Experimental Investigation of Combined LNT + SCR Diesel Exhaust Aftertreatment

Thomas Wittka • Bastian Holderbaum • Peter Dittmann • Stefan Pischinger

Received: 30 September 2014 / Accepted: 26 January 2015 / Published online: 13 February 2015 © Springer SIP, AG 2015

Abstract In the present work, an exhaust aftertreatment system combining lean NO_X trap (LNT) plus exhaust bypass, passive selective catalytic reduction catalyst (SCR) and engine-independent LNT reductant supply by onboard exhaust fuel reforming was developed. Further, it was experimentally investigated in steady-state operation on an engine test bench and on road in a demonstrator vehicle. The intrinsic NH₃ formation during the LNT regeneration was intensively studied as one key function for passive SCR without active urea dosing. LNT regeneration duration and temperature are the most significant parameters for NH₃ emission. In steadystate operation, the passive SCR could be forced to a contribution to the total NO_x conversion of up to 35 %. At 170 °C, 50 % steady-state total NO_X conversion was achieved, and at 250 °C and a fuel consumption penalty of <2 %, complete NO_X conversion could be demonstrated. Compared to conventional LNT operation with frequent engine enrichment, the engine-independent LNT regeneration with reformate gas is energetically more efficient and advantageous regarding CO₂ emissions. Additionally, by shifting NO_X reduction from LNT to SCR, fuel consumption penalty due to LNT enrichment can be reduced. Finally, the combination system was demonstrated in transient test cycles and by real driving operation on road.

T. Wittka · P. Dittmann (⊠) · S. Pischinger Institute for Combustion Engines, RWTH Aachen University, Aachen, Germany e-mail: dittmann@vka.rwth-aachen.de

B. Holderbaum FEV GmbH, Aachen, Germany Keywords $NO_X \cdot LNT \cdot SCR \cdot LNT + SCR \cdot NH_3$ formation \cdot Diesel reformer

1 Introduction

Worldwide, more stringent pollutant and CO2 emission limitation in upcoming legislation norms for diesel passenger car applications require the introduction of exhaust aftertreatment systems with increased purification and energetic efficiency. In addition to more restrictive emission limits, new European emission evaluation test procedures, like Worldwide harmonized Light vehicles Test Procedure (WLTP), real driving emissions (RDE), and Portable Emissions Measurement System (PEMS) result in an enlarged emission relevant engine operation area. Beside the increased coverage of engine load and speed, also the emission testing including cold start and high temperature cycles demands an extended active temperature range of aftertreatment systems. Both state-of-the-art technologies for mobile NO_X reduction, lean NO_X trap (LNT), and selective catalytic reduction catalyst (SCR) show challenges for robust performance under strongly extended emission relevant operation conditions. One technical solution on the aftertreatment side is the combination of LNT and SCR functionalities. To avoid urea necessity in active SCR systems, the combination of LNT and passive SCR (without urea dosing) was favored in this study over the two alternative combination systems based on active SCR (LNT + active SCR; passive NO_X adsorber (PNA)+active SCR).

The LNT + passive SCR combination were the center of research of several previous studies. A schematic overview of general layout concepts is shown in Fig. 1. Moreover, general positions of the fuel reformer functionality are integrated. In principle, the combination can be realized by a parallel or

Fig. 1 Schematic overview of general layout concepts for LNT and passive SCR combination systems

quasi-parallel layout or by a sequential layout. The intention of a parallel layout in a multilayer design [1–5] or of a quasiparallel layout in a multi in-line design [6] is the in situ utilization by storage and conversion of the axial NH₃ formation during the LNT regeneration. In this layout, the intermediate NH₃ does not get re-oxidized but stored on the SCR layer or slice. Thereby, high NH₃ amounts might be used for NO_x conversion on the SCR. Nevertheless, the impact of the acid SCR on the alkaline LNT surface and its storage performance of acid NO_x as well as the SCR poisoning by hydrocarbons (HC) and the absence of O₂ during the rich operation is still open. Additionally, flexibility in shifting of NO_x conversion between LNT and SCR by application is not possible. During the LNT NO_x adsorption period, as the LNT NO_x load axially increases, the SCR NH₃ load gets axially consumed.

In the sequential layout, the passive SCR is only operated by the NH₃, which is emitted from the LNT at the end of the LNT regeneration. The design can be set up as a single-path [7–20] bypass [21–23] or dual-path [24, 25] concept. The single-path concept requests in any case a specific engine operating mode for the LNT regeneration. Comparable to conventional LNT application, the LNT regeneration can be conducted by engine internal enrichment. Optionally, an in-line reformer catalyst might be installed upstream of the LNT for increasing H₂ and CO and decreasing HC concentrations and thereby improving especially the regeneration efficiency at low temperature. However, due to the necessity of high reformer operation temperatures usually in the range of 800-950 °C for sufficient reforming activity, the capability of an inline reformer is limited. In case of reductant breakthrough, the SCR is operated at an air-to-fuel ratio A/F (λ) below 1 with the risk of HC poisoning. Alternatively, an out-line reformer might be controlled in optimum operation range, resulting in enhanced reformate composition regarding H₂ and CO concentration. Nevertheless, the engine still has to be operated at least at $\lambda = 1$ to minimize excess residual O₂ in the exhaust gas and high exothermic reactions on the LNT during the regeneration. In contrast to the single-path concept, both bypass and dual-path concepts do not require any engine internal operation mode change. However, in any case, these concepts need an out-line fuel reformer. The engine can be operated independently at $\lambda > 1$ due to local enrichment of solely the LNT. In the dual-path concept, the two LNTs are operated alternatively by switching the exhaust gas flaps. The LNT bypass in the bypass concept is only activated during the LNT regeneration.

The intrinsic ammonia (NH₃) formation on the LNT during the rich LNT regeneration is one key functionality for combined concepts with passive SCR. A number of recent studies focused on the mechanism and the influence of regeneration conditions and catalyst formulation. The discontinuous understoichiometric (λ <1, also called "rich") reduction of the adsorbed NO_X on the LNT during the LNT regeneration by excessive feeding of unburned HC, carbon monoxide (CO), and hydrogen (H₂) is typically realized by engine internal rich operation ($\lambda_{exhaust} = \lambda_{engine} < 1$). Alternatively, the reductant species can be dosed engine externally by fuel or reformate gas injection directly into the exhaust gas upstream of the LNT ($\lambda_{exhaust} < 1$, $\lambda_{engine} \ge 1$). Under this reducing exhaust gas conditions, various elementary reactions take place on the LNT surface. However, the surface reaction system is not fully selective toward the desired product nitrogen (N₂) but also results in products NH₃ and nitrous oxide (N₂O). Figure 2 gives a simplified and schematic overview of the main elementary surface N-species during the under-stoichiometric LNT regeneration and possible gaseous products. Starting point are the adsorption of NO and NO2 and subsequent dissociation steps. The NH₃ formation is mainly described by multiple elementary reactions with H(s) to $NH_3(s)$ and final desorption [26–29]. Alternatively (not displayed in Fig. 2), reaction pathways over isocyanate species NCO(s) and subsequent hydrolysis to NH₃ are in discussion [28, 30–32].

In principle, a distinction has to be made between the discontinuous NH₃ formation inside the reaction front from previously stored NO_X and the continuous NH₃ formation behind the reaction front from gaseous NO_X feed into the catalyst. According to the state of knowledge, inside the reaction front, which axially propagates through the LNT during the rich regeneration [33–36], NH₃ is intermediately [37–39] formed by over-reduction of NO_X. The so-formed NH₃ behaves as reductant like HC, CO, and H₂. It re-oxidizes, e.g., to nitrogen [40] by reaction with surface oxygen sources (oxygen storage capacity (OSC), nitrate (NO_x)) downstream the reaction front. At the end of the LNT regeneration, when the rich reaction front reaches the catalyst outlet, the intermediate NH₃ cannot be reoxidized anymore and typically gets emitted as NH₃ peak. These principle NH₃ formation processes are strongly influenced by the catalyst formulation [7, 8, 41–50] (load, type, and dispersion of platinum group metals (PGMs), NO_x adsorbent type, OSC load, aging influence), reaction conditions [33–35, 37, 44, 51-55] (temperature, reductant species), and LNT regeneration strategy [26, 27, 51, 56, 57] (LNT NO_X load, regeneration duration, concentration of reductant species).

The main targets of the investigation results discussed in this study are the demonstration of the combination of LNT and passive SCR as well as a detailed insight into the influence of the LNT regeneration strategy on the NH_3 formation. Therefore, commercial and full size catalyst formulations with onboard generated H_2 and CO reductant species were investigated under realistic boundary conditions on test bench and in a demonstrator vehicle.

2 Description of Aftertreatment Concept

The investigated LNT-based aftertreatment system comprises an LNT plus exhaust bypass, a downstream positioned passive SCR (without active urea dosing), and an onboard exhaust gas fuel reformer. In contrast to the current technical trend of positioning the NO_x purification systems (LNT, SCR-coated diesel particulate filter (DPF)) as close as possible to engine out due to cold start reasons, the investigated DeNOx system (LNT+passive SCR) is placed underfloor. So, it is downstream of the serial close-coupled diesel oxidation catalyst (DOC)+cDPF unit and low-pressure exhaust gas recirculation (EGR) branch (LP-EGR). Beside cold start operation, the study focuses as well on RDE with high-temperature operation. Under these conditions, a close-coupled LNT position might be disadvantageous due to limited high-temperature NO_x adsorption capacity as well as limited NH₃ formation tendency. Additionally, the position upstream of the LP-EGR branch could be unfavorable. The increased exhaust and hence NO_x mass flow would result in fast consumption of the LNT NO_X storage capacity as well as SCR NH₃ load. The final concept layout and the simplified method of operation are shown schematically in Fig. 3.

The system is discontinuously operated in two operation modes. During NO_X adsorption mode, the total system is operated under lean condition. The LNT exhaust path is opened; the LNT bypass is closed. NO_X treatment takes place either by NO_X adsorption on the LNT or continuous reduction on the SCR by consuming previously stored NH₃. The integrated onboard exhaust gas fuel reformer is inactive. Opening the bypass path and closing the LNT path leads to a feed of H₂ and CO containing reformate gas at low space velocity via the activated fuel reformer. Consequently, the LNT is locally enriched for the frequently necessary LNT regeneration. The

Fig. 2 Simplified and schematic overview of the main elementary surface N-species during the under-stoichiometric LNT regeneration (educt adsorption, product desorption, elementary surface reactions for O(s) consumption, and back reactions are not displayed; *(s)* symbolizes adsorbed species)

Fig. 3 Simplified operation method of combined aftertreatment system with closecoupled DOC + cDPF, underfloor LNT plus exhaust bypass, passive SCR, and integrated exhaust gas fuel reformer

temperature of the reformate gas is below 200 °C due to not insulated reformate pipes. By pipe insulation, the residual reformate heat could be used for LNT heating. The exhaust paths are actuated by two exhaust flaps, well known from serial application. The exhaust mass flow slip over the closed flap is below 5 %. The LNT regeneration is controlled in terms of high NH₃ formation and emission. The NH₃ emitted during the LNT regeneration adsorbs on the SCR and increases the SCR NH₃ load for the next NO_x adsorption mode. After the end of the NO_X regeneration mode, the exhaust flaps are switched back into NO_X adsorption mode for the next adsorption-regeneration cycle. The integrated onboard fuel reformer is predominantly operated by exhaust gas, which is taken downstream of the DPF. Diesel is injected by an airassisted, low-pressure injector at a significant understoichiometric air/fuel ratio (λ_{Ref} =0.35–0.80) and is catalyzed to a H₂- and CO-rich synthesis gas. The reaction enthalpy, which is released a ring-shaped reformer catalyst, supports fuel vaporization via internal heat transfer. The reforming reaction process can be described by superposition of exothermic partial oxidation (POx) by the residual oxygen in the exhaust gas as well as the secondary air and endothermic steam (SR) and CO₂ reforming (DR) which occurs via the H₂O and CO₂ introduced by the exhaust gas. Furthermore, the reforming products are temperature-dependent in chemical equilibrium, among others mainly according to the water-gas shift (WGS) and methanation reaction. In comparison to pure POx, exhaust gas reforming offers favorable thermal behavior as well as benefits regarding H₂ and CO yield, due to the endothermic reforming reactions. The reformer operation is strongly dependent on the exhaust gas composition. The reformer itself is controlled in terms of maximizing H₂ and CO as well as minimizing HC concentration in the reformate, while complying with temperature limits.

3 Experimental

3.1 Catalyst Preparation

The LNT and SCR catalysts for full-scale investigation were prepared based on metallic substrates with platinum (Pt) and rhodium (Rh) as catalytically active components. Two different LNT formulations (called "LNT A" and "LNT B") were tested, which basically consisted of different sets of NOx adsorbents. Additionally, the PGM load of the LNT was varied ("PGM low": 85 g/ft³ and "PGM high": 130 g/ft³). The SCR catalyst is copper (Cu) zeolite based and close to conventional commercial formulation. In all investigations shown here, the volume of the LNT is 1.4 L and of the SCR 2.9 L. Only in the vehicle experiments, a DOC-like slip catalyst of 0.8 L was installed directly downstream of the SCR mainly for oxidizing CO slip from the LNT regeneration. The catalysts were not full lifetime aged but thermally conditioned by several hours of DPF regeneration operation in real exhaust gas (hydrothermally aged). The reformer catalyst is ring-shaped and based on ceramic substrate with a PGM load of 60 g/ft³ and a volume of 0.5 L. The exhaust bypass is operated by serial exhaust flaps (application in LP-EGR systems). Diesel is injected into the reformer mixing chamber by a serial air-assisted, lowpressure (<5 bar) injector.

3.2 Engine Test Bench Experiments

The full-scale experiments for investigating the NO_X purification behavior of the combination system as well as the performance of the fuel reformer were conducted with a high efficient 1.4 L three-cylinder diesel engine on a transient engine test bench. The new developed control logic of the aftertreatment system was running on a rapid control system

(ES1000 Fa. ETAS) independently from the engine. The necessary information was transferred between engine and aftertreatment control via ECU bypass. In steady-state investigations, the engine operation (speed, load, operation mode) was set in order to adjust target conditions at the LNT (temperature, NO_X concentration, exhaust mass flow, A/F ratio). Additionally, transient test cycles (New European Driving Cycle (NEDC), Worldwide harmonized Light duty driving Test Cycle (WLTC), FTP75, CADC, US06, ADAC) were conducted in order to evaluate and calibrate the system performance and operation strategy. The emissions were measured by different analyzers (CLD: NO_X, NO; NDIR: CO, CO₂; Magnos: O2; FID: THC; FTIR: NO, NO2, CO, CO2, H2O, NH3, N2O, CH₄, SO₂; LDS: in situ NH₃; mass spectrometer: H₂, H₂S, SO_2 , COS, CS_2) and sensors (NO_X , λ) at various positions (engine out, downstream of the DPF, upstream and downstream of the SCR). The process mass spectrometer (PrMS) is an analytical unit constructed by V&F including the TWIN-MS (CIMS with soft ionization by source gases: Xe, Kr, Hg) and the H-Sense (EI with ionization by ion beam), which allows to detect all data parallel in lifetime with a very high dynamic (30 ms for each substance). The gas composition of the out-line exhaust gas fuel reformer was calculated based on emission measurements in the full exhaust gas flow and the according dilution factor. The total aftertreatment system was set up very modularly by the possibility of replacing each catalyst unit by an empty exhaust pipe. Additionally to the onboard fuel reforming, fundamental investigations of the LNT regeneration were performed by bottled synthetic reformate gas, which was dosed by a mass flow controller (MFC). Based on the achieved onboard reformate gas composition, the bottled reformate substitute gas contains molar fractions of 20 % H₂, 20 % CO, and 60 % N₂. A schematic overview of the experimental setup on the engine test bench is given in Fig. 4.

3.3 Vehicle Experiments

The exhaust aftertreatment system was investigated in a *Volkswagen Golf Variant*, basically with the same engine specification and aftertreatment layout as on the engine test bench (Fig. 5). In contrast to the engine test bench investigations, a DOC-like slip catalyst was positioned downstream of the SCR mainly for oxidizing CO slip from the LNT

Fig. 4 Schematic experimental setup on engine test bench: overview of exhaust gas analyzers, sensors, actuators, and rapid prototyping control (AMA: exhaust analyzer system comprising chemiluminescence detection, non-dispersive infrared spectrometry, flame ionization detection and O_2 detection)

Fig. 5 Final integration of the combined aftertreatment system into the demonstrator vehicle (viewing direction underfloor, *left*: front, *right*: rear)

regeneration. The LNT regeneration was performed by bottled reformate substitute gas, of the same composition as on the engine test bench. The system was investigated by transient testing in NEDC and WLTC on a chassis roller test bench with an inertia mass of 1590 kg and on road in real driving (RDE) with "soft", "normal", and "aggressive" driving style. Due to the additional control equipment and passengers, the real vehicle mass on road was 1780 kg without PEMS and 1970 kg with PEMS. The RDE cycle had a distance of approx. 90 km with a share of approx. 1/3 urban driving, 1/3 rural driving, and 1/3 highway driving.

4 Results and Discussion

4.1 Exhaust Fuel Reformer

The fuel reformer was intensively studied but is not part of this paper. However, for better understanding and ranking of the fuel economy penalty caused by LNT regeneration, which is discussed later, the reductant formation yield (Y_{Red}) is an important indicator in terms of energetic efficiency. Y_{Red} is defined as ratio of oxygen consumption potential of the reducing agent available in the exhaust gas relative to the additional fuel introduced to reach rich operation. It can generally be calculated by Eq. 1 or for engine operation in case of non-available measurement of all exhaust gas species also by Eq. 2. The theoretical optimum reductant yield is represented by the direct use of fuel for the LNT regeneration, e.g., by fuel injection upstream of the LNT with closed exhaust flap. In this case, the reductant yield is 100 %. However, injecting liquid or even pre-vaporized fuel into almost zero exhaust mass flow is hardly practicable.

$$Y_{\text{Red}} = \frac{\dot{n}_{H_2} + \dot{n}_{co} + \left(2x + \frac{y}{2}\right) \cdot n_{C_x} - 2 \cdot n_{o_2} - n_{NO} - 2 \cdot n_{NO_2}}{\left(2x + \frac{y}{2}\right) \cdot n_{C_x H_y, Diesel}}$$
(1)

$$Y_{\text{Red},engine} = \frac{\dot{m}_{engine\ fuel,rich\ \text{mode}} \cdot \left(1 - \lambda_{engine\ ,rich\ \text{mode}}\right)}{\dot{m}_{engine\ fuel,rich\ \text{mode}} - m_{engine\ fuel,lean\ \text{mode}}}$$
(2)

The conventional LNT regeneration done by engine internal enrichment is mainly achieved by throttling and hence intake oxygen reduction as well as applying early and late post injections for excess HC, CO, and H2 concentrations. However, the main portion of the additionally injected fuel is consumed for compensating combustion efficiency losses caused by engine measures to reduce the typical lean diesel air-to-fuel ratio toward $\lambda = 1$. As shown in Fig. 6, only 10–45 % of the additionally expended fuel is available as reducing agent in the exhaust gas. The scatter band in Fig. 6 includes various current diesel engine calibrations. The reductant yield is slightly increasing with increasing BMEP or decreasing A/F ratio during normal lean operation mode. Besides drivability and acoustic reasons, engine internal enrichment should be conducted during vehicle acceleration for lowering the fuel economy penalty (FEP) for LNT regeneration. However, the maximum achievable reductant yield is limited by frequency and length of high engine load periods. In contrast to the diesel engine enrichment, the reductant yield of the fuel reformer reaches a significantly higher level of about 50-60 %, as

Fig. 6 Reductant formation yield of additional fuel for LNT enrichment by fuel reforming in comparison to diesel engine enrichment of various engine calibrations **a** as function of A/F ratio of the engine during lean operation and **b** as function of the engine's brake mean effective pressure (BMEP)

shown in Fig. 6. The A/F ratio and temperature of the exhaust gas fuel reformer were optimized by the reformer control algorithm for each single operation point with regard to low HC emission and high energetic efficiency. The reformer A/F ratio is in the range of 0.35 to 0.80. The reformer temperature reaches 750 and 950 °C. The

reductant loss in the reformer is caused by the partial oxidation of the fuel with oxygen from lean exhaust gas or secondary air. Nevertheless, the reformer enables to decrease the fuel economy penalty and CO_2 emissions for the LNT regeneration in comparison to the conventional approach by engine internal rich operation.

Fig. 7 LNT regeneration as function of time at 250 °C: concentrations of the reductants H_2 and CO as well as of the secondary emissions NH_3 und N_2O downstream of the LNT in the full exhaust gas, A/F ratio upstream and downstream of the LNT, temperatures inside LNT, **a** 1.0 g NO_X load,

b 2.5 g NO_X load (reformate substitute dosing=45 g/min, SV_{LNT,Reg}= 3900 h⁻¹, LNT A "PGM high"), * Σ (H₂ carrier species)= ψ _{H2}+3,5 ψ _{NH3}+3 ψ _{CH4}, ** Σ (reductants)= ψ _{H2}+3,5 ψ _{NH3}+4 ψ _{CH4}+ ψ _{CO}

4.2 LNT NH₃ Formation

The LNT regeneration strategy has a high impact on NH_3 formation and emission. Due to the key function of the NH_3 formation for a passive SCR system, the influence of the LNT temperature, of the LNT NO_X load, and of the regeneration duration on the NH_3 emission are discussed in detail.

Two LNT regenerations showing gas concentrations, A/F ratios, and temperatures as function of time at 250 °C for 1.0 and 2.5 g NO_X load are reported in Fig. 7. Basically, the regeneration period can be divided into two phases. In phase 1, the LNT reduction takes place (typical $\lambda_{downstream LNT}=1$). The completion of enrichment is identifiable by λ breakthrough ($\lambda_{downstream LNT} \leq 0.95$). Phase 2 defines the regeneration duration after λ -breakthrough. In line with current literature, the NH₃ emission starts at the end of phase 1. The LNT enrichment in conventional application is stopped at the end of phase 1 in order to avoid reductant and NH₃ slip. However, the lean exhaust gas downstream of the SCR caused by the bypass system offers reductant slip oxidation and therefore significantly elongated rich duration, which enables enlarged NH₃ emission. The long NH₃ emission profile indicates that the NO_X load is still not completely reduced even in the case of λ -breakthrough and high reductant slip. In the given example at 250 °C and 1.0 g NO_X load, the profile of the sum of all H₂ carrier reductant species (H₂, NH₃, CH₄) equals the CO profile downstream of the LNT. This suggests that NH₃ is only formed by the H₂ feed at this temperature (CH₄ not evident). At higher temperatures (not shown), the profile comparison suggests that also CO contributes to the NH₃ formation. However, it is not possible to distinguish between a direct CO path and CO consumption by WGS and subsequent NH₃

formation by the newly formed H_2 . The final NH_3 emission peak during opening the LNT exhaust flap is caused by sudden purging and hence less dilution of the formed NH_3 in the full exhaust gas upstream of the SCR. N_2O emission is evident mostly during the beginning of the LNT reduction in phase 1 as well as after the regeneration during the switch back from rich to lean conditions. Possibly, the adsorbed N-species get oxidized during the O_2 -flush.

The NH₃ formation yield (molar ratio of cumulated NH₃ amount during LNT regeneration to initial LNT NO_X load at LNT regeneration start, Eq. 3) or the NH₃ formation selectivity (molar ratio of cumulated NH₃ amount during LNT regeneration to converted NO_X, Eq. 4) are important parameters for operating the combined system. Figure 8 shows the NH₃ selectivity as function of LNT temperature for various regeneration durations after λ -breakthrough in comparison for LNT A (low and high PGM) and LNT B.

$$Y_{NH_3} = \frac{n_{NH_3}}{n_{NO_X \, loadLNT}} \tag{3}$$

$$S_{NH_3} = \frac{n_{NH_3}}{n_{NO_X converted}} \tag{4}$$

Independent of the LNT type, the NH₃ selectivity strongly increases with prolonged LNT enrichment after λ breakthrough and saturates at higher durations. Nevertheless, it must be mentioned that the NH₃ emission occurs roughly in parallel to reductant breakthrough. Therefore, high NH₃ formation causes increased reductant slip. For all three LNT, the NH₃ selectivity shows a maximum at medium temperature (200–250 °C). This is in line with current literature. The

Fig. 8 NH₃ selectivity of LNT regeneration as function of LNT temperature for various regeneration durations after λ -breakthrough downstream of the LNT: **a** LNT A "PGM low", **b** LNT A "PGM high", **c** LNT B "PGM high" (reformate substitute dosing = 45 g/min, SV_{LNT,Reg}=3900 h⁻¹)

 NH_3 emission results basically from superposition of the intrinsic NO_X reduction to NH_3 and the in-catalyst NH_3 re-oxidation. The reaction rate of both reactions increases with increasing temperature but forms a maximum profile due to different light-off temperatures. LNT A shows significantly higher NH_3 selectivity compared to LNT B.

Finally, the influence of the NO_X load on the NH₃ formation and related parameters for various regeneration durations after λ -breakthrough are presented in at Fig. 9 at 250 °C.

The cumulated emitted NH₃ quantity (Fig. 9a) steadily increases with increasing NO_X load. A saturation of the NH₃ emission is earlier reached for lower NO_X load than at higher NO_X load. This suggests a limited rate of nitrate decomposition and subsequent reduction to NH₃. In contrast, except for short regeneration duration, the NH₃ yield decreases with increasing NO_X load. Either, more NH₃ gets re-oxidized at higher NO_x load or the increasing substrate temperature by the exothermic reductant conversion decreases the NH₃ formation tendency. The increasing NH₃ yield at short regeneration duration might be explained by the axial NO_X load profile. With ongoing NO_X adsorption, especially the local NO_X load at the substrate outlet increases. According to the NH₃ formation principle, with increasing NO_X load at the rear part of the substrate, more NO_x gets reduced to NH₃ and less NH₃ gets re-oxidized. However, the cyclic NH₃/NO_X ratio upstream of the SCR (α_{cyclic} so-called feed ratio, Eq. 5) is more relevant for the passive SCR operation than the single NH₃ formation parameter. The NOx feed to the SCR increases with increasing NO_X load due to the decreasing NO_X adsorption efficiency. Moreover, uniquely for an LNT bypass concept, the NO_x feed to the SCR is also related to the NO_x slip due to the open LNT bypass. The latter can be limited by temporarily lowering the NO_x engine out emission during the open bypass phase. Summarizing, the superposition of NH₃ emission and NO_X slip results in a maximum formation for α_{cyclic} upstream of the SCR. By relating the α_{cyclic} to the fuel economy penalty FEP (Eq. 6), a parameter can be defined, which provides an overall efficiency indication. The FEP declines with increasing adsorption duration but increases with increasing regeneration duration. Hence, the LNT regeneration strategy can be controlled either in terms of high NH₃ emissions for fast SCR filling (maximum α_{cyclic}) or in terms of best overall efficiency (maximum α_{cvclic} /FEP).

$$A_{cyclic} = \begin{bmatrix} \int (\dot{n}_{NH_3})_{SCR \, upstream} \\ \hline \int (\dot{n}_{NO_X})_{SCR \, upstream} \end{bmatrix}_{adsorption+regereneration}$$
(5)

$$FEP = \frac{\int \dot{m}_{Diesel \, fuel, \, LNT \, \text{Regermeration}}}{\int \dot{m}_{Diesel \, fuel, \, engine \, lean \, operation}} \tag{6}$$

Fig. 9 NH₃ formation as function of NO_X load and regeneration duration (displayed as duration after λ -breakthrough downstream of the LNT): **a** cumulated NH₃ quantity, **b** NH₃ yield, **c** cyclic NH₃/NO_X ratio (α_{cyclic})

upstream of the SCR (usually called feed ratio), **d** ratio of α_{cyclic} to the fuel economy penalty (reformate substitute dosing=45 g/min, SV_{LNT,Reg}=3900 h⁻¹, T_{LNT}=250 °C, LNT A "PGM low")

The fuel economy penalty (FEP, Eq. 6) is defined by the ratio of additional diesel fuel injected into the reformer during LNT regeneration and the diesel fuel consumption of the engine. To minimize the NO_X slip through the open bypass during the LNT regeneration, the engine is operated in a low NO_X raw emission mode. In the applied extent, this engine mode switch had only negligible influence on the engine fuel consumption and hence on the fuel economy penalty.

4.3 Steady-State LNT + SCR Investigation on Engine Test Bench

An example of the NO_X conversion behavior of the combined LNT + SCR system during cyclic adsorption-regeneration operation is shown in Fig. 10 for an LNT temperature of 250 °C. As shown in the upper diagram, after a short period with high LNT NO_X adsorption efficiency, the NO_X concentration downstream of the LNT is continuously increasing due to the increasing LNT NO_X load and hence lower NO_X adsorption efficiency. However, the NO_x tailpipe concentration is kept close to zero due to continuous NO_X conversion by the passive SCR catalyst. The cumulated NH3-NOX ratio upstream of the SCR (α_{cvclic}) over the total NO_X adsorption and regeneration cycle is slightly above 1. For instance, the LNT and bypass NO_X slip are more than equaled by the onboard NH₃ formation during LNT regeneration. To minimize the NO_X slip through the open bypass during the LNT regeneration, the engine is operated at lower NO_X raw emission. The continuous α can reach temporarily high values (here» 50), which demands high NH₃ adsorption efficiency of the passive SCR. In the given example, no NH₃ slip downstream

of the SCR was observed. Contrary to a conventional LNT application, the LNT NO_x slip does not automatically drop the system NO_X conversion but can be converted by the passive SCR. Therefore, the LNT NO_X adsorption duration can be elongated, and the LNT can be operated at higher NO_X storage levels resulting in a higher degree of material utilization. As shown in the bottom diagram, only the LNT is enriched locally during the rich LNT regeneration. Both the engine and the tailpipe flow path downstream of the recombination of main and bypass line are continuously operated at $\lambda > 1$. The engine-independent LNT enrichment avoids the risk of engine oil dilution, which might be caused by engine internal late post injection. Additionally, drivability and acoustic drawbacks due to switch into rich engine operation can be avoided. Furthermore, the lean tailpipe exhaust gas composition offers the possibility to oxidize the occasional reductant slip during the LNT regeneration. Usually, the higher the space velocity (SV), the lower is the catalyst performance because of kinetic limitations especially at low temperature. As shown in the bottom diagram, the closed LNT flow path during LNT regeneration results in a significant drop of LNT space velocity, which offers the potential for increasing regeneration efficiency.

The dependency of the total NO_X conversion and α_{cyclic} on the fuel economy penalty for various temperatures is discussed in Fig. 11. As shown before, with elongated regeneration duration and hence increasing fuel economy penalty, α_{cyclic} can be increased. The total NO_X conversion also increases with increasing FEP, on the one hand due to the increased α_{cyclic} and on the other hand due to a higher LNT efficiency. The latter could be reached by either higher completion of LNT regeneration or higher NO_X adsorption

Fig. 10 NO_X conversion behavior of LNT + SCR system in cyclic adsorption-regeneration operation as function of time (reformate substitute dosing = 45 g/min, SV_{LNT,Reg}=3900 h⁻¹, $T_{LNT}=250$ °C, $T_{SCR}=225$ °C, FEP=1.9 %, SV_{SCR}=24,000 h⁻¹, LNT A "PGM high")

Fig. 11 NO_X conversion of the LNT + SCR system as function of fuel economy penalty at various temperatures in cyclic adsorption-regeneration operation: \mathbf{a} cyclic total NO_X conversion (LNT+SCR), \mathbf{b}

efficiency by operation at lower NO_X load. Thus, NO_X conversion and fuel consumption are directly linked. The already discussed strong temperature dependency of the NH₃ formation results in large variation of maximum α_{cyclic} and hence also of the maximum total NO_X conversion. As expected, the NO_X conversion of the passive SCR solely depends on the feed ratio (α_{cyclic}).

 α_{cyclic} upstream of the SCR, **c** cyclic NO_X conversion of the passive SCR as function of α_{cyclic} (reformate substitute dosing = 45 g/min, SV_{LNT,Reg}= 3900 h⁻¹, LNT A "PGM low")

A significant influence on the total NO_X performance and especially on the conversion share between LNT and SCR is given by the LNT NO_X adsorption duration and therefore the LNT NO_X load. In Fig. 12, the NO_X conversion efficiencies, NO_X conversion shares of LNT with bypass and passive SCR, and the related FEP are shown as function of LNT NO_X load. Considering the boundary conditions of the discussed

Fig. 12 NO_X conversion efficiencies, related fuel economy penalty (FEP), and NO_X conversion shares of LNT with bypass and passive SCR as function of LNT NO_X load (reformate substitute dosing = 45 g/min, SV_{LNT,Reg}=3900 h⁻¹, T_{LNT}=250 °C, LNT A "PGM low")

example in Fig. 12, the total NO_X conversion is almost constant for the NO_x load of 0.4–1.4 g. However, with elongating NO_X adsorption duration and therefore increasing LNT NO_X load, the NO_X conversion distribution is significantly shifting from LNT to SCR. As shown in the bottom diagram, the loss of LNT conversion is almost compensated by the increasing SCR conversion, which achieves a maximum of 40 %. The NO_X conversion share between LNT and SCR is changing from 75/25 % at 0.4 g NO_X load to 60/40 % at 1.4 g NO_X load. The increasing NO_X slip through LNT and bypass for NO_X adsorption durations up to the NO_X load level of 1.4 g can be compensated by the NH₃ formation on the LNT. α_{cvclic} upstream of the SCR is ≥ 1 (not displayed) for LNT NO_X load below 1.4 g. In case of LNT NO_X loads above 1.4 g, α_{cvclic} is dropping below the stoichiometry of 1, which results in corresponding decline of SCR NO_X conversion and therefore also of the total NO_x conversion.

A great potential of the conversion shifting between LNT and SCR is the impact on the fuel economy penalty, shown in the bottom diagram of Fig. 12. By expanding the NO_X adsorption duration toward higher LNT NO_X loads, the FEP can be lowered from 1.5 % at 0.4 g to 0.75 % at 1.4 g. The higher the NO_X load, the more reducing agent is consumed for NO_X reduction. Reasons are the lower regeneration frequency as well as the higher NH_X selectivity of the LNT regeneration (not displayed) for higher NO_X loads. A further reason for the benefit of high NO_X loads is caused by the OSC of the LNT which has to be reduced in parallel to the NO_X reduction. The reducing agent amount, which is consumed by the OSC during the LNT regeneration, increases the fuel economy penalty without any NO_X reduction. Assuming constant OSC, by increasing the NO_X load, relatively more reducing species will be consumed by NO_X than by OSC. The higher the NO_X load, the more beneficial becomes the ratio of oxygen molar amount stored in barium nitrate to the sum of oxygen in barium nitrate and cerium oxide (OSC), resulting in decreasing FEP.

Figure 13 depicts the correlation of NO_X conversion, fuel economy penalty, and NO_x raw emission level for LNT-only and LNT+SCR at 230 °C. Generally, increasing NO_X conversion progressively causes the drawback of increasing fuel consumption penalty. The NO_X conversion converges asymptotically against a maximum. Furthermore, higher NO_X raw emission shows significantly negative impact on NOx conversion for certain FEP and maximum achievable NO_X conversion. Hence, for achieving high NO_X conversion at reasonable fuel economy penalty, the NO_X raw emission must be limited. In comparison to the LNT-only, the combined LNT+passive SCR system shows high benefits regarding FEP and NO_x conversion. In the given example, high maximum total NO_X conversion of up to >95 % is achievable at low FEP of ≈ 1 % for reasonable NO_X raw emissions. At high NO_X raw emission level, the total NO_X conversion decreases but is significantly higher than for LNT-only. At a certain NO_x conversion, significant lower FEP is attainable by the LNT + SCR.

Figure 14 shows the steady-state NO_x conversion and fuel economy penalty of the combined LNT + passive SCR system for two system variants with onboard generated reformate and reformate substitute gas as function of LNT temperature. The attained NO_X conversion is comparable for the operation with the integrated onboard reformer as well as for the operation with the bottled reformate substitute gas. The system with the higher PGM-loaded LNT achieves a slight increase in conversion at T<250 °C. At 250 °C, almost complete conversion is achieved at FEP of ≈ 1.5 %. The operation strategy of NO_X adsorption and regeneration is optimized with regard to maximum total NO_X conversion and suitable fuel consumption penalty. The SCR significantly contributes to the total NO_X conversion. At T<250 °C, the total steady-state NO_X conversion drops caused by reduced LNT activity as well as NH₃ yield. The FEP increases due to higher LNT regeneration frequency as well as lower engine fuel consumption due to lower engine load. Nevertheless, 65-70 % steady-state NO_X conversion at 185 $^{\circ}\mathrm{C}$ and 30 % steady-state NO_{X} conversion at

Fig. 13 Correlation between NO_X conversion and fuel economy penalty as function of NO_X raw emission level: **a** LNT-only, **b** LNT + passive SCR (reformate substitute dosing = 45 g/min, SV_{LNT,Reg}=3900 h⁻¹, T_{LNT} =230 °C, LNT A "PGM high")

150 °C are still achieved. In transient operation, higher conversion rates can be achieved due to pure NO_X adsorption at the LNT as well as SCR conversion with previously stored NH₃. At T>350 °C, the steady-state NO_X conversion drops because of decreasing (for thermodynamic reasons) NO_X adsorption capacity of the LNT as well as lower NH₃ yield of the LNT regeneration. The decreased LNT NH₃ yield causes limited steady-state SCR conversion in contrast to urea-based SCR operation. However, during transient operation, complete conversion can still be maintained by the SCR for short time, e.g., during DPF regeneration, by consuming previously stored NH₃ depending on SCR NH₃ load and NO_X mass flow. This represents high NO_X performance benefits compared to conventional LNT application.

4.4 Transient LNT + SCR Investigation in Demonstrator Vehicle

Finally, Fig. 15 shows the final results for NO_X conversion and fuel economy penalty (separated in FEP for heating and FEP for rich LNT regeneration) in all transient cycles measured in the demonstrator vehicle. The underfloor-positioned aftertreatment system requires significant fuel economy penalty by heating but only minor by LNT enrichment in the cold start cycles NEDC and WLTC. However, in real driving with longer warm operation periods, the system performance shows high NO_X conversion and realizes low NO_X emission at low fuel economy penalty of less than 2 %. The fuel

Fig. 15 Summary of transient NO_X conversion and fuel economy penalty of combined LNT + passive SCR system (operation with reformate substitute gas, LNT A "PGM high", vehicle weight differing to inertia weight class due to additional equipment and passengers)

economy penalty is generally low compared to conventional engine internal enrichment, due to higher reductant formation efficiency of the reforming approach. The passive SCR can significantly contribute to the total NO_X conversion. The high NO_X raw emissions and exhaust temperature during aggressive driving are challenging for the LNT-based system with only passive SCR due to the LNT NO_x conversion drop at high temperature. Additionally, high space velocity caused by high engine speed results on one hand in limited NO_X adsorption efficiency on the LNT. On the other hand, it causes fast consumption of SCR NH₃ load due to LNT NO_X breakthrough. However, especially under these conditions, the underfloor position is beneficial compared to a close-coupled position and enables maximum NO_X conversion for operating without active urea dosing. Summarizing, a clear trade-off between short cold cycles and long hot driving is obvious.

5 Summary and Conclusions

The upcoming emission legislation requires emission control for the complete exhaust temperature range from cold start up to high temperature operation in real dynamic testing procedures. This is challenging especially for the NO_x treatment. Both currently used NO_X reduction systems, LNT and SCR, provide optimum reduction efficiency at a specific temperature range only. A combination of both systems with active application (LNT with frequent rich regeneration, SCR with urea dosing) is promising but will probably request urea refilling by the customer as well as CO₂ emission drawback due to fuel economy penalty caused by the LNT regeneration. As an alternative approach, the combination of LNT and passive SCR using NH₃ produced by NO_X reduction on the LNT was investigated. Furthermore, the LNT reduction was performed in LNT bypass operation with onboard fuel reformate gas (H₂+CO) at low space velocity in order to enhance the NO_X conversion efficiency especially at low temperature and minimize the fuel economy penalty of the reduction process.

The NH₃ formation by the LNT NO_X reduction causes discontinuous NH₃ supply to the SCR. Due to the NH₃ formation characteristic of the LNT, the optimum temperature window for steady-state operation for the passive SCR approach is in the range of 200–300 °C. At lower temperature, the LNT adsorption and regeneration efficiencies decrease due to kinetic reasons. At higher temperature, the NO_X adsorption capacity of the LNT decreases due to thermodynamic reasons. Additionally, the NH₃ formation becomes negligible so that the passive SCR does not reach the high efficiency of an active SCR. The combined LNT and passive SCR system achieves nearly 100 % NO_X conversion efficiency at 250 °C with fuel economy penalty of 1.5 % for Euro 4 NO_X raw emission level. Caused by high NH₃ selectivity of up to approx. 50 % regarding the LNT NO_X load, the passive SCR contributes with up to 35 % significantly to the total NO_X conversion. At an exhaust temperature of 175 °C, the NO_X conversion efficiency of approx. 40 % by the LNT can still be increased up to 60 % by the combined passive SCR.

The reduction of the fuel penalty was caused primarily by two different measures. The NH_3 production on the LNT offers an LNT operation at higher NO_X load due to the conversion of LNT NO_X breakthrough by the passive SCR. The higher NO_X load leads to a reduced regeneration frequency. At high NO_X load, relatively more fuel reacts with NO_X instead of OSC. Hence, the fuel efficiency could be increased compared to a conventional LNT application. Additional improvement of fuel economy might be achieved by using LNT with lower OSC due to no necessity of NH_3 formation prevention on the LNT. Further, the fuel economy penalty was reduced significantly by the use of an engine-independent LNT regeneration with reformate gas in bypass operation. Compared to diesel engine enrichment, the reducing agent generation by fuel reforming is more efficient.

Regarding the vehicle integration of the aftertreatment system, especially the LNT position in a passive SCR combination is crucial. In short cold start cycles, a close-coupled position is favorable because of faster heat-up. However, in contrast to the current technical trend, in longer warm operation in real driving, an underfloor position becomes favorable due to taking the full potential of the passive SCR approach.

Summarizing, in comparison to conventional LNT application, a combined system of LNT in bypass operation with passive SCR improves the NO_X performance at lower fuel economy penalty and represents an attractive approach for future emission aftertreatment. While LNT and passive SCR combinations already reached commercial maturity, relevant practical topics like OBD and complexity need more investigations for the reformer itself.

Acknowledgments The research leading to these results has received funding from the *European Union 7th Framework Program* [FP7/2007–2011] under grant agreement no. 234032. The authors are grateful to the funding of EU in the POWERFUL research project and all persons, who know to have their contribution in this study.

The authors would also like to thank *Volkswagen AG* for the vehicle measurements and *Dinex Ecocat* for the catalyst supply.

Furthermore, the authors would like to thank the *DFG* for enabling this work by funding the mass spectrometer measurement devices.

Parts of this work are the result of the successful cooperation with *RWTH's Center for Automotive Catalytic Systems Aachen (ACA)*.

References

 Satoh N, Ohno H, Nakatsuji T (2006) A NO_X reduction system using ammonia storage-selective catalytic reduction in rich and lean operations. Paper presented at the 15th Aachen Colloquium Automobile and Engine Technology, RWTH Aachen University, Aachen, 9-11 October 2006

- Liu, Y., Harold, M.P., Luss, D.: Coupled NO_X storage and reduction and selective catalytic reduction using dual-layer monolithic catalysts. Appl Catal B Environ **121–122**, 239–251 (2012). doi:10. 1016/j.apcatb.2012.04.013
- Liu, Y., Zheng, Y., Harold, M.P., Luss, D.: Lean NO_X reduction on LNT-SCR dual-layer catalysts by H₂ and CO. Appl Catal B Environ 132–133, 293–303 (2013). doi:10.1016/j.apcatb.2012.10.034
- Liu, Y., Zheng, Y., Harold, M.P., Luss, D.: Lean NO_X reduction with H₂ and CO in dual-layer LNT–SCR monolithic catalysts: impact of ceria loading. Top Catal 56, 104–108 (2013). doi:10.1007/s11244-013-9936-1
- Zheng, Y., Liu, Y., Harold, M.P., Luss, D.: LNT-SCR dual-layer catalysts optimized for lean NO_X reduction by H₂ and CO. Appl Catal B Environ 148–149, 311–321 (2014). doi:10.1016/j.apcatb. 2013.11.007
- 6. Theis JR, Dearth M, McCabe R (2011) LNT + SCR catalyst systems optimized for NO_X conversion on diesel applications. SAE 2011-01-0305
- Waldbüßer N: NO_X-Minderung am Pkw-Dieselmotor mit einem Kombinationssystem zur Abgasnachbehandlung. Dissertation, University of Kaiserlautern (2005)
- Weibel, M., Waldbüßer, N., Wunsch, R., Chatterjee, D., Bandl-Konrad, B., Krutzsch, B.: A novel approach to catalysis for NO_X reduction in diesel exhaust gas. Top Catal **52**, 1702–1708 (2009). doi:10.1007/s11244-009-9329-7
- Chatterjee, D., Kočí, P., Schmeißer, V., Marek, M., Weibel, M., Krutzsch, B.: Modelling of a combined NO_X storage and NH₃-SCR catalytic system for diesel exhaust gas aftertreatment. Catal Today 151, 395–409 (2010). doi:10.1016/j.cattod.2010.01.014
- Snow R, Cavatatio G, Dobson D, Montreuil C, Hammerle R: Calibration of a LNT-SCR diesel aftertreatment system. SAE 2007-01-1244 (2007)
- Xu L, McCabe R, Ruona W, Cavataio G: Impact of a Cu-zeolite SCR catalyst on the performance of a diesel LNT + SCR system. SAE 2009-01-0285 (2009)
- Theis JR, Ura J, McCabe R: The effects of sulfur poisoning and desulfation temperature on the NO_X conversion of LNT + SCR systems for diesel applications. SAE 2010-01-0300 (2010)
- Xu L, McCabe R, Dearth M, Ruona W: Laboratory and vehicle demonstration of "2nd-generation" LNT + in-situ SCR diesel NO_X emission control systems. SAE 2010-01-0305 (2010)
- Xu L, McCabe R, Tennison P, Jen HW: Laboratory and vehicle demonstration of "2nd-generation" LNT + in-situ SCR diesel emission control systems. SAE 2011-01-0308 (2011)
- Li W, Perry KL, Narayanaswamy K, Kim CH, Najt P: Passive ammonia SCR system for lean-burn SIDI engines. SAE 2010-01-0366 (2010)
- Kim CH, Perry K, Viola M, Li W, Narayanaswamy K: Three-way catalyst design for urealess passive ammonia SCR: lean-burn SIDI aftertreatment system. SAE 2011-01-0306 (2011)
- Weirich M: NO_X-Reduzierung mit Hilfe des SCR-Verfahrens am Ottomotor mit Direkteinspritzung. Dissertation, University of Kaiserlautern (2001)
- McCarthy J: Fuel reformer, LNT and SCR Aftertreatment system meeting emissions useful life requirements. Paper presented at the Directions in Engine-Efficiency and Emissions Research (DEER) Conference, Dearborn, 3-6 August 2009 (2009)
- Poojary D, Nicole J, McCarthy J, Yang H: Improved system performance and reduced cost of a fuel reformer, LNT, and SCR aftertreatment system meeting emissions useful life requirement. Paper presented at the Directions in Engine-Efficiency and Emissions Research (DEER) Conference, Detroit, 27-30 September 2010 (2010)
- 20. McCarthy J, Yue Y, Mahakul B, Gui X, Yang H, Ngan E, Price K: Meeting Nonroad Final Tier 4 Emissions on a 4045 John Deere engine using a fuel reformer and LNT system with an optional SCR

showing transparent vehicle operation, Vehicle Packaging and Compliance to End-of-Life Emissions. SAE 2011-01-2206 (2011)

- Kupe J, Zizelman J, Botti JJ, Simpkins H, Hemingway MD, LaBarge WJ, Silvis TW, Kirwan JE, Bonadies J, Price K: System and method of NOx abatement. Delphi Technologies Inc. Patent US 2006/0213187 A1, 28 September 2006 (2006)
- Hemingway MD, Christopher BJ, Thornton MP: Engine exhaust emission control system providing on-board ammonia generation. Delphi Technologies Inc. Patent US 2007/0271908 A1, 29November 2007 (2007)
- 23. Kupe J, Bosch R, Bonadies J, Kirwan J: Demonstration of a fuel reformer system for meeting future diesel vehicle low emission standards. Paper presented at the 15th Aachen Colloquium Automobile and Engine Technology, RWTH Aachen University, Aachen, 9-11 October 2006 (2006)
- 24. Beckmann T, Massner A: Internal combustion engine provided with an exhaust gas cleaning system and method for cleaning exhaust gases of an internal combustion engine. DaimlerChrysler AG. Patent WO 2005/049984 A1, 02 June 2005 (2005)
- Hu H, Stover T: Hybrid catalyst system for exhaust emissions reduction. Eaton Corporation. Patent WO 2006/008625 A1, 26 January 2006 (2006)
- Clayton, R.D., Harold, M.P., Balakotaiah, V.: Selective catalytic reduction of NO by H₂ in O₂ on Pt/BaO/Al₂O₃ monolith NO_x storage catalysts. Appl Catal B Environ **81**, 161–181 (2008). doi:10.1016/j. apcatb.2007.11.038
- Kouakou, A., Dhainaut, F., Granger, P., Fresnet, F., Louis-Rose, I.: Study of ammonia formation during the purge of a lean NO_X trap. Top Catal 52, 1734–1739 (2009). doi:10.1007/s11244-009-9343-9
- 28. Larson RS, Chakravarthy VK, Pihl JA, Daw CS: Modeling chemistry in lean NO_X traps under reducing conditions. SAE 2006-01-3446 (2006)
- van Hardeveld, R.M., van Santen, R.A., Niemantsverdriet, J.W.: Kinetics and mechanism of NH₃ formation by the hydrogenation of atomic nitrogen on Rh(111). J Phys Chem B **101**, 998–1005 (1997). doi:10.1021/jp963022
- Cant, N.W., Chambers, D.C., Liu, I.O.Y.: The Reduction of NO by CO in the presence of water vapour on supported platinum catalysts: formation of isocyanic acid (HNCO) and ammonia. Appl Catal B Environ 46, 551–559 (2003). doi:10.1016/S0926-3373(03)00318-7
- Neyertz, C., Volpe, M., Perez, D., Costilla, I., Sanchez, M., Gigola, C.: NO reduction with CO in the presence and absence of H₂O over Pd/γ-Al₂O₃ and Pd-VO_X/γ-Al₂O₃ catalysts: The formation of HNCO, NH₃ and stable surface species. Appl Catal A Gen 368, 146–157 (2009). doi:10.1016/j.apcata.2009.08.023
- 32. Szailer, T., Kwak, J.H., Kim, D.H., Hanson, J.C., Peden, C.H.F., Szanyi, J.: Reduction of stored NO_X on Pt/Al₂O₃ and Pt/BaO/ Al₂O₃ catalysts with H₂ and CO. J Catal **239**, 51–64 (2006). doi: 10.1016/j.jcat.2006.01.014
- Mulla, S.S., Chaugule, S.S., Yezerets, A., Currier, N.W., Delgass, W.N., Ribeiro, F.H.: Regeneration mechanism of Pt/BaO/Al₂O₃ lean NO_x trap catalyst with H₂. Catal Today **136**, 136–145 (2008). doi:10. 1016/j.cattod.2008.01.007
- Pihl JA, Parks II JE, Daw CS, Root TW: Product selectivity during regeneration of lean NO_X trap catalysts. SAE 2006-01-3441 (2006)
- Lietti, L., Nova, I., Forzatti, P.: Role of ammonia in the reduction by hydrogen of NO_x stored over Pt–Ba/Al₂O₃ lean NO_x trap catalysts. J Catal 257, 270–282 (2008). doi:10.1016/j.jcat.2008.05.005
- Kočí, P., Plát, F., Štěpánek, J., Kubíček, M., Marek, M.: Dynamics and selectivity of NO_X reduction in NO_X storage catalytic monolith. Catal Today 137, 253–260 (2008). doi:10.1016/j.cattod.2007.11.023
- Clayton, R.D., Harold, M.P., Balakotaiah, V.: NO_X storage and reduction with H₂ on Pt/BaO/Al₂O₃ monolith: Spatio-temporal resolution of product distribution. Appl Catal B Environ 84, 616–630 (2008). doi:10.1016/j.apcatb.2008.05.018

- Bhatia, D., Clayton, R.D., Harold, M.P., Balakotaiah, V.: A global kinetic model for NO_X storage and reduction on Pt/BaO/Al₂O₃ monolithic catalysts. Catal Today **1478**, 250–256 (2009). doi:10. 1016/j.cattod.2009.07.024
- Partridge, W.P., Choi, J.-S.: NH₃ formation and utilization in regeneration of Pt/Ba/Al₂O₃ NO_x storage-reduction catalyst with H₂. Appl Catal B Environ **91**, 144–151 (2009). doi:10.1016/j.apcatb.2009.05. 017
- Clayton, R.D., Harold, M.P., Balakotaiah, V., Wan, C.Z.: Pt dispersion effects during NO_X storage and reduction on Pt/BaO/Al₂O₃ catalysts. Appl Catal B Environ **90**, 662–676 (2009). doi:10.1016/j. apcatb.2009.04.029
- Abdulhamid, H., Fridell, E., Skoglundh, M.: The reduction phase in NO_X storage catalysis: Effect of type of precious metal and reducing agent. Appl Catal B Environ 62, 319–328 (2006). doi:10.1016/j. apcatb.2005.08.014
- Okumura, K., Motohiro, T., Sakamoto, Y., Shinjoh, H.: Effect of combination of noble metals and metal oxide supports on catalytic reduction of NO by H₂. Surf Sci **603**, 2544–2550 (2009). doi:10. 1016/j.susc.2009.05.031
- Cant, N.W., Chambers, D.C., Liu, I.O.Y.: The formation of isocyanic acid during the reaction of NH₃ with NO and excess CO over silicasupported platinum, palladium, and rhodium. J Catal 231, 201–212 (2005). doi:10.1016/j.jcat.2005.01.022
- 44. Chen H-Y, Weigert E, Fedeyko J, Cox J, Andersen P: Advanced catalysts for combined (NAC+SCR) emission control systems. SAE 2010-01-0302 (2010)
- Bhatia, D., Harold, M.P., Balakotaiah, V.: Modeling the effect of Pt dispersion and temperature during anaerobic regeneration of a lean NO_x trap catalyst. Catal Today **151**, 314–329 (2010). doi:10.1016/j. cattod.2010.02.055
- Maeda, N., Urakawa, A., Baiker, A.: Influence of Pt-Ba-proximity on NO_x storage-reduction mechanisms: a space- and time-resolved in situ infrared spectroscopy study. Top Catal **52**, 1746–1751 (2009). doi:10.1007/s11244-009-9342-x
- Ji, Y., Choi, J.-S., Toops, T.J., Crocker, M., Naseri, M.: Influence of ceria on the NO_X storage/reduction behavior of lean NO_X trap catalysts. Catal Today 136, 146–155 (2008). doi:10.1016/j.cattod.2007. 11.059

- Le Phuc, N., Corbos, E.C., Courtois, X., Can, F., Marecot, P., Duprez, D.: NO_X storage and reduction properties of Pt/Ce_xZr_{1-x}O₂ mixed oxides: Sulfur resistance and regeneration, and ammonia formation. Appl Catal B Environ 93, 12–21 (2009). doi:10.1016/j.apcatb.2009. 09.007
- 49. Choi J-S, Pihl J, Partridge B, Chakravarthy K, Toops T, Daw S: Factors affecting LNT NH₃ selectivity. Paper presented at the DOE Crosscut Workshop on Lean Emissions Reduction Simulation (CLEERS) Conference, University of Michigan, Dearborn, 20-22 April 2010 (2010)
- Choi, J.-S., Partridge, W.P., Daw, C.S.: Sulfur impact on NO_X storage, oxygen storage, and ammonia breakthrough during cyclic lean/rich operation of a commercial lean NO_X trap. Appl Catal B Environ 77, 145–156 (2007). doi:10.1016/j.apcatb.2007.07.025
- Castoldi, L., Lietti, L., Forzatti, P., Morandi, S., Ghiotti, G., Vindigni, F.: The NO_X storage-reduction on Pt-K/Al₂O₃ Lean NO_X Trap catalyst. J Catal 276, 335–350 (2010). doi:10.1016/j.jcat.2010.09.026
- Nova, I., Lietti, L., Forzatti, P.: Mechanistic aspects of the reduction of stored NO_X over Pt–Ba/Al₂O₃ lean NO_X trap systems. Catal Today 136, 128–135 (2008). doi:10.1016/j.cattod.2008.01.006
- Maßner A: Stickoxidminderung bei Diesel-Nutzfahrzeugen mittels Kombination von NO_X-Speicherkatalysator und SCR-Katalysator. Dissertation, University of Stuttgart (2006)
- 54. Kočí, P., Plát, F., Štěpánek, J., Bártová, Š., Marek, M., Kubíček, M., Schmeißer, V., Chatterjee, D., Weibel, M.: Global kinetic model for the regeneration of NO_x storage catalyst with CO, H₂ and C₃H₆ in the presence of CO₂ and H₂O. Catal Today **147S**, 257–264 (2009). doi: 10.1016/j.cattod.2009.07.036
- 55. Harbi, M., Epling, W.S.: The effects of regeneration-phase CO and/or H₂ amount on the performance of a NO_x storage/reduction catalyst. Appl Catal B Environ **89**, 315–325 (2009). doi:10.1016/j.apcatb. 2008.12.010
- Clayton, R.D., Harold, M.P., Balakotaiah, V.: Performance features of Pt/BaO lean NO_X trap with hydrogen as reductant. Am Inst Chem Eng 55, 687–700 (2009). doi:10.1002/aic.11710
- AL-Harbi, M., Epling, W.S.: Effects of different regeneration timing protocols on the performance of a model NO_X storage/reduction catalyst. Catal Today 151, 347–353 (2010). doi:10.1016/j.cattod.2009. 12.004