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Abstract
Purpose of the Review This paper reviews progress in the
field of landscape ecology related to the development of land-
scape metrics (i.e., spatial pattern indices). We first review the
major formative historical developments that contributed to
the coalescence of landscape metrics as a sub-field of land-
scape ecology and then examine recent literature highlighting
several shortcomings related to their utility for understanding
ecological processes and discuss several alternative
approaches.
Recent Findings Recent research recognizes some limitations
of the patch-mosaic model (PMM), including the landscape
metrics based on it, for capturing landscape heterogeneity and
measuring functionality. Collapsing land cover information
into nominal classes complicates identification of ecologically
meaningful relationships and effective management. We ex-
plore several alternative methods for capturing landscape
functionality and spatial heterogeneity including graph-based
networks and gradient surface models with associated surface
metrics.
Summary With complementary patch-based, gradient, and
graph network models available, the goal for landscape ecol-
ogists is to select the correct approach, or combination of
approaches, for investigating the issue at hand. Biases associ-
ated with the modifiable areal unit problem (MAUP) and its
connection to heterogeneity and scale—both grain and

extent—complicate these decisions, but empirical tools from
spatial allometry may improve the ability for landscape ecol-
ogists to assess where metrics are capturing ecological pro-
cesses versus the scale-dependency of the metrics themselves.

Keywords Landscape structure . Composition .

Configuration . Scaling . Patchmosaic . Gradient surface,
graph theory

Introduction

From its nascent beginnings at the Allerton Park meeting in
1983, landscape ecology differentiated itself from traditional
ecology through its explicit focus on spatial pattern [1]. While
the discipline has expanded and evolved considerably over the
past three decades, the central aim of landscape ecological
theory has remained virtually unchanged—to elucidate the
impact of landscape structure, which emerges from the com-
position and configuration of landscape features, on ecologi-
cal processes [2, 3]. In the years following Allerton Park,
landscape ecologists dedicated considerable efforts toward
measuring the relationships between pattern and process by
developing methods and tools to quantify landscape structure
[4–7]. These early efforts were bolstered by rapidly improving
computational power throughout the 1980s and 1990s [8]
along with development of geographic information systems
(GIS), ultimately coalescing in a comprehensive set of land-
scape metrics and software programs (e.g., FRAGSTATS; [9])
for completing spatial pattern analyses.

The ability to quantify spatial patterns in a computationally
efficient manner fostered unprecedented developments in
landscape ecological theory and practice during those early
decades [10], ultimately sparking the emergence of a sub-
field of landscape ecology focused on metrics [3, 11]. The
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intellectual energy surrounding spatial pattern analysis helped
landscape ecology bring spatial analysis and modeling to the
forefront of ecological research in the 1980s [12] and solidi-
fied the field’s core focus. Progress continues today with de-
velopment of new and improved indices for quantifying com-
position and configuration [13], ongoing research into the
parsimonious selection of metrics for ecological analyses
[14], and renewed investigations into enduring issues of un-
certainty and error propagation [15, 16]. Alongside these last-
ing topics, new research themes are emerging to create new
insights into the prediction power of landscape metrics
through scaling functions [17, 18] and, most recently, into
the innovative application of entropy and thermodynamics
[19]. Landscape ecology’s vibrant development and diverse
disciplinary perspectives continue to infiltrate diverse fields
such as urban and regional studies [20, 21], economics [22],
and social and environmental perception [23–25] through
metric analyses.

Currently, hundreds of metrics exist to measure landscape
patterns across a multitude of applications, but their use is not
without scrutiny. For decades, researchers have debated the
ecological relevancy of spatial patterns [3••, 26, 27], with
some casting doubt on their ability to measure the functional-
ity of a landscape adequately [28]. Contributing to these un-
certainties, the scale dependency of many metrics across both
grain (i.e., resolution) and study area extent confounds rela-
tionships between ecological processes and spatial patterns,
making management decisions based on single-scale data dif-
ficult, and possibly erroneous. Underlying these issues re-
mains the simple fact that conventional landscape metrics
are built on the patch-mosaic model (PMM), which simplifies
landscapes into a mosaic of discrete patches that may not
adequately capture ecological heterogeneity [29]. While the
PMM has helped advance our understanding of pattern-
process relationships [11] and fostered contributions to eco-
logical theory, recent conceptual and methodological develop-
ments have created an impetus to explore other options. One
stream within the literature advocates conceptualizing the
landscape as an environmental gradient [29–34], the patterns
of which can be quantified through alternate surface metrics
that measure heterogeneity in gradient datasets [35]. However,
this gradient surface model (GSM) is not without critique. To
date, many of the issues hampering the PMM also remain
unexplored within the GSM, such as the ecological relevancy
of metrics, thus limiting applications.

In this review, we examine recent landscape ecology re-
search exploring the development, implementation, and use
of spatial pattern metrics for both basic (theoretical) and ap-
plied science. First, we briefly summarize several major his-
torical developments contributing to the coalescence of land-
scape metrics as the backbone of spatial pattern analysis in
landscape ecology. Next, we examine recent literature on
landscape metrics and highlight some of the recognized

shortcomings of the utility of these patch-based metrics for
understanding ecological processes. We then explore several
alternative approaches for quantifying landscape patterns in-
cluding graph-based methods and GSMs. Lastly, we discuss
some future directions for spatial pattern metrics in landscape
ecology that take advantage of their scale dependencies.
Throughout the paper we use the term spatial pattern metrics
to refer to all quantitative measurements of heterogeneity re-
gardless of the landscape model (i.e., PMM or GSM). We
refer specifically to metrics computed for categorical, patch-
based landscapes as ‘landscape metrics’ or ‘conventional
landscape metrics’, and we refer to metrics computed on gra-
dient surfaces as ‘surface metrics’ while also recognizing that
certain autocorrelation measures (e.g., Moran’s I) would fall
into this category as well. The terms ‘metrics’ and ‘indices’
are used interchangeably.

A Brief History of Trends and Development

Development of landscape metrics was occurring long before
landscape ecology officially coalesced as a field of study in
North America. Citing Aldo Leopold’s law of interspersion
[36], Patton [37] developed what is widely recognized as
one of the first landscape metrics: a diversity index to quantify
‘edge’. Patton’s efforts sparked further index development
throughout the 1980s [38–40], and in 1988, O’Neill et al. [5]
published their seminal paper “Indices of landscape pattern”,
which developed three new metrics based on information the-
ory and fractal geometry. This paper remains the top-cited
article published in the journal Landscape Ecology.
Subsequent efforts improved and refined the existing suite of
metrics to better capture heterogeneity through new measures
of fragmentation [41], aggregation [42], and connectivity (see
[43] for a review), as well as specific measures for intersper-
sion and juxtaposition [44], and patch cohesion [45], among
others. Today, the development of new and improved metrics
remains a productive stream of research that shows few signs
of abating [13, 20].

Persistent efforts to develop new metrics derive, at least in
part, from the tailoring of early metrics to specific applica-
tions, which limited the array of metrics originally offered
[44]. Despite O’Neill et al.’s [5] central argument that a small
set of metrics is adequate to capture significant aspects of
landscape pattern, researchers continued to generate new met-
rics. The growing number of available indices created new
challenges for landscape ecologists in the form of correlation
and redundancy. Researchers responded by focusing investi-
gations on selecting parsimonious sets of metrics using
established methods such as factor analysis [46], classification
trees [8], and principal components analysis (PCA) [47, 48].
Advances in this realm have led to increased sensitivity anal-
yses in recent years to improve landscape metric selection
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[49–51] and identify consistent patterns across both spatial
scale and time [52, 53]. Related research has focused on fos-
tering consistency across studies through shared databases
[54] and identifying core sets of metrics for applications such
as biodiversity [55, 56].

As focus was expanding from how to best measure land-
scape patterns to explicit examination of the metrics them-
selves, researchers began recognizing that the data used to
compute landscape metrics (e.g., land cover maps derived
from remotely sensed imagery) were not always accurate. In
2002, Wu and Hobbs ([10], 355) listed “data acquisition and
accuracy assessment” among the top ten research priorities in
landscape ecology, prompting theoretical discussions sur-
rounding the proper use (and misuse) of landscape metrics
[12]. Similarly, Iverson [57] stressed that adequate data with
known accuracy were critical for advancing landscape ecolo-
gy. In response, investigations into the impacts of mapping
error on landscape metrics grew, with studies specifically ex-
amining how the errors inherent in land cover classifications
are propagated into landscape pattern analyses [58–61].
Perhaps most importantly though, these discussions sparked
broader recognition that landscape metric behavior can
change according to data quality, classification error, and
scale, including both grain and study area extent. The lack
of foundational understanding of the behavior of landscape
metrics and their interwoven relationships with the
abovementioned factors complicates their contribution to the
central question of how landscape structure impacts ecological
processes [62, 63]. Thus, linking landscape metrics with eco-
logical processes was outlined as a key research priority for
landscape ecologists nearly 15 years ago [10] and remains an
essential focus of current and future research [64, 65].

Some Limitations of Conventional Landscape
Metrics

Landscape ecology was codified under the assumption that
spatial patterns influence ecological processes [27], and land-
scape metrics were quickly adopted as the primary vehicle for
elucidating these relationships [6, 66]. Kupfer [3] recently
observed though that widespread assumptions that metrics
“capture functional landscape properties is perhaps too uni-
versally accepted, and the ecological relevance of many land-
scape indices is often unproven and questionable.” ([3], 5).
Kupfer [3] is not the first to recognize this drawback as other
researchers have questioned whether landscape metrics are
appropriate for explaining ecological processes [12, 26–28,
67]. In their widely-cited paper ‘Use and misuse of landscape
indices’, Li and Wu [12] point to three contributing factors to
explain why landscape metrics have failed to meet our expec-
tations of improving our understanding of ecological process-
es: (1) conceptual flaws in the analysis such as unwarranted

relationships between pattern and process or ecological irrel-
evance of landscape metrics, (2) the inherent limitations of
metrics such as their variable responses to spatial pattern
changes, and (3) improper application or use of metrics such
as quantifying pattern absent a consideration of the underlying
process. These factors can result in difficulties interpreting
index values and inappropriate inferences, ultimately leading
to ecological irrelevancy.

More recently, researchers have pointed to other reasons
for the uncertainties surrounding the applicability of landscape
metrics: mainly, they typically do not account for the variation
in ecological response variables when used as a proxy for
landscape structure [48, 68, 69•]. Specifically, Uuemaa et al.
[48] found that a large component of the variation of ecolog-
ical response variable(s) is only moderately well-explained
with landscape metrics when using correlation analysis.
Where studies have been successful at uncovering relation-
ships between spatial patterns and ecological processes [66],
the relationships are often not statistically significant and have
limited explanatory power, thus, they may not provide any
real causal understanding of the underlying ecological mech-
anisms [12, 69•].

Selectingmetrics that include a functional component, such
as core area, may help in better linking landscape structure and
ecological function [3]. Functional metrics explicitly measure
how the landscape functions for a particular organism or phe-
nomenon under investigation, and studies have had success
using this approach [70]. However, functional metrics require
additional, organism-specific information that is not always
easy to obtain. Syrbe and Walz [71] assessed landscape func-
tionality in terms of ecosystem services using metrics but cau-
tion that landscape metrics should only be used in situations
where the ecosystem service in question has a strong structural
component. By determining the underlying processes of each
ecosystem service, a decision can be made regarding whether
or not an appropriate structural metric exists that is appropriate
for linking pattern and process.

Complications associated with extracting meaningful, real-
world explanations of ecological processes from landscape
metrics are, in part, due to the underlying nature of the
PMM. The development, use, and application of metrics has
rested almost entirely on conceptualizing the landscape as a
mosaic of discrete patches, and there has been near-uniformity
in adoption of this model across landscape ecology [35].
Indeed, common usage of the term “landscape metrics” has
come to refer exclusively to indices computed for categorical
map patterns [48]. Aggregating data into areal units is neces-
sary to represent real-world phenomena, but the process can
introduce statistical biases known as the modifiable areal unit
problem [72], or MAUP. Problems stemming from these
biases are familiar across the sciences for their role in contrib-
uting to ecological fallacies, and the PMM is fraught with
MAUP biases. First, the pixel-based classifications on which
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patch-mosaics are often built collapse intra-pixel heterogene-
ity into a single, areal unit. Second, when maps are aggregated
to coarser resolutions, often through majority rules aggrega-
tion, the already-collapsed heterogeneity in single pixels is
collapsed even further into larger pixels. While the PMM is
lauded for its conceptual simplicity and the ease with which
categorical land cover maps can be analyzed using conven-
tional landscape metrics, it presents a very limited view of
underlying reality [69•]. Metrics and indices built and applied
on this foundation may be inconsistent with ecological theory
since they ignore the continuous gradient nature of environ-
ments [29]. Consequently, they may inhibit our ability to de-
rive universal insights into pattern-process relationships [69•].
Overcoming the loss of heterogeneity that occurs during ag-
gregation of pixel-based land cover maps requires alternative
solutions and leveraging of cross-disciplinary strengths.

Alternative Approaches

To better link landscape pattern and function, researchers use
graph theoretical approaches including networks and circuitry
[3]. Graph-based approaches represent the landscape using
nodes (i.e., patches) connected through edges that join togeth-
er pairs of nodes according to their functionality (e.g., dispers-
al routes) [73]. While the unit of analysis for graph-based
approaches is still discrete patches, nodes can incorporate both
qualitative and quantitative information, and edges can incor-
porate weights or directions, allowing graphs to better repre-
sent the relationships between landscape structure and func-
tion [74]. For example, Ferrari et al. [75] show how peaks in
graph diameter, which represent the distance an organism
would have to traverse to cross the largest inter-patch cluster,
can be used to predict ecological thresholds for management
of functional fragmentation.

The incorporation of graph-based methods opens land-
scape ecology to conceptual approaches emerging elsewhere
within the geographical sciences. For instance, in regional
studies and economic geography, non-geographic conceptual-
izations of ‘distance’ such as social network characteristics or
technological similarity are often used to define graph edges
[76, 77]. Landscape ecologists may profit from capturing
functional landscape connectivity in similar, non-Euclidean/
non-geodesic manners. A graph-based landscape could
weight edges between patch nodes by, for example, genetic
similarities of the particular species under investigation, spe-
cies richness and abundance measures, variations in manage-
ment practices, or multi-dimensional composites of these and
other ecologically relevant factors.

Since graph theory has enjoyed a long history of explora-
tion and development, there are numerous tools and algo-
rithms available, many of which have been developed into
software programs specifically suited for landscape analyses

(e.g., Conefor Sensinode [78] and LANDGRAPHS [79]). The
ease and availability of software has led to a myriad of global
and local graph-based network indices for landscape ecolo-
gists (see [80] for a review). However, these network indices
suffer from similar redundancy and correlation issues as
patch-mosaic landscape metrics, but, following examples
from the patch-mosaic realm (e.g., [46, 47]), recent work
[80] has begun to weigh in on their parsimonious selection.
Also, while graph approaches may better capture landscape
functionality through measures of node connectivity and cen-
trality [3], and there is increasing use and acceptance of graph
theoretical approaches in landscape ecology [81], it is impor-
tant to remember that graphs are constrained by how nodes
and links are defined [82, 83]. Zetterberg et al. [84] provide
one framework for operationalizing graph theory for land-
scape ecological investigations, but many basic research ques-
tions in this area remain far from settled.

Moving beyond the PMM, gradient approaches have been
promoted in ecology since Gleason [85] questioned whether
categorical vegetation typologies were consistent with real
world heterogeneity. Gradients have been proposed and de-
bated as an alternative way of conceptualizing and
representing landscape structure for decades [29–34]. In
2002, whenWu and Hobbs ([10], 355) advised “relating land-
scape metrics to ecological processes” as a key research agen-
da item for landscape ecology, they prudently accompanied
this challenge with advice for landscape ecologists to “go
beyond” patch-based landscape metrics and incorporate other
forms of heterogeneity. Researchers responded by developing
representations of the landscape where pixels are not confined
to a single land cover class but instead take on ratio values
representing the proportion of a land cover (or other variable)
present in a pixel (Fig. 1). These gradient datasets capture and
represent more of the heterogeneity present in real-world land-
scapes compared to patch-mosaic models [35, 86] and can be
derived from categorical maps by statistically combining data
(i.e., through moving windows). They can also be created
directly from remote sensing imagery through spectral
unmixing [18, 87] or computation of vegetation indices such
as the normalized difference vegetation index [29, 88].

A dilemma (or opportunity, depending on perspective) for
landscape ecologists is that gradient surfaces do not have dis-
crete boundaries and therefore cannot be analyzed using con-
ventional landscape metrics and software packages [87]. A
new form of metrics—surface metrics—has been introduced
for landscape ecologists to quantify heterogeneity of continu-
ous gradient surfaces [35]. Surface metrics are founded on
methods for quantifying three-dimensional surfaces from mi-
croscopy and molecular physics [89], and have recently been
adapted for landscape analyses [35, 90]. They may hold po-
tential for advancing landscape ecological theory by overcom-
ing the inconsistencies that exist between real-world land-
scapes and the patch-mosaic model (see Fig. 1) and

66 Curr Landscape Ecol Rep (2017) 2:63–72



transforming how we conceptualize, quantify, and analyze the
relationships between heterogeneity and ecological processes.
Surface metrics have been applied in several ecological con-
texts [91–93], but, as with other methods discussed in this
paper, their use is not without limitations.

Surface metrics were developed in mechanical engineering
and manufacturing to identify ideal bearing surfaces, defined as
being “smoothwith relatively deep scratches to hold and distrib-
ute lubricant” ([94], 1).This conceptdoesnot translate flawlessly
into ecology, and interpretation of surface metrics is not always
intuitive from a landscape perspective. Additionally, many sur-
facemetrics relyon theAbbott-FirestoneBearingAreaCurve, so
there are similar correlation and redundancy issues as with con-
ventional landscape metrics and graph approaches. Widespread
adoption of surface metrics has been hindered by limited access
to software (although surface metrics are anticipated in a forth-
coming version of FRAGSTATS [9]), which has further slowed
theory development, methodological refinement, and empirical
validation. Yet, it is important to remember that conventional
landscape metrics have benefitted from more than 30 years of
research and development, and alternative approaches will re-
quire comparable levels of attention and maturation if they are
to have similar impacts on the field.

In summary, there are many approaches for quantifying spa-
tial patterns in landscapes, and there is no “one fits all” solution.
All three of the approaches discussed (conventional landscape
metrics, graph theoretical methods, and surface metrics) suffer
fromcorrelationand redundancy issues.Likemanyother aspects
of ecology, the linkages between pattern and process within all
three approaches also depend on the scale of the data (both grain
and extent) [95], the unit of analysis (i.e., how patches are de-
fined) (e.g., [96]), and the relevancy of these data with respect to
the problem being considered. Often, the data used in landscape

ecological investigations are acquired via satellite imagery or
other means that reflect anthropogenic views of the landscape
and thusmaynot be appropriate formanyecological phenomena
[8]. Thus, the goal for landscape ecologists is to find the correct
approach for investigating the issueathand,whichmay includea
combinationofmethods.Studieshavecombinedgraphnetworks
with patch-based landscape conceptualizations to analyze forest
connectivity [78, 97], but integrated approaches using gradient
landscapes are still developing. Alternatively, by segmenting a
gradient surface at various thresholds (e.g., [88]), it is possible to
define non-uniform, heterogeneous patches of a land cover.
These patches can be assigned node weights in a graph model
based on their composition, and edge weights can be assigned
according to Euclidean distance, geodesic distance, or any of the
alternate proximity measures discussed previously. Such blend-
ed approaches simultaneously capture structural characteristics
of the total landscape while also representing important habitat
relationships of ecological relevance.

Future Directions

Despite the numerous contributions that advances in spatial pat-
tern analysis have made to landscape ecology and related fields,
overcomingMAUP biases rooted in heterogeneity and scale re-
mains a central challenge.Without the interrelated effects of het-
erogeneity and scale, landscapes would be uniform, thus negat-
ing theneed for spatialpatternanalyses.However, landscapesare
spatially heterogeneous, and any inferences about an ecological
system through either conventional, patch-based landscapemet-
rics, graphnetwork approaches, or surfacemetrics aredependent
on thatheterogeneityand its relationshipwith thescale (i.e.,grain
and/or extent) of the investigation [98]. For this reason,

Fig. 1 Comparison of a a high resolution aerial photo with b a patch-
mosaic model of land cover and c a gradient surface model of tree canopy
cover for a forested landscape. Data sources: a National Agricultural

Imagery Program, b National Land Cover Database, c Tree Canopy
Cover product. Both b and c produced by the Multi-Resolution Land
Characteristics Consortium (MRLC)
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multiscale investigations are common throughout landscape
ecology where general allometric equations are often applied to
plots of metric values against spatial scale, including both grain
and study area extent [99]. Researchers have begun testing
whether observed landscape patterns across scales are simply
manifestations of the basic scale-dependency of metrics, or
whether there may be intrinsic characteristics of the landscape
patterns being captured [15, 100, 101•]. Using such approaches,

studies have revealed consistent and robust scaling relationships
for certain spatial patternmetrics across both resolution or extent
(see [102] for a review). However, multiscale investigations of
spatial pattern metrics have only begun to advance past describ-
ing the variations of different landscapemetricswith scale [103].

Spatial allometry provides a valuable empirical method for
not only summarizing observations across scales but also ex-
trapolating patterns to predict measurements at unsampled

Fig. 2 Aggregated data for a a patch-mosaic land cover model with a
category for forest (dark green pixels) and b a gradient surface model of
the same area showing percent canopy cover (high percentages in darker
green). Associated graphs show the similarities and dissimilarities of the

scaling functions for analogous metrics in the patch and surface paradigm
for the forest class and percent canopy cover, respectively: c patch density
and its gradient analog d peak density, and e perimeter-area fractal
dimension and its gradient analog f surface fractal dimension
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scales [99, 104, 105]. Successful extrapolation would enable
spatial pattern metrics to be generated at scales matching the
intrinsic scale of the underlying ecological process even if data
sources are not directly available at that scale [7, 106].
Researchers have tested the power of conventional landscape
metric scaling functions to predict metrics at finer grain sizes
through a variety of downscaling methods [17, 18, 106–109].
However, the general consensus has been that prediction pow-
er is poor, with the loss of heterogeneity during grain size
transformation (e.g., majority rules aggregation) cited as a
major factor inhibiting progress [18, 91]. As such, researchers
have struggled to operationalize the information in scaling
functions for meaningful exploration of cross-scale issues.

Capturing additional heterogeneity through gradient surfaces
may allow researchers to better extrapolate spatial allometric
equations to make accurate predictions of spatial patterns across
grain sizes/resolutions. The ratio data in surfaces can be statisti-
cally transformed using, for example, mean values instead of
majority rules so less information is lost during aggregation.
Surface metrics have also been found to exhibit consistent and
robust scaling relationships across resolutions, much like their
patch-mosaic counterparts, but with improvements in downscal-
ing accuracy [91]. Generating accurate representations of the
landscape at each scale translates into scaling functions that are
more precise and can thus be extrapolated for prediction. One
promisingavenue for improvingextrapolation is toconsider local
scaling relationships across scale domains, which are portions of
the scale spectruminwhichpattern-process relationships are con-
sistent [98]. Scaling functions fit across domain transitions may
better capture how changes in heterogeneity impact spatial pat-
terns. However, additional research is needed into the scaling
relationships of surfacemetrics across different spatial extents.

Regardless of the data model (i.e., PMMorGSM), researchers
must still determine whether observed relationships are capturing
the characteristics of the landscape patterns or are simplymanifes-
tationsof thebasicscale-dependencyof themetrics themselves[15,
100, 101•]. To illustrate this point, two sets of patch-based land-
scapemetrics and their analogous gradient surfacemetrics [35] are
plotted against map resolution (Fig. 2). Patch density (PD) mea-
sures the number of patches per area (Fig. 2c) for patch-mosaic
landscapeswhile peakdensity (Sds) is ananalogous surfacemetric
that measures the number of local peaks per area (Fig. 2d). As
resolutionchanges, these twometricsshowalmost identical scaling
functions across the two paradigms, even though they were com-
putedusingdifferentdatasets.Conversely, thegraphsforperimeter-
area fractal dimension (PAFRAC), whichmeasures fractal dimen-
sion for patch-mosaics (Fig. 2e), and its analog in the surface para-
digm, surface fractal dimension (Sfd) (Fig. 2f), showdifferent scal-
ing relationships (power law versus linear). At present, we remain
uncertainwhether thesedifferences in relationship correspondence
between the scaling relationship of analagousmetrics are simply a
manifestationof scaledependenciesof themetrics or differences in
how surface and patch metrics capture landscape structure. More

research is needed to understand how re-scaling data introduces
systematic biases into scaling relationships and howwemight dif-
ferentiate those relationships driven solely by scale dependencies
versus those that are driven by landscape structure. Tools that are
applicableacrossecoregionsandlandcover typeswillhelpcontrib-
ute to landscape ecological investigations as well as theoretical
developments for understanding and overcomingMAUP.

In summary, heterogeneity and scale are central to the analysis
of landscapepatternsyet continue toconfoundourunderstanding
of pattern-process relationships in landscape ecology due to
MAUP biases. Untangling the interdependencies of heterogene-
ity and scale remain a great research challenge for the future,
because these interdependencies can lead a researcher to misat-
tribute the effects of landscape pattern characteristics to artifacts
from themetrics, and vice versa. Consideration of scale and scal-
ing can assist landscape ecologists tasked with finding the best
approach for investigating the ecological issue at hand.

Conclusions

Landscape metrics have provided a backbone for spatial pattern
analysis in landscape ecology for more than three decades during
which they have fostered unprecedented developments in ecolog-
ical theoryandpractice.Concomitantwith theseaccomplishments,
landscape metrics have sometimes been scrutinized for several
shortcomings related to their utility for understanding ecological
processes including the MAUP biases associated with the patch-
mosaicmodel,whichcollapses spatial heterogeneity—the founda-
tion of landscape ecology—into discrete units and thus presents a
very limited view of the underlying reality. We presented several
alternativemethods for capturing landscape functionality and spa-
tial heterogeneity including graph-based networks and gradient
surfacemodels alongwith associated surfacemetrics while recog-
nizing that the goal for landscape ecologists is to select the correct
approach,or combinationofapproaches, for investigating the issue
at hand. Moving forward, multiscale investigations across patch-
mosaic, gradient, andgraphnetworkmodelscanadvancepast sim-
ply describing variations of metrics with scale and move toward
exploiting scaling relationships for identifying pattern-process
relationships.
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