurate control-oriented lin-
ear model and that the developed controller can improve the
performance of the SCR reactor compared to a simple PID
controller.
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2 SCR Chemistry

The SCR of NOx with NH3 has been studied in detail on
various catalyst formulations. Two groups of SCR catalysts,
namely vanadia- and zeolite-based, are widely used in the
commercial after-treatment applications. The zeolite-based
catalysts are proven to be active over a wide operating tem-
perature range than the vanadia-based catalysts. The SCR
chemistry on these catalyst formulations is investigated exten-
sively in the literature, and it has been found that the set of key
reactions presented in Table 1 are common to the above SCR
catalysts [6]. Side reactions like formation of NH4NO3 and
N2O are excluded in this work but can be easily included
when necessary as these extra reactions do not pose any addi-
tional modeling difficulties. Ammonia adsorption reaction
(R1) is a key step in the urea injection-based SCR reactors
because the NOx reduction reactions depend on the adsorbed
NH3. Ammonia oxidation reaction (R2) is an important side
reaction which competes with NOx reduction reactions for
stored NH3. NO oxidation reaction (R3) is a reversible reac-
tion which is equilibrium limited at higher temperatures. The
reaction (R4) between NH3 and NO is called standard SCR
reaction and is the only NOx reduction reaction in the absence
of NO2. The reaction (R5) involving NH3 and equimolar
amounts of NO and NO2 is significantly faster than the stan-
dard SCR reaction at low temperature and hence called the fast
SCR reaction. The last reaction (R6) is called NO2 SCR reac-
tion and is an important reaction when feed contains signifi-
cant amounts of NO2. Generally, fast SCR reaction (R5) has
the highest rate and is relatively more active at lower temper-
atures. The relative rates between the standard SCR (R4) and
NO2 SCR (R6) reactions vary depending on operating condi-
tions and catalyst formulation. Global reaction rate expres-
sions used in this work are listed in Table 1 [6].

3 Detailed Model

The mathematical models of catalytic monoliths vary in com-
plexity depending on the level of detail included. Figure 1
shows the overview of various physical and chemical process-
es occurring in a SCR reactor. The detailed models consist of
coupled non-linear PDEs in at least two spatial dimensions

and time along with highly non-linear reaction source/sink
terms appearing in solid-phase species and energy balances.
Although the numerical solution of these detailed models is
possible with present-day computers, these are not practical
when the objective is to explore the parameter space and con-
duct optimization studies. The most widely used simplified
models of catalytic monoliths are the 1 + 1D (with one spatial
direction in flow direction and the second spatial dimension
along washcoat depth) and 1D (with one spatial direction in
flow direction) two-phase models. These simplified models
capture all the qualitative features of the monolith reactor,
and the quantitative predictions are also accurate for all prac-
tical purposes [14]. In the 1 + 1D model, separate equation is
used to resolve concentration gradients in the washcoat (i.e.,
captures the pore diffusion resistance) whereas in the 1Dmod-
el, washcoat diffusional limitations are ignored or accounted
by using the concept of effectiveness factor, internal mass
transfer coefficient [15], or an asymptotic solution [16].
These two-phase models can be further simplified for different
limiting cases, such as infinite/zero solid-phase conductivity,
negligible gradients between fluid and solid-phases, or steady-
state conditions [17]. It has been shown in several studies that
the interphase gradients and washcoat diffusional limitations
are important in the practical operating range of catalytic
monoliths [6, 14, 15]. For this reason, the 1 + 1D model is
used in this work. We use constant thermodynamic properties
because the non-isothermal effects can be neglected when the
heat of reaction is negligible, which is usually the case in the
SCR reactor where the reactant concentrations in the feed are
small (~500 ppm). Furthermore, the energy balances can be
dropped in the steady-state cases but not in transient cases. For
the transient simulations, solid temperature lags the fluid tem-
perature because of large solid to fluid heat capacity ratio;
hence, energy balances need to be used to get correct reaction
rates in the solid phase.

The 1 + 1D model is described by the following equations:
Species balances:

∂X fm

∂t
¼ −u

∂X fm

∂x
−
kme
RΩ

X fm−Xwcjy¼0

� �
; ð1Þ

ε
∂Xwc

∂t
¼ 1

C0
vT r þ Ds

∂2Xwc

∂y2
; ð2Þ

Table 1 SCR reaction
mechanism Reaction number Reaction Rate expression

R1 NH3 +S⇔NH3S R1= kf,1. (1 −θ)XNH3− kb,1.θ
R2 2NH3S+ 1.5O2→N2 + 3H2O+ 2S R2= kf,2.θ. XO2

R3 NO+ 0.5O2⇔NO2 R3= kf,3. XNOXO2
0.5− kb,3. XNO2

R4 4NH3S+ 4NO+O2→ 4N2 + 6H2O+ 4S R4= kf,4.θ. XNO

R5 2NH3S+NO+NO2→ 2N2 + 3H2O+2S R5= kf,5.θ. XNOXNO2

R6 4NH3S+ 3NO2→ 3.5N2 + 6H2O+ 4S R6= kf,6.θ. XNO2
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Energy balances:

ρ f Cpf
∂T f

∂t
¼ −uρ f Cpf

∂T f

∂x
−

h

RΩ
T f −Ts

� �
; ð3Þ

δwρwCpw
∂Ts

∂t
¼ δwkw

∂2Ts

∂x2
þ h T f −Ts

� �þ δc�r
T −ΔHð Þ;ð4Þ

Site balance:

∂θ
∂t

¼ 1

Cs
νT
θ r; ð5Þ

Boundary conditions:

X fm tð Þ ¼ X in
fm @ x ¼ 0; ð6Þ

kme X fm−Xwc

� � ¼ −Ds
∂Xwc

∂y
@ y ¼ 0; ð7Þ

∂Xwc

∂y
¼ 0 @ y ¼ δc; ð8Þ

T f tð Þ ¼ Tin
f tð Þ @ x ¼ 0; ð9Þ

∂Ts

∂z

����
x¼0

¼ ∂Ts

∂z

����
x¼L

¼ 0: ð10Þ

The variables used in the above equations are defined in the
nomenclature section. Various correlations are available in the
literature for calculating external heat (h) and mass transfer
coefficients (kme) as function of axial position. It was shown
that when the transverse Peclet number (P ¼ uR2

Ω
LD f

) is less than
0.1, flow conditions in the entry region of monolith have neg-
ligible effect on the exit conversion [18]. Thus, we neglect the
entrance length effects in this work because transverse Peclet

number is less than 0.1 for most of the monolith reactors used
in the automotive after-treatment applications and use con-
stant heat and mass transfer coefficients corresponding to a
rounded square channel.

4 Model Reduction

Due to the limited computational capability of engine control
unit (ECU) and hardware-in-loop (HIL) systems, it is not prac-
tical to solve detailed model equations on these systems in real
time, and hence, there is a need for reduced-order models.
Detailed (1 + 1D) model presented in the above section ex-
plicitly accounts for the washcoat diffusion and was calibrated
against experimental data by Metkar et al. [6]. The 1 + 1D
model consists of a system of stiff differential equations, and
its solution requires sophisticated implicit solvers. The 1 + 1D
model consists of total of nine PDEs if NH3, NO, and NO2

species emissions need to be controlled. In this section, we
systematically derive a reduced order model from the 1 + 1D
model presented in previous section. First, 1 + 1D model is
reduced to a 1D model by ignoring washcoat diffusion. Even
though this seems like a strong assumption, this assumption
implicitly lumps the washcoat diffusion effects into kinetics
parameters. Diffusional effects alter the true activation ener-
gies of reactions, and the resulting activation energies are
called apparent activation energies. It will be shown later that
the consequences of this approximation can be handled
through the parameter optimization. Next, the resulting 1D
model is further simplified to a 0D model by ignoring axial
gradients which is a reasonable assumption for high space
velocities encountered in after-treatment applications. When
this assumption is not satisfied, we can account for spatial
variations by using the so-called continuously stirred tank
reactors (CSTRs)-/blocks-in-series approach which will be
discussed in detail in the later sections. Next, the accumulation
in fluid phase is ignored leading to a so-called quasi steady-
state approximation, which is very frequently used even in
detailed models. With this assumption, the transient terms in
fluid-phase species balances can be neglected. With the above
three assumptions, 1 + 1D model simplifies to the following
systems of equations:

u

L
X fm−X in

fm

� �
þ kme

RΩ
X fm−Xwc

� � ¼ 0; ð11Þ

1

C0
νT r þ kme

δc
X fm−Xwc

� � ¼ 0; ð12Þ
u

L
T f −Tin

f

� �
þ h

RΩρ f Cpf
T f −Ts

� � ¼ 0; ð13Þ

δwρwCpw
dTs

dt
¼ h T f −Ts

� �
; ð14Þ

Fig. 1 Overview of various physical and chemical processes occurring in
a washcoated monolith channel
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dθ

dt
¼ 1

Cs
νT
θ r: ð15Þ

Expanding the above equations for NH3, NO, and NO2

species, using the reactions listed in Table 1, and rearranging
the equations result in the following simplified systems of
equations:

XwNH3 ¼ FPP*X in
NH3 þ kb;1*θ

FPP þ k f ;1* 1−θð Þ ; ð16Þ

X out
NH3 ¼

P*X in
NH3 þ XwNH3

1þ P
; ð17Þ

XwNO2 ¼ −bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2−4ac

p

2a
; ð18Þ

X out
NO2 ¼

P*X in
NO2 þ XwNO2

1þ P
; ð19Þ

XwNO ¼ FPP*X in
NO þ kb;3*XwNO2

FPP þ k f ;3*X 0:5
O2 þ 4k f ;4*θþ k f ;5*θ*XwNO2

;

ð20Þ
X out

NO ¼ P*X in
NO þ XwNO

1þ P
; ð21Þ

Tout
f ¼

Tin
f þ

hLTs

uRΩρ f Cp f

1þ hL

uRΩρ f Cp f

; ð22Þ

Cs
dθ
dt

¼ R1−2R2−4R4−2R5−4R6 ð23Þ

δwρwCpw
dTs

dt
¼

h Tin
f −Ts

� �

1þ hL

uRΩρ f Cp f

; ð24Þ

where

P ¼ u RΩ

Lkme

FPP ¼ Ctotal*kme
δc

P

1þ P
a ¼ FPP*k f ;5*θþ 2kb;3*k f ;5*θþ 3*k f ;5*k f ;6*θ

2;
b ¼ FPP*k f ;5*θ* X in

NO−X
in
NO2

� �
−k f ;3*kb;3*X

0:5
O2

þ FPP þ kb;3 þ 3k f ;6*θ
� ��

FPP þ k f ;3*X
0:5
O2 þ 4k4; f*θ;

c ¼ −FPP*X in
NO2 FPP þ k f ;3*X

0:5
O2 þ 4k4; f*θ

� �
−FPP*k f ;3*X

0:5
O2X

in
NO:

In the above equations, internal states of the system are
represented by coverage fraction (θ) and solid temperature
(Ts), and all other variables are expressed with an algebraic
function of these two states. The above two ordinary differen-
tial equations (ODEs) (Eqs. 23 and 24) can be converted into
algebraic equations by using the explicit difference schemes
such as Euler or Runge-Kutta methods. For example, using an
explicit Euler method, the twoODEs can be converted into the
following algebraic equations;

θs t þΔtð Þ ¼ θs tð Þ þ Δt

Cs
R1−2R2−4R4−2R5−4R6ð Þ; ð25Þ

Ts t þΔtð Þ ¼ Ts tð Þ þ Δt

δwρwCpw

h Tin
f −Ts tð Þ

� �

1þ hL

uRΩρ f Cpf

0
BB@

1
CCA: ð26Þ

5 Grey-Box Model Setup

The grey-box model presented in the previous section is a
second-order system (i.e., contains two first-order ODEs).
When there are steep gradients in the axial direction in cover-
age and/or solid temperature, it will be necessary to use
higher-order system of equations to accurately model the sys-
tem dynamics. We use the so-called CSTRs-/blocks-in-series
approach to capture the spatial gradients. Figure 2 shows the
schematic of a CSTRs-/blocks in-series approach. Output sig-
nals from one CSTR are fed to the next CSTR in the down-
stream as input signals. Number of states/order of the system
is equal to two times the number of CSTRs. Number of
CSTRs can be considered as optimization parameter if neces-
sary. From the grey-box model equations presented in the
previous section, we can see that grey-box model preserves
the physical parameters of the detailed model. The grey-box
model predictions are satisfactory even with original kinetic
parameter values. Model accuracy increases with inclusion of
additional CSTRs. However, retuning of parameters is neces-
sary to increase accuracy level without sacrificing computa-
tional load. In the next section, the system identification/
parameter tuning process is explained in detail.

6 System Identification

The first step in the system identification process is the cali-
bration of detailed model. Figure 3 shows the scheme of the
workflow of detailed model calibration. In general, detailed
models are calibrated to experimental measurements which
are obtained by following a test protocol. Test protocols are
designed to excite different states of the system and are de-
signed to understand the physics of the system [19]. In this
work, we have not calibrated the 1 + 1D model but, instead,
used the parameter values reported in [6] in which the 1 + 1D
model was calibrated to the measurements taken on Cu-
chabazite and Fe-ZSM-5 catalysts. The 1 + 1D model can be
solved using well-known openly available ODE solver pack-
ages like LSODE, SUNDIALS, etc. or commercial software
packages like GT-SUITE andMATLAB.MATLAB is used to
solve 1 + 1D model since rest of the system identification
process is carried out in MATLAB. Metkar et al. [6] found
that using 21 points in the flow direction and 10 points along
the washcoat depth is sufficient to get grid independent solu-
tion. This gives the axial discretization length of 1 mm. We
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confirmed that the 1-mm axial discretization length gives grid-
independent solution and use this in all of the simulations
carried out in this work.

As shown in the above sections, grey-box model remains
fundamental based and contains samemodel parameters as the
1 + 1D model. In the model reduction process, some physical
processes (like pore diffusion effects, accumulation in fluid
phase, etc.) are omitted or lumped into other parameters to
reduce the computational burden. Therefore, it is necessary
to tune/optimize the grey-box model parameters to improve
the accuracy. Figure 3 shows the scheme of the workflow of
grey-box model tuning process. The main difference between
the calibration of detailed and grey-box model is the input
signal design. Input signals used in the detailed model calibra-
tion are dictated by test protocols whereas input signals for the
grey-box model calibration need to be carefully designed.
They must be “rich” in their frequency content so that the
dynamic system can be identified properly. In addition, the
selection of the right frequency range is also important; this
is why prior knowledge of the bandwidth of the plant is re-
quired. Signals which are often used in identification and are
rich in frequencies include random signals. In particular,
pseudo-random binary sequences or super-imposed sinusoidal
signals are often used in identification. In this paper, System
Identification Toolbox from The MathWorks is used to gener-
ate input signals. Specifically, the “idinput” function provides
several options for generating input signals—random
Gaussian signal (rgs), random binary signal (rbs), sine, etc.
Continuous signals are preferred since the grey-box model is
continuous-time-based model. We generated input signals
using “sine” option which gives a signal that is some of sinu-
soids of different frequencies. The frequency contents of the

signal are determined by the lower and upper bound of the
passband. Same input signals are fed to both 1 + 1D and grey-
box models. Kinetic parameters in grey-box model are tuned
to match the prediction of detailed model. MATLAB System
Identification Toolbox is used for optimization. Kinetic pa-
rameters are tuned for each of the reactions separately as ex-
plained in the following sections.

6.1 NH3 Adsorption and Desorption

Ammonia adsorption is key step in the urea injection-based
SCR reaction system as most of the NOx reduction reactions
depend on the stored NH3. Hence, it is important to predict the
NH3 storage accurately. Typically, temperature programmed
desorption (TPD) experiments are used to understand the NH3

storage dynamics. Figure 4 shows the typical TPD experiment
inputs and outputs. In TPD experiments, a feed consisting of
NH3 (less than 0.1 %) and inert gas is introduced into the
reactor until saturation where outlet NH3 is equal to inlet
NH3. Feed temperature is kept constant during this adsorption
phase. After this saturation phase, NH3 in the feed is cutoff
and only inert gas is introduced into the system. Some of the
physisorbed NH3 desorbs during this post uptake period and
leaves the reactor. After this period, inlet gas temperature is
increased gradually at rate of about 10 K/min. Ammonia de-
sorbs from the catalyst surface and exits the reactor during this
temperature ramp period. Detailed model is fitted to the TPD
data to determine the kinetic parameters of adsorption and
desorption reaction (R1).

As explained in the above section, TPD experiments are
useful to understand system behavior and calibrate detailed
models but not ideal for tuning the grey-box model in which

Fig. 2 Schematic of grey-box model set-up

Fig. 3 Workflow of system
identification process
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some of the system details are lumped. Input signals in TPD
are static for most of the time whereas we need persistently
excited input signals for grey-box model tuning. Space veloc-
ity of 57,000 h−1 at STP is used in the tuning of grey-box
model, but varying space velocity (representing New
European Drive Cycle (NEDC)) is used in the model valida-
tion section. The persistently excited signals used for inlet
NH3 concentration and inlet temperature are shown in
Fig. 5, which also shows the comparison of outlet NH3 from
both the models. We can see that the grey-box model accu-
rately captures the dynamics of the NH3 storage with root-
mean-square error (RMSE) error for outlet NH3 of 19 ppm.
The retuned parameter values are given in Table 2, and these
values are kept constant in subsequent parameter tuning of
other SCR reactions. It is worth noting that when tuning
NH3 adsorption and desorption rate parameters, the adsorption
activation energy (Ef,1) is set to zero because ammonia adsorp-
tion process can be adequately modeled using a simple colli-
sion theory and, as such, it does not involve any activation

energy barrier. Thus, it is a commonly accepted practice [6] to
set the activation energy to zero for the absorption process
while leaving the desorption process activated.

6.2 Ammonia Oxidation

Ammonia oxidation is an important side reaction which com-
petes with NOx reduction reactions for stored NH3. For this
case, inlet feed consisting of NH3 and O2 is fed to both the 1 +
1D and grey-box models. NH3 inlet concentration varies be-
tween 0 and 500 ppm, and inlet temperature varies between
473 and 723 K. Inlet concentration of O2 is fixed at 5 %.
Kinetics parameters of reaction R2 are tuned in this step, and
the optimized values are provided in Table 2. As shown in
Fig. 6, grey-box model accurately matches the outlet NH3 of
detailed model with RMSE of 15 ppm.

6.3 NO Oxidation

The oxidation of NO to NO2 is an important reaction because
of its role in fast SCR reaction (R5). NO oxidation is a revers-
ible reaction which is equilibrium limited at high tempera-
tures. For this case, inlet feed consisting of NO and O2 is used.
As shown in Fig. 7, inlet NO concentration varies between 0
and 250 ppm and inlet temperature varies between 373 and
873 K. Inlet concentration of O2 is fixed at 5 %. Pre-exponent
multiplier and activation energy for forward reaction R3 are
tuned in this step, and optimized values are provided in
Table 2. Reverse reaction rate constant is calculated using
the equilibrium constant. As shown in Fig. 7, grey-box model
accurately matches 1 + 1D model predictions for outlet NO
and NO2 with RMSE of 3 and 0.5 ppm, respectively.

6.4 Standard SCR Reaction

Standard SCR reaction (R4) refers to the reaction between
NH3 and NO, with the participation of O2. For this case, inlet
feed consisting of NH3, NO, and O2 is fed to both the models.
As shown in Fig. 8, NH3 and NO concentrations vary between

Fig. 4 Typical type of experimental studies used in calibrating detailed models [6, 19]

Fig. 5 Tuning of NH3 adsorption-desorption step: a inlet NH3 signal, b
inlet temperature, and c predicted NH3 outlet concentration
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0 to 500 ppm, and O2 concentration is set at 5%. Fast (R5) and
NO2 (R6) reactions are turned off, and kinetics parameters of
reaction R4 are tuned. Figure 8 shows the comparison of out-
let NH3, NO, and NO2 concentrations from both the models,
and as seen, the grey-box model predictions are accurate with
RMSE of 6, 7, and 4 ppm, respectively.

6.5 Fast and NO2 SCR Reactions

Reaction R5 involving NH3 and an equimolar amounts of NO
and NO2 is significantly faster than the standard SCR reaction
at low temperature and hence called fast SCR reaction. To take
advantage of this fast reaction, in practice, an oxidation cata-
lyst like DOC located upstream of SCR reactor could convert
a fraction of NO to NO2 to maintain optimum NO2/NOx ratio
of 0.5. The last reaction R6, called NO2 SCR reaction, is an
important reaction when the feed contains significant amount
of NO2. The excess amounts of NO2 in the feed mixture may

result in the formation of undesired products such as NH4NO3

and N2O, but we do not consider these side reaction routes in
this work. To tune the kinetic parameters of reactions R5 and
R6, gas mixture consisting of NH3, NO, NO2, and O2 is fed to
both the models. As shown in Fig. 9, NH3 varies from 0 to
500 ppm and NO and NO2 vary from 0 to 250 ppm. It can be
seen from Fig. 9 that the grey-box model accurately matches
the outlet concentrations of NH3, NO, and NO2 of 1 + 1D
model with RMSE of 0.6, 4, and 4 ppm, respectively.

6.6 Model Validation

The final step in the system identification process is the vali-
dation of model with different set of data than the data used to
tune the grey-box model. Recently, Brown et al. [20] used the

Table 2 Optimized kinetic
parameter values Parameter name Numerical value

(mol/m3 washcoat s)
Parameter name Numerical value

(kJ/mol)

Grey-box 1 + 1D Grey-box 1 + 1D

Af,1 5.68e5 6.68e5 Ef,1 0 0

Ab,1 4e13 4e13 Eb,1 145.9 145.9

Af,2 5.36e16 5.56e16 Ef,2 178.8 178.8

Af,3 4.66e7 5.1e7 Ef,3 56 56

Af,4 6.57e13 7.08e13 Ef,4 89.1 89.1

Af,5 1e18 1e18 Ef,5 76.9 77.1

Af,6 1.82e17 1.96e17 Ef,6 136 136.3

Fig. 6 Tuning of NH3 oxidation step: a inlet NH3 signal, b inlet
temperature, and c predicted NH3 outlet concentration

Fig. 7 Tuning of NO oxidation step: a inlet NO signal, b inlet
temperature, and c predicted NO outlet concentration
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integrated engine + DOC + SCR system model of a 2.0-L
European diesel engine to study the deNOx performance of
different SCR technologies during NEDC. We obtained the
SCR inlet conditions from this work. Figure 10 shows inlet
velocity, temperature, and species concentrations used in the
NEDC simulation, and Table 2 lists kinetic parameters used in
the grey-box model. Figure 11 compares the outlet NH3, NO,
and NO2 concentrations from both the models. It can be seen
that the grey-box model predictions are close to that of 1 + 1D

model with RMSEs of 0.3, 9, and 2.5 ppm for NH3, NO, and
NO2 outlet concentrations, respectively. Note that the NH3

break through at around 1100 s is not accurately captured by
the grey-box model. Although this can be improved by using
more CSTRs, it is not necessary to improve the accuracy in
this case because NH3 break-through concentration is below
the 10-ppm limit currently followed by OEMs and is also
below the 10-ppm limit set by Euro VI standards [3]. It is
worth mentioning that the grey-box model predictions for av-
erage NH3 storage fraction and average solid temperature
agree well with that of 1 + 1D model.

7 Computational Time

Due to the limited computational resources available on ECU
and HIL systems, it is crucial that the embedded model runs in
real time. In this section, we compare the CPU time of 1 + 1D
and grey-box models. Table 3 lists CPU times needed to sim-
ulate 1180 s of NEDC with different modeling approaches.
Figure 10 shows inlet velocity, temperature, and species con-
centrations used in the NEDC simulation. Both 1 + 1D and
grey-box models are solved in MATLAB using the ode15s
solver which is a variable order multistep solver (i.e., needs
the solutions at several preceding time points to compute cur-
rent solution) based on numerical/backward differentiation
formulas. Note that the grey-box model equations can also
be solved using an explicit ODE solver whereas implicit
ODE solver was required to solve 1 + 1D model due to stiff
system of equations. Table 3 lists the CPU time to simulate the
grey-box model with the ode45 solver which is based on an
explicit Runge-Kutta and is a one-step solver (i.e., needs only
the solution at the immediately preceding time point to com-
pute current solution). It can be seen from Table 3 that the
grey-box model is orders of magnitude faster than 1 + 1D
model. For comparison, we also showed CPU time with GT-
SUITE’s Advanced Adaptive (AA) solver which uses an
adaptive mesh in the axial direction and an adaptive time step
to adjust to the demands of the moving reaction fronts [21].
AA solver accounts for the pore diffusional limitations using
an asymptotic approach [16]. It can be seen that AA solver
runs significantly faster than the 1 + 1D model but is slower
than the grey-boxmodel.We note that the grey-boxmodel can
run even faster if it is coded in compiled languages like C or
FORTRAN. Figure 12 shows how the real time (RT) factor for
both implicit (ode15s) and explicit (ode45) ODE solvers
varies with number of CSTRs. Here, the RT factor is defined
as real time divided by CPU time. It can be seen that RT factor
reduces almost linearly with number of blocks. Implicit solver
is slower than the explicit solver due to overhead associated
with solving linear set of implicit algebraic equations at each
time step. Note that the CPU time for one CSTR is higher than
that of two CSTRs. This might be due to the overhead

Fig. 8 Tuning of standard SCR reaction step: a inlet NH3 signal, b
predicted NH3 outlet concentration, and c predicted NO outlet
concentration

Fig. 9 Tuning of fast and NO2 SCR reaction steps: a inlet NH3 and NO
signals, b predicted NO outlet concentration, and c predicted NO2 outlet
concentration

132 Emiss. Control Sci. Technol. (2016) 2:124–136



(variable allocation, memory management, etc.) associated
with the first call to ODE solver. It is important to keep the
CPU time per time step constant on ECU and HIL system to
avoid overruns, and hence, fixed-step solvers are commonly
used on these systems. The grey-box model can be solved
using these fixed-step solvers. Furthermore, the grey-box
model requires less computational resources than the detailed
models.

8 Control Applications

Asmentioned previously, the grey-boxmodel contains a small
number of non-stiff equations which means that it can be
easily used in real-time applications. One more attractive
property of this model is that the equations are in such a form
that they can be linearized without much effort. The accuracy
of linear models is limited to a small area around the operating
point that the linearization took place, but they are useful for
control design. This approach is attractive mostly due to the

simplicity of implementation as well as the abundance of the-
oretical tools for analysis and synthesis. In order to overcome
the accuracy limitation, the methodology can be extended to
produce multiple piecewise linear plant models in order to
cover the entire operating range of the SCR. In such a case,
the controller algorithm performs the following main steps at
each sample: (i) identifies the active linear model based on the
values of the exogenous input signals, (ii) measures outputs
and estimates the states using a state observer for the selected
linear model, and (iii) calculates the control law that has been
designed for the specific operating area. In the remainder of
this section, we demonstrate the linearization of the model
around a single operating point and the design of a control
law based on the linear model.

Since the only control input is urea, the SCR model in its
linear state space form is written as follows:

X
⋅ ¼ A⋅X þ B⋅uþ Bd ⋅W ; ð27Þ
Y ¼ C⋅X þ D⋅uþ Dd ⋅W ; ð28Þ
where

X= [θ Ts]
T is the state vector,

u ¼ XNH3 is the controlled input,
W ¼ XNO XNO2 XO2 T f vel

� 	T
is the exogenous input
vector, which is
considered as disturbance,

A, B, Bd,C,D,Dd are properly sized
constant matrices.

Fig. 10 Inlet velocity,
temperature, and species
concentrations used in the NEDC
simulation

Fig. 11 Comparison of outlet species concentrations predicted by grey-
box and 1 + 1D models in NEDC simulation

Table 3 Run times with different solvers

Model Implicit
solver (s)

Explicit
solver (s)

GT-SUITE(21 volumes) AA solver 4.1 –

1 + 1D (21 + 10 volumes) MATLAB 349.5 –

Grey-box (21 volumes) MATLAB 1.62 1.13

Grey-box (1 volume) MATLAB 0.82 0.48
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Without loss of generality, we choose to linearize the model
around the following operating point because this combination
is close to the average values seen in a typical NEDC cycle:

X ¼ 0 300½ �T ;
u ¼ 100;
W ¼ 100 100 150000 500 5½ �T

The comparison on the frequency domain between the
grey-box model and the linear model is depicted in Fig. 13
which shows very good agreement between the two models.
The frequency test was performed with a varying sinusoidal
input of amplitude 10 ppm. With the linear model at hand, we
design an observer-based state feedback controller.
Specifically, a closed-loop state estimator can be written as
follows:

X
⋅ ¼ A⋅X þ B⋅uþ L* y−C⋅X−D⋅Uð Þ ð29Þ
where L is the observer gain. From the equation above, it is
clear that the stability of the observer depends on the eigen-
values of A−LC; therefore, proper choice of L guarantees a
stable observer.

The control law can then be written as follows:

U ¼ −Ks⋅X þ KNO⋅XNO þ KNO2 ⋅XNO2 ; ð30Þ

where Ks; KNO; and KNO2 are the state feedback gain, the
NO output feedback gain, and the NO2 output feedback gain,
respectively.

The use of the state in the control law is very important. It
essentially penalizes excessive or insufficient coverage inside the
reactor, thus offsetting the dosing to lower or higher quantities,
respectively. This allows the use of more aggressive output feed-
back gains without compromising ammonia slippage effects.
Proper choice of Ks; KNO; and KNO2 is required in order to
achieve the desired performance. In this work, a simple iterative
algorithmwas written that minimizes cumulative NOx emissions
and constrains maximum NH3 slip to less than 1 ppm. Using the
resulting gains (Ks ¼ 0:065 0½ �; KNO ¼ 15; KNO2 ¼ 15 )
with the grey-box model as a test plant produces the results
shown in Fig. 14. Compared to the results in Fig. 11, it is evident
that the designed controller results in higher SCR efficiency and
significantly lower NH3 slip. Specifically, cumulative NO and
NO2 emissions decreased by 8.1 and 11.4 %, respectively, while
NH3 outlet decreased by 83 %. Maximum NO and NO2 emis-
sions decreased from 366 to 344 ppm and from 95 to 86 ppm,
respectively. Finally, maximum ammonia slip which was the
main performance requirement in this example decreased from
3.9 to less than 1 ppm (0.94 ppm).

It is noted that the methodology described above can be
used for the design of other types of controllers based on linear
control theory such as model predictive controller (MPC) and
linear quadratic Gaussian (LQG). Finally, it is noted that
choice of the number of piecewise linear models that will be
generated is a tradeoff between desired accuracy and available

Fig. 12 RT factor with different number of CSTRs

Fig. 13 Magnitude Bode plot comparison between grey-box and linear
models on the frequency domain
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memory inside the ECU since the parameters for each one of
the linear models must be stored in the ECU memory.

9 Conclusions and Future Work

In this work, a systematic procedure for developing a reduced-
order model from a detailed model of monolith reactors is
proposed. Using this procedure, we derived a reduced-order
(grey-box) model for SCR reactor from a detailed 1 + 1D
model. The resulting SCR grey-box model is essentially a
zero-dimensional model and consists of reduced number of
ordinary differential equations. Spatial gradients are taken into
account by linking multiple zero-dimensional blocks. It was
shown that the grey-box model predictions are accurate for a
wide range of operating conditions, and it runs orders of mag-
nitude faster than the 1 + 1D model. Grey-box model equa-
tions can be solved using an explicit ODE solver whereas 1 +
1D model required an implicit ODE solver due to stiff nature
of the equations. Finally, we linearized the model and devel-
oped an observer-based state-feedback controller and demon-
strated the potential performance improvement when using
model-based control design. Although mainly demonstrated
in the context of SCR reactors, the procedure can be applied to
other monolith reactors as well.

In this work, we did not account for the side reactions like
N2O andNH4NO3 production, but these reactions can be easily
included when necessary as these extra reactions do not pose
any additional modeling difficulties. The pore diffusion effects
are lumped into the kinetic parameters to simplify the model.
There may be some applications where pore diffusional

resistances are high, and hence, pore diffusion needs to be
accounted explicitly. Internal mass transfer coefficient or an
asymptotic solution approach can be used to explicitly account
the pore diffusional limitations without increasing the compu-
tational burden. The SCRmechanism used in this work did not
have inhibition terms in the rate expressions, but other appli-
cations like DOC and TWC contain inhibition terms in the rate
expressions. Our future work will consider the pore diffusional
limitations and reaction rate expressions with inhibition terms.
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