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Abstract Determining the distribution pattern of a species
is important to increase scientific knowledge, inform man-
agement decisions, and conserve biodiversity. To infer
spatial and temporal patterns, species distribution mod-
els have been developed for use with many sampling
designs and types of data. Recently, it has been shown
that count, presence-absence, and presence-only data can
be conceptualized as arising from a point process distribu-
tion. Therefore, it is important to understand properties of
the point process distribution. We examine how the hier-
archical species distribution modeling framework has been
used to incorporate a wide array of regression and theory-
based components while accounting for the data collection
process and making use of auxiliary information. The hier-
archical modeling framework allows us to demonstrate how
several commonly used species distribution models can be
derived from the point process distribution, highlight areas
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of potential overlap between different models, and suggest
areas where further research is needed.
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Introduction

Mapping the world’s biodiversity is a challenging respon-
sibility. It is even more challenging to reliably predict how
species’ distributions will change due to threats such as
climate change and habitat destruction [25, 26, 93]. To
accomplish these important tasks, biogeographers, ecolo-
gists, statisticians, and the machine learning community
have worked to create models that predict species’ distribu-
tions and facilitate inference such as the habitat character-
istics that individuals of a species prefer. The goal of this
review is to present a unified view of many commonly used
species distribution models. To accomplish this goal, we
review the common types of data used to model species’ dis-
tributions. We then discuss a unified spatio-temporal point
process model for count, presence-absence, and presence-
only data that has been developed within a hierarchical
framework in several studies [11, 23, 31, 62]. The hierar-
chical modeling framework provides a way to incorporate
important components of the data collection process (e.g.,
detection) and ecological processes (e.g., spread of an inva-
sive species). By adding these components, the hierarchical
framework allows for unification of many existing mod-
els and numerous extensions, including a wide variety of
regression and theory-based models as well as explicit
models of the data collection process.
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Data Types

There are three types of data commonly used for species dis-
tribution modeling: count, presence-absence, and presence-
only. Although each type of data may seem distinct, we
show in the next section that many types of data can be
thought of as arising from a spatio-temporal point process
(Fig. 1).

Count Data

Count data are generally collected using systematic sur-
veys. Two systematic survey types that are used to generate
count data are point counts and quadrat counts. Point counts
involve at least one observer visiting a preselected point
and recording the number of individuals they see during a
prescribed time interval (e.g., Breeding Bird Survey data).
Quadrat counts involve searching an area of known dimen-
sions and recording the number of individuals found during
a fixed period of time.

Presence-Absence Data

Presence-absence data can be count data that have been col-
lapsed to binary responses where a one indicates that at least

one individual was present and a zero indicates absence or
non-detection. Presence-absence data can also be collected
using the same protocol as point counts and quadrat counts,
but the survey is terminated when at least one individual has
been observed.

Presence-Only Data

Unlike count and presence-absence data, which are usu-
ally collected at locations and time periods selected using a
sampling design, presence-only data are typically collected
opportunistically. Data sources and collation protocols can
vary widely, but common sources include museum speci-
mens and citizen contributed sightings of a species [7, 27,
46]. Typically presence-only data are reported as the loca-
tion and time that an individual of a species was observed
or collected. Another data collection process that gives rise
to presence-only data is recording multiple locations of
the same individual (e.g., telemetry data; [60]). For exam-
ple, telemetry data is usually recorded as a time series of
presence-only locations of an individual. The analysis of
relocation data is often referred to as resource selection, but
important connections between the statistical methods used
for resource selection modeling and species distribution
modeling exist [69, 73, 74].

Fig. 1 Discrete time
inhomogeneous Poisson point
pattern with an intensity (λ(s, t))
that increases at each time step
(panel a; t = 1, 2, 3).
Presence-absence data generated
by aggregating the points into
grid cells (panel b; u = 0 are
white cells and u = 1 are green
cells). Count data generated by
aggregating points into grid cells
and counting the total number of
points in each cell (panel c)
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Distribution Theory

An individual of a species exists as a point in space at
any given time (Fig. 1a). A statistical model describing
the pattern created by points in space and time is the
space-time Poisson point process distribution [16, 20]. The
log-likelihood for a space-time Poisson point process is

l(λ;U) =
n∑

i=1

logλ(si , ti )−
∫

A

T∫

0

λ(s, t)dtds− log(n!) , (1)

where the matrix U is a n × 3 matrix with rows that contain
the location si in two-dimensional space and time ti of the
ith point (i = 1, ..., n), A is the two-dimensional study area,
and the time period of observation is [0, T ]. The intensity
function λ(s, t) will depend on parameters and describes
how the expected abundance (for an infinitely small region)
changes within the study area and time period of observa-
tion. In words, Eq. 1 describes points that occur over a study
area (A) and time interval [0, T ] (Fig. 1a). The rate at which
these points occur at any given location s and point in time
t is governed by the intensity function λ(s, t).

An important quantity derived from the point process
model is the integrated intensity function

λ̄ =
∫

B

t2∫

t1

λ(s, t)dtds , (2)

where B is an area of interest within the study area A (i.e.,
B ⊆ A ) over the time interval t1 to t2 (0 ≤ t1 < t2 ≤ T ;
hereafter B, t1, and t2 are termed the space-time volume of
interest). An important result is that the number of points (u)
within the space-time volume of interest follows a Poisson
distribution

u ∼ Poisson
(
λ̄
)
, (3)

that depends on the integrated intensity function. Another
important derived quantity is the probability that the space-
time volume of interest has at least one point in it. This
probability can be calculated as P(u > 0) = 1 − e−λ̄. It
follows that the presence or absence of a species within the
space-time volume of interest is distributed as

I (u > 0) ∼ Bernoulli(1 − e−λ̄) , (4)

where the indicator function I (u > 0) takes on a value of
one if the volume has one or more points in it and zero
otherwise.

The space-time Poisson point process distribution nat-
urally describes presence-only data when recorded as the
location and time an individual was observed or collected.
As a result, variants of the Poisson point process model are
popular for modeling species’ distributions using presence-
only data [83, 99]. By specifying an area (B) and time

interval [t1, t2] of interest, the space-time Poisson point
process distribution can be linked to count and presence-
absence data, which can be interpreted as points aggregated
over a spatial and temporal extent ([1]; Fig. 1b & c). For
example, B, t1, and t2 could represent a circle of a 100 m
radius with an observer at the center counting the number
of Bobwhite Quail (Colinus virginianus) seen within a 10
minute time interval. In this example, aggregation would
occur when the observer records the count instead of the
exact location and time that each Bobwhite was present.
As another example, B, t1, and t2 could represent a 1 m2

plot where the presence or absence of cheat grass (Bromus
tectorum) is observed within a year. Regardless of whether
the recorded data are counts, presence-absence, or presence-
only, conceptualizing the data as a space-time Poisson point
process is advantageous for the following reasons: 1) under-
standing the effects of spatial or temporal data aggregation
(Fig. 1; 2) understanding and modeling the data collection
process; and 3) preserving the ability to model continuous
spatio-temporal dynamics.

Hierarchical Modeling Framework

Regardless of the type of data, in most studies, the quantity
of interest is derived from the space-time intensity function
λ(s, t). As we mentioned, λ(s, t) depends on parameters.
For example, the intensity function is often formulated such
that

log(λ(s, t)) = x(s, t)′β , (5)

where x(s, t) is a p × 1 vector that contains covariates at
any given location and time within the study area and β is
a p × 1 vector of regression coefficients. Readers famil-
iar with generalized linear models may recognize Eq. 5 as
a linear predictor with a log link function (similar to that
used with Poisson regression for count data). In fact, there
are many important connections between certain general-
ized linear models (e.g., Poisson and logistic regression)
and the Poisson point process model [1, 3, 32, 99]. Simi-
lar to the generalized linear modeling framework for count
and binary data, Eqs. 1 and 5 specify a flexible model that
can be used to describe how the response variable (e.g., a
point pattern) changes over space and time due to covariates.
The important connection is that count and binary data are
aggregated point patterns that can be modeled using logistic
or Poisson regression (Fig. 1), but interpreted as a discrete
approximation to the space-time Poisson point process [1].

By placing the space-time Poisson point process model
within a hierarchical modeling framework, the model can be
made even more flexible. For example, a hierarchical mod-
eling framework provides a way to incorporate important
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components of both data collection and ecological pro-
cesses. The framework we present originates from [8], but
introductions can be found in [15, 16], and [51]. Following
[35] , we use the bracket notation to represent conditional
probability density functions and write the hierarchical
species distribution model as

g(Y) ∼ [g(Y)|U, θ ] , (6)

U ∼ [U|λ(s, t)] , (7)

λ(s, t) ∼ [λ(s, t)|β] , (8)

where Eq. 6 is called the data model and is a probabil-
ity density function (or some transformation g(·) thereof)
that describes the observed point level data Y given the
underlying spatio-temporal point pattern U parameters θ .
The observed point level data Y may be aggregated to
create binary or count data by transforming Y with a deter-
ministic function g(·). Equation 7 is called the sampling
model, which is the space-time Poisson point process dis-
tribution from Eq. 1 that is conditional on the intensity

function λ(s, t). Finally, the distribution of λ(s, t) is called
the process model and depends on the parameter vector β

(Eq. 8). In Fig. 2, we show visual examples of Eqs. 6–8
with a directed acyclic graph (also called a Bayesian net-
work) that can be used to understand and represent the
hierarchical species distribution model [51]. In the follow-
ing sections, we focus on each level of the hierarchical
model and conclude with comments on implementation.

Process Model

The process model (Eq. 8) can take a wide range of forms
depending on the goals of the study. For example, the pro-
cess model may have a relatively simple form such as a
log-linear model that includes covariates x(s, t) (e.g., Eq. 5)
or it may be a dynamic model such as a partial differen-
tial equation. There are three common classes of process
models used to determine the distribution of a species: para-
metric regression, semiparametric regression, and dynamic
spatio-temporal models.
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Fig. 2 Example aggregated data, observed point data, true point data,
and processes (left figures) that can be used with the directed acyclic
graph (right; arrow diagram) to visualize and represent a hierarchical
species distribution model. Point pattern data Y at three time steps that
are observed with error when compared to the underlying true point
pattern U. The point pattern data Y might be aggregated by a transfor-
mation g(·) during the data collection process (e.g., points represented
as count or presence-absence in grid cells). The true point pattern (U)
depends on the spatio-temporal intensity function λ(s, t) which was

generated using a spatio-temporal diffusion process. The data Yt were
observed with location error where the gray points are the true loca-
tions and black + signs are the recorded locations. The data Yt+1 were
observed from biased sampling efforts that resulted in the blacked out
areas not being sampled. The data Yt+2 resulted from non-detection
of Ut+2 which is represented by the difficulty of observing points in
the shaded region. Note, in the directed acyclic graph, the solid lines
show stochastic relationships and the dashed lines show deterministic
relationships
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Parametric Regression

The goal of parametric regression is to formulate a link
between abundance of a species and covariates. This is typi-
cally accomplished using a model of the form log(λ(s, t)) =
x(s, t)′β, where the log function links the known spatial
covariates and unknown regression parameters β to the
underlying intensity λ(s, t). Similar to generalized linear
models, the strength of the parametric regression model is
that it is simple to implement and easy to interpret.

Semiparametric Regression

As a generalization of parametric regression, semiparamet-
ric regression also links the underlying intensity λ(s, t)
to some number of covariates x(s, t). The difference is
that semiparametric regression involves functions of the
covariates that allow the model to capture nonlinear effects
(e.g., polynomial regression). In most situations, semi-
parametric regression is implemented using basis func-
tions [47]. Many of the statistical and machine learning
methods used for species distribution modeling rely on
basis functions. For example, generalized additive mod-
els are used to model species’ distributions and employ
various basis functions to model the smooth effect of a
covariate [39, 44]. Other commonly used methods that
rely on basis functions include regression trees [29, 44],
some maximum entropy methods (e.g., MAXENT; [30]),
and latent Gaussian process models [12, 21, 37, 53, 59,
67]. One advantage of semiparametric regression is that
smooth effects of the spatial location or time period can
be used to account for spatial or temporal autocorrelation
[47].

Dynamic Process Models

Many ecological theories have generated hypotheses about
why the abundance of a species varies across space and
through time [52]. However, the linkages between species
distribution modeling approaches based on regression or
semiparametric regression models and ecological theory are
weak [24, 28, 40]. Dynamic spatio-temporal models can be
used within the hierarchical framework to link theoretical
models to data when modeling the distribution of a species.
For example, species distribution models are commonly
used to understand and predict the spread of an invasive
species. A simple partial differential equation that describes
the spread (ecological diffusion) and logistic growth of a
population is

∂λ(s, t)
∂t

=
(

∂2

∂s2
1

+ ∂2

∂s2
2

)
δ(s, t) + r

(
1 − λ(s, t)

k

)
, (9)

where s1 and s2 are elements of the spatial coordinate s
and δ(s, t) is the diffusion coefficient (or motility coeffi-
cient) that controls the rate of spread and is inversely related
to residence time [34]. The parameters r and k are analo-
gous to the growth rate and equilibrium population size in
the traditional logistic growth model when expressed as a
ordinary differential equation. Various implementations of
this approach have been used to model the invasion and
spread of Eurasian Collared-Doves (Streptopelia decaocto),
House Finches (Carpodacus mexicanus), Common Mynas
(Acridotheres tristis), and mountain pine beetles (Dendroc-
tonus ponderosae) [9, 55, 82, 101, 104]. Partial differential
equation models are well developed for many ecological
processes and are easy to modify to match the goals of a
study [52]; any of the parameters in Eq. 9 could depend
on covariates x(s, t) (e.g., δ(s, t) = x(s, t)

′
β). For exam-

ple, [54] allowed the diffusion coefficient δ(s, t) to depend
on human population density and showed that diffusion
of Eurasian Collared-Doves might be negatively associated
with human population density.

Dynamic statistical models enable scientific inference
that can not be obtained when using parametric or semi-
parametric regression [102]. The dynamical approach to
statistical modeling has been present in the ecological lit-
erature for quite some time [101] and has been used in
many areas of environmental research [16], but has not been
widely used for species distribution modeling.

Sampling Models

The sampling model (Eq. 7) is a probability density func-
tion that describes the data that would be observed if the
data could be recorded perfectly. For the space-time Pois-
son point process model, the matrix U (where each row is
the exact location and time that an individual was present)
contains the data that would have been recorded if there
were no errors in observation or aggregation of the data
(Fig. 2). For most contemporary analyses of presence-only
data, the Poisson point process is the sampling model that
has been used and advocated as the preferred method by
many authors [1, 43, 83, 84, 98, 99]. Typically, count data
and presence-absence data are treated differently due to the
aggregation that occurs during the data collection process
(Fig. 1; [1]). Given the space-time Poisson point process,
the aggregate (over space and time) of U is u, a m × 1 vec-
tor that contains the true count or presence-absence for m

discrete sample units during some time interval (Fig. 1b &
c). Associated with each element of u is the location of the
discrete sampling unit and the time period it was sampled.
As shown in the distribution theory section, aggregation of a
spatio-temporal Poisson point process results in Poisson or
Bernoulli distribution for u. The interpretation when using



92 Curr Landscape Ecol Rep (2016) 1:87–97

Poisson or Bernoulli sampling models can be linked to the
Poisson point process via the integrated intensity function
(Eq. 2).

Data Models

In almost all studies, the underlying spatio-temporal point
pattern U (or some aggregate u) is not observed perfectly
(e.g., [5, 61, 65, 66, 77]; Fig. 2). The hierarchical mod-
eling framework provides a natural way to incorporate
uncertainty in observations. This is accomplished via the
data model (Eq. 6) which is a conditional distribution that
describes the observed data Y (or some aggregate g(Y) ≡ y)
given the true underlying point pattern U (Fig. 2). For most
species distribution modeling efforts, determining which
data model is appropriate can be the greatest challenge to
obtaining reliable predictions and inference. Next, we high-
light common data models for count, presence-absence, and
presence-only data.

Data Models for Counts

Count data generally suffer from two types of observer
error. Within an area of interest B, over the time period t1 to
t2, the true number of individuals present is u. The observed
count y can contain individuals that were counted multiple
times, not detected, or both. The most common data model
assumes that the only observation error is non-detection.
With a Poisson sampling model, this approach is called the
N-mixture model [85]

y|u,p ∼
{

Binomial(u, p) , u > 0
0 , u = 0

, (10)

where y is the observed count, u is the unknown true num-
ber of individuals, and p is the probability of detection.
There are many variations of the N-mixture model, but most
implementations require repeated sampling over multiple
time periods during which the true number of individuals
present (u) within the area (B) and time period ([t1, t2]) of
interest can be assumed to be constant. The implication of
this assumption is that the underlying point pattern must be
static over the multiple sampling intervals to ensure that u

is constant. There are alternative models that require only a
single sample [17, 50, 90], but such models require stronger
assumptions or structure in the process model and are a
current topic of debate [63, 64, 91].

Data Models for Presence-Absence

Presence-absence data generally suffer from similar obser-
vation errors as count data, but these errors are termed

false-positive and false-negatives (non-detection). Data
models for false negatives are the most widely used (e.g.,
[71, 95]). A commonly used form of the data model for
false-negatives is

y|u,p ∼
{

Bernoulli(p) , u > 0
0 , u = 0

(11)

where y is the observed presence or absence, u is the
unknown true number of individuals, and p is the prob-
ability that at least one individual is detected. As with
the N-mixture model, Eq. 11 requires repeated sampling
over multiple time periods during which the occupancy is
constant (i.e., u > 0 or u = 0 must remain constant).
Numerous variations of Eq. 11 have been used to account
for false-negatives that make less restrictive assumptions
(e.g., data from single-site visits [18, 70]). Recently there
have been controlled experiments to assess the performance
of these data models when basic assumptions are not met
(e.g., the assumption that no false positives occur [75]).
Also, data models have been recently developed to deal with
false-positives [2, 13, 87, 88] and species misidentification
[76]. Although Eq. 11 and variants have been widely used
as data models, there is debate about whether the model
assumptions are met in practice [38, 100].

Data Models for Presence-Only

Unlike count and presence-absence data, presence-only data
are almost always collected opportunistically. Determin-
ing what types of observational errors might have occurred
with presence-only data and how these errors can be mod-
eled is an emerging area of research. Three common types
observational errors that we discuss are: sampling bias,
non-detection, and location error (Fig. 2).

As before, let A be the two-dimensional “study area” and
B be an area that was “sampled.” With count and presence-
absence data, we know B as a result of the survey design.
For most designed surveys, there will be multiple areas that
are sampled so that we have B1, ...,Bm non-overlapping
sites. As a result, the entire study area (A) is the union
of the areas that were sampled (A = B1 ∪ · · · ∪ Bm;
note that a similar argument applies to the time interval
[0, T ]). For designed surveys, A is a known spatial domain,
but for presence-only data there is rarely information to
determine A exactly. The space-time Poisson point process
model requires that A is known due to the limits of inte-
gration in Eq. 1. Various ad hoc methods have been used
in an attempt to remedy the fundamental lack of infor-
mation that would otherwise have been obtained from the
survey design. For example, a common technique is to sam-
ple a large number (q) of randomly (or uniformly) located
points where it is assumed that the species was not present
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(often called pseudo-absences). The area where the pseudo-
absences are sampled from (P) generally encompasses the
locations of the observed data. The presence-only data and
pseudo-absences are then treated as presence-absence data.
Alternatively, Warton and Shepherd [99] showed that the
pseudo-absences are a numerical technique for approximat-
ing the integral in Eq. 1, if one assumes that A = P .
Numerous studies have explored the bias from the so-called
pseudo-absence approach for binary data. Given the con-
nection between binary data and the Poisson point process
models (Eq. 4), the results from studies on the pseudo-
absence approach for binary data should also apply to the
Poisson point process model (e.g., [4, 80, 103] and many
others). How the study area A is defined has the potential
to influence both prediction and inference [6, 96]. However,
for most situations the assumption that A = P is diffi-
cult to assess. We are not aware of a data model that can
remedy the problems associated with this form of sampling
bias.

Similar to count and presence-absence data, some indi-
viduals go undetected. As before, let A be the two-
dimensional study area. Now assume that everywhere
within A there is a non-zero probability that a point could
be detected (p(s, t)). In effect, we are assuming that the
entire study area was “sampled,” and that all individuals
could have been detected. This assumption differs from that
in the previous example in that now we are assuming that
A is known, but that not all points within A are detected.
For example, [46] presented data that included citizen con-
tributed sightings of the endangered Whooping Crane (Grus
americana) within the state of Nebraska, USA. For the study
presented in [46], it might be reasonable to assume that A
is the state of Nebraska and that detection was not perfect.
Assume, for a moment, that p(s, t) = 1, ∀ s, t . As a result,
detection of points would be perfect and the observed data
would be U (the n × 3 matrix with rows that contains the
location and time of each sighting; Fig. 2). If detection is not
perfect, then the observed data are Y (the m× 3 matrix with
rows that contains the location and time of each observed
individual where m ≤ n). Non-detection results in a thinned
spatio-temporal Poisson point process model, which has the
following likelihood

l(λ, p;Y)=
m∑

i=1

logλ(si , ti)p(s, t)−
∫

A

T∫

0

λ(s, t)p(s, t)dtds

−log(m!) . (12)

The thinned Poisson point process (Eq. 12) is the same as
Eq. 1, except that the intensity function λ(s, t) has been
multiplied by (or is a convolution with) the probability of
detection p(s, t). To understand the implications of thin-
ning a point process, let B be an area of interest within the

study area A over the time interval [t1, t2] and define the
integrated probability of detection as

p̄ = 1

|B||t2 − t1|
∫

B

t2∫

t1

p(s, t)dtds , (13)

where |B| is the area of B and |t2 − t1| is length of the time
interval of interest. As a result, the true number of individ-
uals within B over the time interval [t1, t2] is u as in Eq. 3,
but the observed number of individuals is distributed

y ∼ Poisson(p̄λ̄) , (14)

where λ̄ is the integrated intensity from Eq. 2. When only
Y (or y) is observed, and without additional information
about λ(s, t) or p(s, t) (or any derived quantities λ̄ and
p̄), it is impossible to simultaneously estimate both quan-
tities. Without a correction for non-detection, parameters
estimated from the process model for λ(s, t) will be biased.
There are special cases when using parametric regression
process models where the bias might not be an issue [22,
49, 98], but it is unlikely that the required assumptions
will be met in practice and are challenging to verify in
most cases [49]. To correct for bias, recent efforts have
paired presence-only data with additional data sources such
as expert knowledge [46] or a smaller number of perfectly
detected presence-absence or count data [23, 31, 33, 36, 42].
Determining what sources of data can be used to correct for
the bias and how to incorporate auxiliary sources of data is
an ongoing area of research.

Another common source of observational error occurs
when the individual is present at a location that is differ-
ent than the recorded location (Fig. 2). For some historical
records, the recorded location may be the nearest road,
town, or other feature on the landscape. For many appli-
cations, this presents a problem because λ(s, t) varies spa-
tially. As a result, the intensity at the recorded locations will
be different than at the true locations. For example, location
error is a problem when λ(s, t) depends on spatial covariates
(e.g., Eq. 5) and the covariates at the recorded location are
different than the covariates at the true location [45]. With
respect to count and presence-absence data arising from a
space-time Poisson point process, an implicit assumption
is that the covariates can be represented by a single point
within the discrete sampling units. Aggregation introduces
location error, and it is important to check whether this
error has a noticeable effect on inference [31]. Development
of data models that account for location error within the
hierarchical modeling framework is needed. Data models
developed for accommodating covariate measurement error
may provide useful extensions to correct for location error
[45, 92].
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Implementation

Hierarchical models can be implemented under a Bayesian
or likelihood paradigm (e.g., [51, 68, 81, 86]). The complex-
ity of the model usually dictates which paradigm is used.
For example, it is common to implement hierarchical mod-
els that use partial differential equation (e.g., Eq. 9) using
Bayesian algorithms such as Markov chain Monte Carlo
(MCMC; [102]) or integrated nested Laplace approximation
[57, 58], whereas, simpler models that use basis functions
might use penalized maximum likelihood [47].

Data models are rarely used in the analysis of presence-
only data (but see [23, 31, 45]). If sampling error is ignored,
the Poisson point process model is relatively straightforward
to implement using maximum likelihood, penalized max-
imum likelihood, or Bayesian estimation (via MCMC or
integrated nested Laplace approximation [57, 58]). Recently
there has been a focus on understanding how generalized
linear models with Poisson or Bernoulli response distribu-
tions can be used to approximate the Poisson point process
model [1, 3, 32, 99]. Most software used to implement
semiparametric regression was developed as an extension
of the generalized linear modeling framework (e.g., gener-
alized additive models). A major benefit of the recent work
on approximating the Poisson point process model is that
widely available software can be used when the data are
assumed to be observed without error [32].

Regardless of the method used, an important task when
implementing the point process model is to approximate
the integral in Eq. 1 [99], which requires spatial covariate
data at all locations within the study area. The quality of
this approximation can be assessed by viewing plots of the
estimated likelihood or parameters against the number of
integration points (e.g., see Fig. 1 in [78], Fig. 2 in [83],
or Appendix S2 in [48]). Also important to implementa-
tion are various computational problems, such as infinite
and boundary estimates, that can also arise for particular
species distribution models and data sets [19, 41, 48, 100].
At present, we are unaware of a comprehensive review of
the various estimation methods for implementing hierarchi-
cal species distribution models. Thus, an awareness of the
variety of options available to implement hierarchical mod-
els is helpful so that the chosen method will best match the
goals of the study.

Conclusion

Hierarchical models are widely used in ecology [14, 15].
In practice, the hierarchical modeling framework has been
particularly useful when implementing process models that
incorporate ecological theory or when modeling the data
collection process (e.g., [54, 55, 101]). The hierarchical

modeling framework has also been useful and widely imple-
mented for count and presence-absence data [72, 86], but
has not been readily used for presence-only data (but see
[23, 31]). Although this review is limited to hierarchical
models for a single species, the hierarchical species dis-
tribution modeling approach can be readily extended to
include multiple, and possibly interacting, species [56, 79,
97]. Given the success for analyzing other types of data,
we believe the hierarchical modeling framework has great
promise for presence-only data.

Although many data models exist for count and presence-
absence data, there are relatively few explicit data models
that have been developed for presence-only data. In many
cases, the data collection process is ignored, which might be
due to the complex and often unknown observation process
associated with opportunistic presence-only data. Oppor-
tunistic data collation may result in very complicated errors
that are difficult to model without auxiliary data or strong
assumptions [22, 23, 31, 45, 46, 49, 94, 98]. The key to
obtaining reliable inference from opportunistic presence-
only data is determining which additional data sources are
needed and available to responsibly model the data collec-
tion process. Recently, the spatio-temporal Poisson point
process model has been used for the analysis of animal
movement data collected using telemetry devices [10, 60,
89]. We anticipate that data models developed for teleme-
try data will have an analogous use for species distribution
models (e.g., [10]). We also anticipate that the methodol-
ogy developed to account for repeated measurements (i.e.,
locations) of the same individual(s) developed for teleme-
try data, will have analogous use for species distribution
models that are use to model count, presence-absence, and
presence-only data that includes multiple observations of
the same individual(s).
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