Influence of Supports on Pd Catalysts for the Selective Catalytic Reduction of NO_x with H_2 and CO

Gianni Caravaggio¹ · Lioudmila Nossova¹ · Raymond Burich¹

Received: 6 May 2015 / Revised: 22 September 2015 / Accepted: 25 September 2015 / Published online: 30 October 2015 © Her Majesty the Queen in Right of Canada 2015

Abstract A major concern of current commercial catalysts for the selective catalytic reduction (SCR) of nitrogen oxides (NO_x) (DeNO_x) is the lack of sufficient catalytic activity at low temperatures (below 200°C) that typically occur during cold start and urban driving conditions. To address this issue, a study was undertaken to develop an (H2 + CO)-SCR Pd-based catalyst to obtain high DeNOx activity in this low-temperature range. A series of catalysts with Pd loaded on supports containing various amounts of γ -alumina (γ -Al₂O₃) (0–65 wt%), CBV-2314 (15-100 wt%), and TiO₂ (0-20 wt%) were tested for DeNO_x activity and aging in a catalyst testing unit (CTU). The results showed that each component in the support played a role in the NO_x conversion, depending on the temperature. Catalysts with Pd supported on $\{\gamma-Al_2O_3 (60 \text{ wt})+CBV-$ 2314 (20 wt%)-TiO₂ (20 wt%)} achieved the best overall DeNO_x activity. Catalysts with various Pd loadings (0.05 wt% to 0.5 wt%) were prepared with a {[γ -Al₂O₃ (60 wt%)+CBV-2314 (20 wt%)] $-TiO_2$ (20 wt%)} support. The catalysts loaded with 0.05 wt% and 0.2 wt% Pd demonstrated the best overall DeNO_x activity (up to 90 % NO_x conversion starting at 150 °C). These catalysts were subjected to an accelerated aging regime. Based on the aging studies, the 0.2 wt% Pd/{ $[\gamma-Al_2O_3 (60 \text{ wt})+CBV-2314 (20 \text{ wt})] TiO_2$ (20 wt%) composition was the most active and stable catalyst.

Keywords $NO_x/H_2/CO \cdot Palladium catalyst \cdot Promoter \cdot \gamma-Al_2O_3-CBV-2314-TiO_2 \cdot Catalyst aging$

1 Introduction

Diesel engine exhaust contains many components that are hazardous to human health [1] and are also detrimental to the environment. Of primary concern are the nitrogen oxides (NO_x) since they cause acid rain and ground-level ozone. In 2009, the transportation sector accounted for 60 % of all NO_x emissions, and as a result, stricter regulations especially for diesel engines have been implemented, prompting further research for new technologies to reduce these emissions [1].

CrossMark

Diesel engines have the advantage of being more efficient than gasoline engines, and their widespread use could offer a significant reduction of greenhouse gases (GHGs) from the transportation sector. However, the reduction of NO_x from diesel engines functioning in lean burn conditions is difficult due to the large excess of oxygen present in the exhaust. To address this issue, improvements to diesel engine design and operation regimes have been implemented. For some diesel vehicles, aftertreatment systems have been successfully installed to meet present environmental regulations. However, reducing NO_x emissions at low temperatures is still problematic [2] and future more stringent regulations will require more advanced technologies for NO_x emission reduction.

Significant attention has been given to the development of selective catalytic reduction (SCR) of NO_x using H₂ [3–18], CO [19–21], or a mixture of H₂/CO [22–33] as reductant. Catalysts using H₂ and/or CO have the advantage of low-temperature DeNO_x activity, and the reductants could be produced using an on-board fuel reformer, thus eliminating the need of carrying any additional reductant.

Many of the catalysts for NO_x reduction using H_2 as a reductant employ platinum as the active metal. These catalysts show high $DeNO_x$ activity at low temperatures but suffer from

Gianni Caravaggio gianni.caravaggio@canada.ca

¹ Natural Resources Canada, CanmetENERGY, 1 Haanel Drive, Ottawa, Ontario K1A 1M1, Canada

CO poisoning resulting in a decrease in catalytic activity, and they also tend to produce large amounts of N_2O , a potent GHG [34–36]. Nevertheless, some improvements have been made in CO tolerance for Pt-type catalysts as indicated in two studies using catalysts of Pt/WO₃/Zr and Pt/MCM-41 [6, 8]. However, in both cases, reduced conversion was obtained in the presence of more than 100 ppm of CO.

In contrast, the use of palladium (Pd) is an attractive alternative since it has shown enhanced reactivity toward the selective reduction of NO_x in the presence of CO [23, 32, 35]. Previous research typically focused on catalysts with Pd loaded on Al₂O₃ (alumina), TiO₂ (titania), or mixtures of Al₂O₃-TiO₂ supports [10, 12, 13, 22, 29, 30, 32, 33, 37]. Macleod et al. demonstrated that catalysts containing Pd and using H₂ or combined H₂ and CO as reductants had high NO_x conversion in the low to medium-temperature range (~125 to 300 °C) [30, 32, 37]. The studies also showed that the Pd/Al_2O_3 -TiO₂ catalyst had higher catalytic activity than those with alumina or titania alone and they attributed this to a synergy between the two supports [30]. Konsolakis et al. [29] and Greenhalgh et al. [22] showed that the addition of promoters to Pd catalysts resulted in improved conversion. High NO_x conversion (80–100 %) and high N_2 selectivity (80-90 %) have also been demonstrated with Pd/Al₂O₃ and V2O5. However, V2O5 is toxic and its release into the environment should be avoided [10, 12]. Catalysts with Pd loaded on pillared clays [26], on zeolites (MFI, beta zeolite) [15], and on perovskite structures showed good NO_x conversion (80-100 %) and N₂ selectivity (40-60 %) [3, 5]. Other metals such as iridium (Ir/Ba/ WO₃/SiO₂) [20] and silver (Ag/Al₂O₃) [24] have also been investigated for the reduction of NO_x using H_2 or H₂ and CO as reductants. However, not all studies mentioned above used water in the testing gas feed, a major component of diesel exhaust [3, 7, 10-15, 17, 18, 21, 23, 29-33, 38], and in many cases, when water was present, the catalysts showed a decrease in $DeNO_x$ activity [4, 5, 7, 8, 20, 26–28, 39].

The aim of this study was the development of a H₂/CO SCR catalyst displaying marked low-temperature activity and expanded DeNO_x temperature range performance in the presence of water. The catalysts studied were palladium loaded on supports consisting of mixtures of γ -alumina, CBV-2314 (an ammonium ZSM-5-type zeolite with a silica to alumina ratio of 23:1) that were coated with TiO₂ in the following ranges: γ -alumina (0–65 wt%), CBV-2314 (15–100 wt%), and TiO₂ (0–20 wt%). Pd loadings were varied to minimize metal content and to maximize DeNO_x activity. The best catalysts were aged and tested for DeNO_x activity. All the catalysts were tested using a simulated diesel engine exhaust stream that contained water.

2 Experimental

2.1 Catalyst Preparation

2.1.1 Supports

The catalyst supports were prepared by combining γ -Al₂O₃, CBV-2314, and TiO₂ in various ratios. γ -Al₂O₃ was prepared by a sol–gel method, CBV-2314 (ZSM-5 zeolite) was purchased from Zeolyst International, and TiO₂ was generated from Ti⁴⁺ isopropoxide (Sigma-Aldrich, 97 % purity). The details of the synthesis are described below.

Preparation of γ **-Al**₂**O**₃ High-surface-area γ -alumina was prepared by using a modified sol-gel method [40]. 2-Methylpentane-2,4-diol (120 g) was mixed with aluminum isopropoxide (108 g) and stirred for 4 h at 120 °C. After lowering the temperature to 100 °C and adding 90 ml of deionized water, the mixture was stirred vigorously for 2 h, and then, it was left to stir overnight at 80 °C. The resulting slurry was dried under vacuum using a rotary evaporator and then placed in an oven overnight at 120 °C. The subsequent γ -Al₂O₃ product was calcined at 500 °C for 6 h in air.

Preparation of (\gamma-Al₂O₃-TiO₂), CBV-2314-TiO₂, and (\gamma-Al₂O₃ + CBV-2314)-TiO₂ Supports The mixed supports were prepared by depositing TiO₂ on \gamma-Al₂O₃ + CBV-2314, CBV-2314, or \gamma-Al₂O₃. To carry out the TiO₂ deposition, titanium isopropoxide was hydrolyzed in the presence of the support. Three different types of supports were prepared: \gamma-Al₂O₃-TiO₂, CBV-2314-TiO₂, and (\gamma-Al₂O₃ + CBV-2314)-TiO₂. The resulting mixtures were dried at 120 °C for a minimum of 4 h then calcined at 500 °C for 6 h in air.

2.1.2 Catalysts

The catalysts were prepared by adding palladium (palladium(II) nitrate, 99.9 %, Alfa Aesar) to the above supports by the incipient wetness impregnation procedure using an aqueous solution of Pd(II) nitrate to produce metal loadings of 0.05 wt%, 0.2 wt%, and 0.5 wt% loading of metal. Subsequent to the impregnation, the catalysts were dried at 120 °C for ~16 h and calcined at 500 °C for 6 h in air.

2.2 Catalyst Characterization and Testing

2.2.1 Composition

Catalyst compositions were determined using a Hitachi S3400N VP-SEM with an Oxford INCA energy-dispersive X-ray (EDX) detector system operating at 20 kV and 80–90 mA. A thin layer of powder catalyst was deposited and held in place on a double-sided carbon tape. The excess was

blown off with a gentle stream of nitrogen. For each catalyst, ten random locations, chosen by the INCA automation software, were analyzed. Average and standard deviation of the measurements were calculated to determine the final composition of the catalysts.

2.2.2 BET Surface Area

The surface area of the samples was determined by the Brunauer-Emmett-Teller (BET) method using a Micromeritics ASAP 2010 surface area and porosity analyzer. Each sample was degassed at 250 °C for 16 h, and the isotherms were measured by standard nitrogen adsorption at -196 °C.

2.2.3 Pd Dispersion by Hydrogen–Oxygen Titration

The Pd metal dispersion was determined by a hydrogen–oxygen titration method using a Micromeritics ASAP 2020C instrument. Prior to adsorption experiments, catalysts were first pretreated in helium flow at 350 °C for 2 h, and then, they were reduced in situ in hydrogen flow at 350 °C for 2 h followed by evacuation for 30 min until a pressure of 5 μ m of Hg was reached. This pretreatment removed all impurities from the sample and produced a catalytically active surface of palladium. When the catalyst was cooled to 35 °C, oxygen adsorption at this temperature was performed according to the reaction (surface palladium atoms (Pd_S)):

 $Pd_{S} + 1/2O_{2} \rightarrow Pd_{S}-O$

After evacuation at 35 °C for 30 min, the next titration of chemisorbed oxygen by hydrogen was performed at 35 °C according to the following equation:

$Pd_{S}-O + 3/2H_{2} \rightarrow Pd_{S}-H + H_{2}O$

Hydrogen uptake during titration was determined using the same static volumetric method as for hydrogen chemisorption. In this method, a known amount of hydrogen was dosed and subsequently adsorbed at different partial pressures resulting in a chemisorption isotherm five points from 130 to 270 mm of Hg. This isotherm measurement was repeated after an evacuation step at the analysis temperature. The repeat isotherm represented weakly adsorbed species. The difference between the initial and repeat isotherms resulted in the chemisorbed amount of hydrogen. Metal dispersion was calculated by linear extrapolation of the difference isotherm to zero pressure. The results were expressed as the ratio of the number of mol of hydrogen chemisorbed to the number of mol of Pd in the catalyst based on the adsorption stoichiometry factor (Pds/ H₂) of 2/3. A ratio of 1.00 is defined as 100 % dispersion $\bar{D_{M}}^{'}$ ($D_{M}{=}N_{S}^{M}\!/\!N_{T}^{M}\!$, surface atoms of metal/total atoms of metal).

2.2.4 NO_x Reduction Activity

The catalysts were tested in a fixed bed flow reactor system consisting of a vertical quartz tube enclosed in a temperature-controlled furnace. Each sample was ground to a fine powder and then pressed into thin (ca. 16-mm dia.) wafers under 7 t of force. After lightly crushing these wafers in a mortar and pestle, the particles were sieved within a size range of 80 to 120 mesh. The particles (~500 mg) were then loaded into a quartz reactor tube (6.12-mm nominal ID by 40.64 cm long) yielding a typical catalyst bed height of 26 mm. All catalytic experiments were conducted at a gas hourly space velocity (GHSV) ~95,000 h^{-1} [standardized to 20 °C and 1 atm] based on the catalyst volume minus the volume occupied by the thermocouple. The operating parameters were as follows: GHSV ~95,000 h^{-1} ; the temperature was ramped from 75 to 600 °C at 3 °C/min; and the feed gas composition was 500 ppm NO, 5 % O₂, 5 % H₂O, 0.3 % H₂, 0.1 % CO, and the balance He. A test was also conducted to determine the effect of CO₂ on catalyst activity by using the same simulated diesel exhaust with the addition of 7.5 % CO₂. The $3:1 \text{ H}_2/\text{CO}$ ratio was used for the reductant since it was determined to be the optimum value for catalytic activity. However, a typical H₂/CO ratio of 1:3 is found in engine exhaust under normal operating conditions [41]. Therefore, an additional source of H₂ would be needed to achieve the 3:1 H₂/CO ratio that was used in this study. A full description of the testing system was published by Greenhalgh et al. [22].

2.2.5 Catalyst Aging

The catalysts were aged at three different temperatures using the same simulated diesel engine exhaust composition as for the activity test. The aging parameters are shown in Table 1. After each aging cycle, the catalysts were tested for DeNO_x activity using the regular testing procedure. It is difficult to estimate if aging conditions are severe enough to meet target applications for a diesel engine. However, the aging procedure used in this work was harsher than the procedure from a paper by Komatsu et al. [41] that estimated aging at 750 °C for 24 h corresponded to 80,000-km usage on a diesel vehicle.

Table 1 Aging parameters	Aging cycle	Temperature (°C)	Duration (h)
	1	650	6
	2	750	10
	3	750	18

Table 2 Nominal composition of Pd catalysts prepared with supports containing various amounts of γ-Al₂O₃, CBV-2314, and TiO₂

Catalyst notation $Pd/(x+y)-z$	Nominal catal	Pd loading (wt%)		
	x γ -Al ₂ O ₃	у СВV-2314	z TiO ₂	
Pd/(0+100)-0	0	100	0	0.2
Pd/(0+80)-20	0	80	20	0.2
Pd/(80+0)-20	80	0	20	0.2
Pd/(60+20)-20	60	20	20	0.2
Pd/(60+25)-15	60	25	15	0.2
Pd/(60+30)-10	60	30	10	0.2
Pd/(50+30)-20	50	30	20	0.2
Pd/(65+15)-20	65	15	20	0.2
Pd/(70+10)-20	70	10	20	0.2

3 Results and Discussion

Pd/(50+30)-20

Pd/(65+15)-20

Pd/(70+10)-20

24.42

32.85

35.72

3.1 Composition and Surface Area

Table 2 shows the nominal composition and names of each catalyst in the form of Pd/(x+y)-z where x, y, and z stand for γ -Al₂O₃, CBV-2314, and TiO₂, respectively. Table 3 shows the elemental composition (wt%) of the catalysts, as determined by SEM/EDX. Measured and nominal ratios of the components (Si/Al, Si/Ti, and Al/Ti) are shown in Table 4. The small variation between the measured and nominal atomic ratios was taken to be confirmation that the supports had the expected amount of each component (γ -Al₂O₃, CBV-2314, and TiO₂). The palladium concentrations were in the same order of magnitude as that of the nominal loading, indicating that the incipient wetness procedure was successful and the correct amount of metal was added to the support. Furthermore, since the support was made up of the combination of three components, it was likely that a larger fraction of the Pd will be loaded on the component of the support with a

Table 3 Composition by SEM/EDX of Pd catalysts prepared with supports containing various amounts of γ -Al₂O₃, CBV-2314, and TiO₂

Catalyst notation Catalyst composition (wt%) 0 Al Si Ti Pd Pd/(0+100)-0 3.52 0.00 0.29 43.30 52.61 Pd/(0+80)-20 2.77 33.64 13.47 0.26 49.85 Pd/(80+0)-20 40.36 0.00 14.05 0.27 45.32 Pd/(60+20)-20 29.95 8.85 14.38 0.20 46.51 Pd/(60+25)-15 29.25 12.69 10.27 0.27 47.46 Pd/(60+30)-10 29.04 15.41 7.06 0.26 48.19

14.65

7.56

4.80

13.30

12.87

13.20

0.23

0.22

0.21

47.37

46.47

46.09

higher pore volume (i.e., γ -Al₂O₃ which has the largest pore volume, Table 5).

The BET surface areas (SAs), pore volumes, and average pore sizes of the catalysts and supports are presented in Table 5. Calcined commercial CBV-2314 and γ -Al₂O₃ had SAs of 342 and 290 m^2/g , respectively. The SA of the Pd/ (0+100)-0 (Pd on CBV-2314) catalyst is within 6 % of the pure calcined CBV-2314 indicating that there are no structural changes of the original material. In contrast, the Pd/(0+80)-20 catalyst had significantly lower SA than calcined CBV-2314 (ca. 286 m²/g vs. 342 m²/g, respectively). The SA of Pd/(80+0)-20 was also lower than that of pure γ -Al₂O₃ (ca. 251 m²/g vs. 290 m²/g, respectively). The decreases in SA appeared to be due to the dilution of CBV-2314 and γ -Al₂O₃ with TiO₂. There was no significant difference between the SAs of the γ -Al₂O₃-containing catalysts (SAs varying between 251 and 297 m^2/g). These SAs were similar to that of pure γ -Al₂O₃, the major component of the support, indicating that the structures were not affected by the addition of

Table 4 Calculated and SEM/EDX atomic ratios for catalysts

Catalyst notation	Calculated atomic ratio						
	From nominal			From S	SEM/ED2	X	
	Si/Al	Si/Ti	Al/Ti	Si/Al	Si/Ti	Al/Ti	
Pd/(0+100)-0	11.5	NA	NA	11.8	0.0	0.0	
Pd/(0+80)-20	11.5	5.0	0.4	11.7	4.3	0.4	
Pd/(80+0)-20	NA	NA	6.3	0.0	0.0	5.1	
Pd/(60+20)-20	0.3	1.2	4.8	0.3	1.0	3.7	
Pd/(60+25)-15	0.3	2.1	6.5	0.4	2.1	5.1	
Pd/(60+30)-10	0.4	3.7	9.7	0.5	3.7	7.3	
Pd/(50+30)-20	0.5	1.9	4.1	0.6	1.9	3.3	
Pd/(65+15)-20	0.2	0.9	5.2	0.2	1.0	4.5	
Pd/(70+10)-20	0.1	0.6	5.5	0.1	0.6	4.8	

NA not applicable

Table 5 Textural properties of catalysts

Catalyst support notation	BET surface area (m ² /g)	Pore volume $(cm^3/g)^a$	Average pore size (Å) ^b
γ -Al ₂ O ₃	290	1.11	153
CBV-2314	342	0.19	22
Pd/(0+100)-0	363	0.20	22
Pd/(0+80)-20	286	0.18	26
Pd/(80+0)-20	251	0.96	158
Pd/(60+20)-20	290	0.61	85
Pd/(60+25)-15	271	0.41	62
Pd/(60+30)-10	297	0.52	70
Pd/(50+30)-20	275	0.41	60
Pd/(65+15)-20	270	0.61	90
Pd/(70+10)-20	269	0.65	97

^a Single point adsorption total pore volume of pores

 $^{\rm b}$ 4V/SA where V is the total pore volume and SA is the BET-specific surface area

TiO₂ or Pd and confirming that TiO₂ was finely dispersed on the surface of γ -Al₂O₃ support [30]. As expected, the Pd/(0+100)-0 catalyst with a pure zeolite support had a higher SA than the other γ -Al₂O₃-containing catalyst.

3.2 DeNO_x Activity

In order to determine the support composition with the optimum DeNO_x activity, a matrix of supports was prepared with various ratios of γ -Al₂O₃, CBV-2314, and TiO₂ and loaded with 0.2 wt% Pd. Table 6 separates the composition of the supports into three categories of either ascending or descending amounts of γ -Al₂O₃, CBV-2314, and TiO₂ and the overall NO_x conversion for each catalyst that was obtained from the calculation of the area under the NO_x curve from 100 to 550 °C. The Pd/(60+20)-20 catalyst was used as a comparison benchmark. The DeNO_x activity and N₂ selectivity as a

Table 6 Matrix and overall NO_x conversion of 0.2 wt% Pd catalysts prepared with varying ratios of γ -Al₂O₃, CBV-2314, and TiO₂

γ-Al ₂ O ₃ (wt%)	CBV-2314	TiO ₂	Overall NO _x conversion ^a (%)
60	20	20	24.6
60	25	15	20.7
60	30	10	18.6
65	15	20	21.5
70	10	20	21.6
80	0	20	18.3
50	30	20	19.0
0	80	20	20.3

 a Value obtained from the calculation of the area under the NO_x curve from 100 to 550 $^\circ\mathrm{C}$

function of support composition were compared for the catalysts in each category.

Figure 1 shows the NO_x conversion and N₂ selectivity of the catalysts in the first category. All the NO_x conversion curves were similar; however, catalyst activity declined as the zeolite content increased and the TiO₂ content decreased. The SAs of these catalysts (Table 5) were similar (ca. 271 to 297 m²/g), suggesting that the difference in activity was related to the support composition. The Pd/(60+30)-10 catalyst had the highest SA of this series but the overall lowest activity. These data confirmed that the support composition had a more pronounced effect on the activity of the catalyst than the SA.

Figure 2 shows the activity and selectivity of the catalysts in the second category. In this case, as the CBV-2314 content decreased, there was a change in the DeNO_x activity curve between 160 and 200 °C. The NO_x conversion slightly decreased as the CBV-2314 content was reduced and was significantly affected (less than 20 % NO_x conversion between 160 and 200 °C) for the Pd/(80+0)-20 sample. These data suggest that the DeNO_x activity near 180 °C is related to the amount of zeolite present in the support. However, the activity near 150 °C remains nearly identical for the three catalysts,

Fig. 1 Comparison of NO_x conversion (a) and N_2 selectivity (b) of 0.2 %Pd(60+20)-20, 0.2 %Pd(60+25)-15, and 0.2 %Pd(60+30)-10 catalysts

Fig. 2 Comparison of NO_x conversion (a) and N₂ selectivity (b) of 0.2 %Pd(60+20)-20, 0.2 %Pd(65+15)-20, 0.2 %Pd(70+10)-20, and 0.2 %Pd(80+0)-20 catalysts

suggesting that the zeolite content does not affect the activity at this temperature.

As the γ -Al₂O₃ content decreased, the activity near 150 °C decreased (Fig. 3) and was almost non-existent in the Pd/(0+ 80)-20 sample which contained no γ -Al₂O₃. The N₂ selectivity curves for most of the catalysts approached 90 % in the temperature range 100–180 °C then dropped to approximately 60 % in the 180–250 °C range and subsequently increased to approximately 90 % for the remainder of the run.

It is expected that the DeNO_x reaction mechanism of the catalysts in this study is similar to the one described by Macleod et al. [30] due to their comparable formulations. According to the mentioned mechanism, in the lowtemperature region (100–150 °C), the catalysts, in the presence of a stream containing NO/CO/H₂/O₂, formed isocyanates (NCO) in situ that were quickly hydrolyzed into NH₃ which subsequently reduces NO_x. There was apparently a synergy between TiO₂ and Al₂O₃ that results in promoting the formation of isocyanate on Pd located in proximity to both oxides. Furthermore, the Al₂O₃ phase was shown to increase the rate of NCO hydrolysis into NH₃. The authors suggested that the high-temperature mechanism (>200 °C) involved Pd/TiO₂ component of

Fig. 3 Comparison of NO_x conversion (a) and N_2 selectivity (b): 0.2 %Pd(60+20)-20, 0.2 %Pd(50+30)-20, and 0.2 %Pd(0+80)-20

the catalyst for the formation of NH_3 directly from H_2 and NO, which in turn reduced NO_x . The reaction channel in this range did not involve the use of CO. In our study, the catalysts also showed additional significant activity in the medium-temperature region (160–200 °C). The activity in this region may be attributed to the presence of CBV-2314 component in the catalyst. The NO_x reduction mechanism of the catalysts with CBV-2314 was likely to be the same as in the low-temperature region (<150 °C) since alumina is a part of

Fig. 4 NO_x conversion and CO light-off curves of 0.2 %Pd/(80-0)-20 and 0.2 %Pd/(0-80)-20 catalysts

Fig. 5 NO_x conversion of 0.05 wt% Pd (60+20)–20, 0.2 wt% Pd (60+20)–20 and 0.5 wt% Pd (60+20)–20 catalysts

CBV-2314. Figure 4 provides insight as to why the catalysts with the zeolite were more active within the mediumtemperature region compared to those without the zeolite. It shows the NO_x conversion and the CO conversion of the Pd/ (0-80)-20 (CBV-2314 + TiO₂) and the Pd/(80-0)-20 $(Al_2O_3 + TiO_2)$ catalysts. For both catalysts, the CO conversion curves aligned with the NO_x conversion curves. As the CO was converted, the NOx conversion increased and subsequently decreased when CO was completely consumed. The NO_x conversion was especially low for Pd/(80-0)-20 when CO was completely converted since the formation of isocyanate without CO could not occur for the reaction to proceed. On the other hand, the CO conversion curve of the Pd/(0-80)-20 was shifted to higher temperature (with the associated rise in NO_x conversion) compared to that of Pd/(80-0)-20. This result suggests that the CO conversion into NCO was slower on Pd/(0-80)-20 that may be caused by the higher concentration of silica in the catalyst. The hydrolysis of isocyanate is known to occur much less readily on silica than alumina [42, 43], and this may also be the cause of the slightly lower NO_x conversion in this temperature region (160-200 °C) compared to the NO_x conversion found in the low-temperature range (<150 °C). The highest overall NO_x conversion (Table 6) of the Pd/(60+20)-20 amongst the catalyst series seems to be due to the optimum balance of Al₂O₃, CBV-2314, and TiO₂ oxides that provided the highest amount of NH₃ for reduction of NO_x.

For all catalysts, NH_3 was continuously monitored in the exhaust gas while testing for NO_x reduction activity. In most cases, NH_3 was not detected or was near the detection limit

Table 7Pd dispersion% on (60+20)-20support	Pd nominal content (wt%)	Metal dispersion (%)
	0.05	44.0
	0.2	37.2
	0.5	31.5

Table 8	NO_x	light-off and	overall NO _x	conversion	of (60+20)-20
support los	aded v	vith various co	oncentrations	of Pd	

Catalyst name	NO_x light-off ^a (°C)	Overall NO _x	
0.05 wt% Pd/(60+20)-20	150	30.7	
0.2 wt% Pd/(60+20)-20	127	24.6	
0.5 wt% Pd/(60+20)-20	115	19.0	

^a Temperature at 50 % NO_x conversion

(0.6 ppm or lower). This suggests that the ammonia formed in situ on the catalyst was almost entirely consumed for the reduction of NO_x , thus releasing no or very minute amounts of NH_3 slip in the exhaust.

3.3 DeNO_x Activity of Catalysts with Various Loadings of Pd on (60+20)-20 Support

The (60+20)-20 support was loaded with various amounts of Pd in order to find the amount that would yield the optimum NO_x conversion while minimizing the active metal content. Figure 5 shows the NO_x conversion of the catalysts loaded with 0.05, 0.2, and 0.5 wt% Pd. The maximum NO_x conversion shifted to higher temperature as the concentration of Pd

Fig. 6 NO_x conversion (a) and N₂ selectivity (b) of 0.05 %Pd/(60-20) -20 and 0.2 %Pd/(60-20)-20 before and after aging

Fig. 7 $\rm NO_x$ conversion of 0.2 %Pd/(60–20)–20 tested with and without $\rm CO_2$

decreased. However, decreasing the Pd concentration increased the overall NO_x conversion and the catalyst prepared with 0.05 wt% Pd obtained the widest temperature range of DeNO_x activity. The N₂ selectivity was also high in the range of ~75 to 95 % (not shown) for each catalyst demonstrating the ability of these materials to obtain high NO_x conversion and N₂ selectivity at low to medium temperatures. The high NO_x conversion with low Pd content can be ascribed to the fact that as the loading of the metal decreases, the dispersion of the metal on the support, as shown in the Table 7. These results are in agreement with those reported by Law et al. [26].

While the 0.5 wt% Pd catalyst showed the earliest NO_x light-off and the highest conversion at low temperature (90 % NO_x conversion at 134 °C), it had much lower NO_x conversion above 150 °C than the 0.05 wt%. Pd and 0.2 wt% Pd catalyst. Since the NO_x light-offs for all three catalysts were determined to be low enough for most applications (equal to or below 150 °C, Table 8) and their N_2 selectivities were similar, the selection criterion of the best catalysts was based on the overall NO_x conversion value that was calculated from the area under the NO_x conversion curve from 100 to 550 °C. Table 8 shows the overall NO_x conversion values for each catalyst. The 0.05 wt% Pd and the 0.2 wt% Pd catalyst exhibited the highest overall NO_x conversion and were thus determined as the best candidates for further study.

Table 9BET surface area ofcatalysts before and after aging

3.4 Aged Catalysts

As the catalysts loaded with 0.05 wt% Pd and 0.2 wt% Pd on the (60+20)-20 support were identified as the best candidates, they were further investigated by conducting aging studies to establish their long-term stability.

Figure 6a, b shows the NO_x conversion and N₂ selectivity, respectively, of the 0.2 wt% Pd/(60+20)-20 and 0.05 wt% Pd/(60+20)-20 catalysts tested before and after aging. The aging procedure simulated at least 80,000 km of on-road usage [44]. The maximum NO_x conversion of 0.05 wt% Pd/(60+20)-20 shifted to higher temperature and decreased from approximately 90 % at 200 °C to circa 51 % at 310 °C after aging. In addition, the overall DeNO_x temperature activity range decreased for this catalyst. The NO_x conversion temperature range of the 0.2 wt% Pd/(60+20)-20 broadened slightly after aging, and the NO_x conversion near 150 °C was maintained but was reduced to approximately 50 %. The N₂ selectivity of both catalysts decreased after aging but was still above 50 % in the areas where significant NO_x conversion occurred.

Table 9 gives the SA of the catalysts and the metal dispersion before and after aging. The SA of both catalyst decreased by approximately 40 %. Additionally, the metal dispersion of both catalysts decreased significantly. These results are indications that the decrease in SA and sintering of Pd cause the loss of activity for both catalysts.

3.5 Effect of CO₂ on Catalyst Activity

An additional activity test of the fresh 0.2 %Pd(60–20)–20 catalyst was performed using the regular simulated diesel exhaust composition with the addition of 7.5 vol% CO₂ to determine the effect of CO₂ on catalyst activity. This concentration of CO₂ was selected as the mid-point value of the typical range for diesel engine exhaust [45]. Figure 7 shows the comparison of the NO_x conversion for the catalyst under regular simulated exhaust with and without CO₂. There was a slight increase in the NO_x light-off temperature from 127 to 136 °C and a NO_x conversion decrease of approximately 15 % at 151 °C when CO₂ was present. A more pronounced effect of CO₂ on the DeNO_x activity was observed in the medium-temperature range of 180–300 °C (30–40 % decrease in NO_x

Catalyst name	BET surface area	(m^2/g)	Metal dispersion	Metal dispersion (%)	
	Before aging	After aging	Before aging	After aging	
0.2 wt% Pd/(60+20)-20	290	161	37.1	20.8	
0.05 wt% Pd/(60+20)-20	275	165	44.0	16.8	

conversion). The results indicate that some improvements in $DeNO_x$ activity in the medium-temperature range are needed.

4 Conclusions

A series of $((H_2 + CO)$ -SCR DeNO_x catalysts with Pd loaded on supports composed of various ratios of γ -Al₂O₃ and CBV-2314 coated with TiO₂ were successfully synthesized and tested for DeNO_x activity. The catalysts showed high overall NO_x conversions (50–90 %) in the 150–300 °C temperature range when tested using simulated diesel engine exhaust including water. The Pd-based catalyst with the support formulation of (60 wt% y-Al₂O₃, 20 wt% CBV-2314, and 20 wt%TiO₂) demonstrated the highest overall NO_x conversion that was attributed to the optimum balance of the three components forming the most NH₃ in situ for the reduction of NO_x. The comparison of three different concentrations of Pd (0.05 wt%, 0.2 wt%, and 0.5 wt%) on the $(60 \text{ wt\%} \gamma \text{-Al}_2\text{O}_3, \gamma \text{-Al}_2\text{O}_3)$ 20 wt% CBV-2314, and 20 wt%TiO₂) support composition revealed that the 0.05 wt% and 0.2 % wt% loading gave the optimal NO_x conversion. These catalysts were further tested with accelerated aging, and the 0.2 wt% Pd/(60+20)-20displayed the highest hydrothermal stability. The 0.2 wt% Pd/(60+20)-20 catalyst was also tested in the presence of CO₂ and showed some slight decrease in DeNO_x activity in the low-temperature region, but more pronounced effect of CO₂ on activity was observed in the medium-temperature area. The study showed that the 0.2 wt% Pd/(60+20)-20 catalyst, with some improvements in the medium-temperature range, could be a good candidate as an $((H_2 + CO)-SCR$ DeNO_x catalyst for low-temperature on-road and off-road applications.

Acknowledgments Funding for this work was provided by the Natural Resources Canada through the Program of Energy Research and Development-Advanced Fuels and Technologies for Emissions Reduction (PERD-AFTER). The authors thank Drs. M. Stanciulescu and N. Maffei for fruitful discussions and for proofreading the manuscript.

References

- Roy, S., Hegde, M.S., Madras, G.: Catalysis for NO_x abatement. Appl. Energy 86, 2283–2297 (2009)
- Ligterink, N., de Lange, R., Vermeulen, R., Dekker, H.: On-road NO_x emissions of Euro-V trucks. MON-RPT-033-DTS-2009-03840, (2009)
- Furfori, S., Russo, N., Fino, D., Saracco, G.: NO SCR reduction by hydrogen generated in line on perovskite-type catalysts for automotive diesel exhaust gas treatment. Chem. Eng. Sci. 65, 120–127 (2010). doi:10.1016/j.ces.2009.01.065
- Mondragón Rodríguez, G.C., Kelm, K., Saruhan, B.: H₂-selective catalytic reduction of NO_x activity and microstructural analysis of new BaTi_{0.95}Pd_{0.05}O₃ catalyst. Appl. Catal. A Gen. **387**, 173–184 (2010). doi:10.1016/j.apcata.2010.08.012

- Mondragón Rodríguez, G.C., Saruhan, B.: Effect of Fe/Co-ratio on the phase composition of Pd-integrated perovskites and its H₂-SCR of NO_x performance. Appl. Catal. B Environ. 93, 304–313 (2010). doi:10.1016/j.apcatb.2009.10.004
- Li, L., Wu, P., Yu, Q., Wu, G., Guan, N.: Low temperature H₂-SCR over platinum catalysts supported on Ti-containing MCM-41. Appl. Catal. B Environ. 94, 254–262 (2010). doi:10.1016/j. apcatb.2009.11.016
- 7. Yu, Q., Kong, F., Li, L., Wu, G., Guan, N.: Fast catalytic reduction of NO_x by H_2 over Pd-based catalysts. J. Catal. **31**, 261–263 (2010). doi:10.1016/S1872-2067(09)60045-0
- Schott, F.J.P., Balle, P., Adler, J., Kureti, S.: Reduction of NO_x by H₂ on Pt/WO₃/ZrO₂ catalysts in oxygen-rich exhaust. Appl. Catal. B Environ. 87, 18–29 (2009)
- Li, L., Zhang, F., Guan, N., Schreier, E., Richter, M.: NO selective reduction by hydrogen on potassium titanate supported palladium catalyst. Catal. Commun. 9, 1827–1832 (2008). doi:10.1016/j. catcom.2008.02.019
- Qi, G., Yang, R.T., Rinaldi, F.C.: Selective catalytic reduction of nitric oxide with hydrogen over Pd-based catalysts. J. Catal. 237, 381–392 (2006). doi:10.1016/j.jcat.2005.11.025
- Yang, J., Fu, O., Wu, D., Wang, S.: DRIFTS study of NO-H₂ reaction over Pd/Al₂O₃ with excess oxygen. Appl. Catal. B Environ. 49, 61–65 (2004). doi:10.1016/j.apcatb.2003.11.017
- 12. Macleod, N., Lambert, R.M.: Selective NO_x reduction during the H_2+NO+O_2 reaction under oxygen-rich conditions over $Pd/V_2O_3/Al_2O_3$: evidence for in situ ammonia generation. Appl. Catal. B Environ. **90**, 111–115 (2003)
- Macleod, N., Cropley, R., Lambert, R.M.: Efficient reduction of NO_x by H₂ under oxygen-rich conditions over Pd/TiO₂ catalysts: an *in situ* DRIFTS study. Catal. Lett. 86, 69–75 (2003)
- Burch, R., Coleman, M.D.: An investigation of promoter effects in the reduction of NO by H₂ under lean-burn conditions. J. Catal. 208, 435–447 (2002)
- 15. Wen, B.: NO reduction with H_2 in the presence of excess O_2 over Pd/MFI catalyst. Fuel **81**, 1841–1846 (2002)
- Costa, C.N., Stathopoulos, V.N., Belessi, V.C., Efstathiou, A.M.: An investigation of the NO/H₂/O₂ (lean-DeNO_x) reaction on a highly active and selective Pt/La_{0.5}Ce_{0.5} MnO₃ catalyst. J. Catal. **197**, 350–364 (2001)
- Machida, M., Ikeda, S., Kurogi, D., Kijima, T.: Low temperature catalytic NO_x-H₂ reactions over Pt/TiO₂-ZrO₂ in an excess oxygen. Appl. Catal. B Environ. **35**, 107–116 (2001)
- Yang, J.I., Jung, H.: The effect of temperature on NO_x reduction by H₂ in the presence of excess oxygen on a Pt/Al₂O₃ monolithic catalyst. Chem. Eng. J. **146**, 11–15 (2009)
- Hong, Y., Lee, D., Ko, Y., Yinghua, L., Han, H., Lee, K.: Passive NO_x reduction with CO using Pd/TiO₂/Al₂O₃+WGSR catalysts under simulated post-Euro IV diesel exhaust conditions. Catal. Lett. 136, 106–115 (2010)
- Nanba, T., Wada, K., Masukawa, S., Uchisawa, J., Obuchi, A.: Enhancement of activity of Ir catalysts for selective catalytic reduction of NO with CO by physical mixing with SiO₂. Appl. Catal. A Gen. 380, 66–71 (2010). doi:10.1016/j.apcata.2010.03.028
- Chen, J.C., Chang, F.Y., Wey, M.Y.: Modification of Pd/Al₂O₃ catalyst to improve the catalytic reduction of NO in waste incineration processes. Catal. Commun. 9, 1106–1110 (2008)
- Greenhalgh, B., Charland, J.-P., Stanciulescu, M., Burich, R., Kelly, J.: Pd-promoted catalysts for low temperature diesel engine DeNO_x. Catal. Today 151, 285–290 (2010)
- Li, Y., Lee, D., Hong, Y., Kim, S., Han, H., Lee, K.: Influence of Pd precursors on Pd/TiO₂/Al₂O₃ catalysts for lean NO_x reduction with CO and H₂. React. Kinet. Mech. Catal. **99**, 361–369 (2010)
- Kirillov, V.A., Smirnov, E.I., Amosov, Y., Bobrin, A.S., Belyaev, V.D., Sobyanin, V.A.: Reduction of nitrogen oxides in diesel

exhaust: prospects for use of synthesis gas. Kinet. Catal. **50**, 18–25 (2009)

- Nakatsuji, T., Yamaguchi, T., Sato, N., Ohno, H.: A selective NO_x reduction on Rh-based catalysts in lean conditions using CO as a main reductant. Appl. Catal. B Environ. 85, 61–70 (2008). doi:10. 1016/j.apcatb.2008.06.024
- Law, H., Kung, M.C., Kung, H.H.: Low temperature NO_x removal from diesel exhaust by coupling ethylene glycol reforming with SCR. Catal. Today 136, 40–45 (2008). doi:10.1016/j.cattod.2007. 11.060
- Li, Y., Lee, D., Ko, Y., Hong, Y., Yoo, Y., Han, H., Lee, K.: NO_x reduction with CO over supported Pd catalysts under simulated post Euro-IV diesel exhaust conditions. React. Kinet. Catal. Lett. 95, 221–229 (2008)
- Abu-Jrai, A., Tsolakis, A.: The effect of H₂ and CO on the selective catalytic reduction of NO_x under real diesel engine exhaust conditions over Pt/Al₂O₃. Int. J. Hydrogen Energy **32**, 2073–2080 (2007)
- Konsolakis, M., Vrontaki, M., Avgouropoulos, G., Ioannides, T., Yentekakis, I.V.: Novel doubly-promoted catalysts for the lean NO_x reduction by H₂+CO: Pd(K)/Al₂O₃-(TiO₂). Appl. Catal. B Environ. 68, 59–67 (2006)
- Macleod, N., Cropley, R., Keel, J.M., Lambert, R.M.: Exploiting the synergy of titania and alumina in lean NO_x reduction: in situ ammonia generation during the Pd/TiO₂/Al₂O₃ catalysed H₂/CO/ NO/O₂ reaction. J. Catal. **221**, 20–31 (2004)
- Lee, Y.W., Gulari, E.: Improved performance of NO_x reduction by H₂ and CO over a Pd/Al₂O₃ catalyst at low temperatures under lean-burn conditions. Catal. Commun. 5, 499–503 (2004)
- Macleod, N., Lambert, R.M.: Lean NO_x reduction with CO+H₂ mixtures over Pt/Al₂O₃ and Pd/ Al₂O₃ catalysts. Appl. Catal. B Environ. 35, 269–279 (2002)
- Macleod, N., Lambert, R.M.: Low-temperature NO_x reduction with H₂+CO under oxygen-rich conditions over a Pd/ TiO₂/Al₂O₃ catalyst. Catal. Commun. 3, 61–65 (2002)
- Jobson, E.: Future challenges in automotive emission control. Top. Catal. 28, 191–199 (2004)

- Roy, S., Marimuthu, A., Hegde, M.S., Madras, G.: High rates of CO and hydrocarbon oxidation and NO reduction by CO over Ti_{0.99}Pd_{0.01}O_{1.99}. Appl. Catal. B Environ. **73**, 300–310 (2007)
- Savva, P.G., Costa, C.N.: Hydrogen lean-DeNO_x as an alternative to the ammonia and hydrocarbon selective catalytic reduction (SCR). Catal. Rev. Sci. Eng. 53, 91–151 (2011). doi:10.1080/ 01614940.2011.557964
- Macleod, N., Lambert, R.M.: An in situ DRIFTS study of efficient lean NO_x reduction with H₂+CO over Pd/Al₂O₃: the key role of transient NCO formation in the subsequent generation of ammonia. Appl. Catal. B Environ. 46, 483–495 (2003)
- Macleod, N., Lambert, R.M.: In situ ammonia generation as a strategy for catalytic NO_x reduction under oxygen rich conditions. Chem. Commun. 9, 1300–1301 (2003)
- Yan, D., Wang, H., Li, K., Wei, Y., Zhu, X., Cheng, X.: Structure and catalytic property of Ce_{1-x}Fe_xO₂ mixed oxide catalysts for low temperature soot combustion. Acta Phys. -Chim. Sin. 32, 331–337 (2010)
- Maunula, T., Kintaichi, Y., Inaba, M., Haneda, M., Sato, K., Hamada, H.: Enhanced activity of In and Ga-supported sol–gel alumina catalysts for NO reduction by hydrocarbons in lean conditions. Appl. Catal. B Environ. 15, 291–304 (1998)
- Shelef, M., Graham, G.W.: Why rhodium in automotive three-way catalysts? Catal. Rev. Sci. Eng. 36, 433–457 (1994)
- Dümpelmann, R., Cant, N.W., Trimm, D.L.: Formation of isocyanic acid during the reaction of mixtures of NO, CO and H₂ over supported platinum catalysts. Appl. Catal. B Environ. 6, 291– 296 (1995). doi:10.1016/0926-3373(95)00024-0
- Dümpelmann, R., Cant, N.W., Trimm, D.L.: The formation of isocyanic acid (HNCO) by reaction of NO, CO, and H₂ over Pt/ SiO₂ and its hydrolysis on alumina. J. Catal. **162**, 96–103 (1996). doi:10.1006/jcat.1996.0263
- Komatsu, T., Tomokuni, K., Yamada, I.: Outstanding low temperature HC-SCR of NO_x over platinum-group catalysts supported on mesoporous materials expecting diesel-auto emission regulation. Catal. Today 116, 244–249 (2006). doi:10.1016/j.cattod.2006.01.035
- Rajput, R.K.: In: A textbook of internal combustion engines, Laxmi publications, Bangalore, India, 537–611, (2005)