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Abstract
This study aims to evaluate forecasting properties of classic methodologies (ARCH 
and GARCH models) in comparison with deep learning methodologies (MLP, RNN, 
and LSTM architectures) for predicting Bitcoin’s volatility. As a new asset class with 
unique characteristics, Bitcoin’s high volatility and structural breaks make forecast-
ing challenging. Based on 2753 observations from 08-09-2014 to 01-05-2022, this 
study focuses on Bitcoin logarithmic returns. Results show that deep learning meth-
odologies have advantages in terms of forecast quality, although significant compu-
tational costs are required. Although both MLP and RNN models produce smoother 
forecasts with less fluctuation, they fail to capture large spikes. The LSTM archi-
tecture, on the other hand, reacts strongly to such movements and tries to adjust its 
forecast accordingly. To compare forecasting accuracy at different horizons MAPE, 
MAE metrics are used. Diebold–Mariano tests were conducted to compare the fore-
cast, confirming the superiority of deep learning methodologies. Overall, this study 
suggests that deep learning methodologies could provide a promising tool for fore-
casting Bitcoin returns (and therefore volatility), especially for short-term horizons.
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1  Introduction

Civilization at its present conception would not exist without money. Recent 
advancements in blockchain technology enable the creation of decentralized mon-
etary systems called cryptocurrencies, where most famous one is Bitcoin, which has 
become a new asset class. This new type of asset is becoming part of the global 
financial and economic ecosystem, bringing new and interesting research questions 
that represent investigation opportunities.

Current macro-economic conditions, with the EUR/USD parity in hand with 
worldwide high inflation, make it the right time to question the concepts of money, 
the role of central banks and to better understand what opportunities these alterna-
tive systems can bring to the discussion and, ultimately, whether these new ideas can 
in fact help to improve our societies as whole.

The motivation for this study is to address the need for better understanding 
and forecasting of Bitcoin volatility, as this new asset class becomes increasingly 
relevant in the global financial and economic ecosystem. While traditional econo-
metric models have been used to forecast financial assets volatility, the high volatil-
ity and unusual market patterns of cryptocurrencies present a challenge for these 
techniques. As a result, there is a need for more modern and innovative forecasting 
models that can better capture the nature of these markets. This study compares the 
prediction results of traditional econometric models, such as ARCH and GARCH, 
with machine learning models, specifically neural networks, in predicting Bitcoin 
volatility while doing a review on what might be the causes of this extraordinary 
volatility. In addition, the additional computational costs associated with machine 
learning models are justified by the improved forecasting accuracy. Thereby, a new 
insight into forecasting Bitcoin volatility will be provided and a contribution to the 
current discussion on the role and potential of cryptocurrencies and machine learn-
ing techniques in econometric studies will be made.

Forecasting models are critical decision-making tools for economic agents, inves-
tors, and governments, particularly when predicting financial and economic data 
(Aminian et al., 2006).

Econometric models, such as autoregressive conditional heteroskedasticity 
(ARCH) and generalized autoregressive conditional heteroskedasticity (GARCH) 
models, have been extensively used to model the volatility of financial assets. How-
ever, the high volatility and unusual patterns and behaviors of cryptocurrency mar-
kets make it challenging to apply such models (Franses & Van Dijk, 1996; Pilbeam 
& Langeland, 2015). To address this challenge, some scholars have proposed the 
use of modern techniques, such as machine learning/deep learning, to develop mod-
els that better explain and predict the nature of cryptocurrency markets (Bezerra & 
Albuquerque, 2017; Liu, 2019) and help businesses better understand the risks asso-
ciated with these assets or assist in pricing derivatives. However, most of the time, 
there are no references to the implicit computational cost.
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For example, regarding stock price forecasting, Costa et al. (2019), Lopes et al. 
(2021) and Ramos et al. (2018) report that some Recurrent Neural Networks (RNN) 
models, e.g., Long Short-Term Memory networks—LSTM, can be promising for 
modeling and forecasting time series with structure breaks, or with very irregular 
behavior (such as time series related to financial markets). However, despite the 
good forecasting quality, Lopes et al. (2021) and Ramos et al. (2021) note that these 
neural network architectures have a significant computational cost. Due to the facts 
mentioned by these authors, further reflection is important, combining the predic-
tion power and computational cost of DNN models.

Thus, in addition to comparing methodologies (classical and deep learning), this 
work seeks to bring a scientific contribution in two aspects: (i) a comparative analy-
sis between different deep learning methodologies, seeking to understand any differ-
ences; (ii) a critical analysis of the implicit computational cost (often omitted in sci-
entific papers). These are aspects that have not been much discussed in the literature, 
so this work aims to contribute to the scientific debate on the subject.

The results of our study indicate that machine learning models, specifically neural 
networks, outperform traditional econometric models in forecasting Bitcoin volatil-
ity, especially in short-term horizons. Although requiring significant computational 
costs (specially LSTM models).

This paper is structured as follows: Sect.  2 reviews the relevant literature. The 
forecasting models are defined formally in Sect. 3, as well the data to be used in the 
study (including graphics illustrating the volatility to be forecast). Section 4 outlines 
the methodology employed in the implementation, including the forecasting models, 
statistical tests, and evaluation metrics. Section 5 presents a descriptive and inferen-
tial data analysis, along with visualizations of the forecast obtained by each model 
and accuracy tables. Finally, Sect. 6 concludes the paper and outlines directions for 
future research.

2 � Literature review: bitcoin and volatility

According to the literature, there are conflicting ideas about what may explain the 
extra-ordinary volatility. Hayes (2017) and Garcia et al. (2014) argue that the main 
determinants of the Bitcoin price are production costs (electricity costs), and lower 
electricity prices or reduced mining difficulty will result in negative pressure on the 
Bitcoin price. Yermack (2015) highlights that since the quantity of new bitcoins is 
known with certainty by the public, this provides a clear and transparent understand-
ing of the supply of new bitcoins. Gronwald (2019) states that the limited long-term 
fixed supply of Bitcoin makes it scarce as it is an “exhaustible resource commodity 
such as crude oil and gold” and analyzes demand shocks. Another important feature 
is the programmed supply shocks of the production of Bitcoin (halving’s) that result 
on price volatility as buyers and sellers adjust for an equilibrium price, which how-
ever, will become less important over time (Chaim & Laurini, 2018). Pagnotta and 
Buraschi (2018) model Price-Hash Rate Spirals. Additionally, it is also important to 
mention the high occurrence of settlement cascades due to the unregulated nature of 
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most crypto markets which allows the usage of high leverage and market manipula-
tion, contributing to this problem and increase volatility.

Taleb (2021) disagrees with the cost models discussed above and states that any 
price should be zero, arguing that Bitcoin does not exhibit inflation hedging proper-
ties and has failed as a payment network due to high transaction costs and volatility 
in value.

Volatility plays an important role to measure and access potential risks and by 
getting a better understanding and knowledge of how it can be predicted, may sup-
port decision-making regarding future expectations. Due to cryptocurrencies high 
volatility, classical methodologies may face some difficulties. Kim and Won (2018) 
state that volatility plays crucial roles in financial markets, such as in derivative pric-
ing, portfolio risk management, and hedging strategies. Black and Scholes (1973) 
would corroborate this importance due to their work and research on option pric-
ing models. Markowitz (1952) argues that volatility is one of the key indicators to 
measure risk and uncertainty implying that the higher the volatility, the higher the 
risk of the asset or portfolio of assets. Hang (2019) highlighted the importance of 
forecasting, stating that it is an important tool to help companies create competitive 
advantage.

Several authors have applied the most diverse techniques to forecast volatility. 
Some of the most important models for forecasting volatility across the literature 
include ARCH by Engle (1982) and GARCH by Bollerslev (1986). Some authors 
studied their properties on crypto assets (Bergsli et  al., 2022; Gronwald, 2019; 
Klose, 2022). Kim and Won (2018) agree on the advantages of such, since volatility 
clustering, heteroscedasticity and leptokurtosis can be captured. On the other hand, 
Klose (2022), uses GARCH models to forecast volatility of crypto assets and gold. 
In addition, he studies similarities and differences based on important factors related 
to liquidity premia, volatility and pronounced responses.

Classical machine learning tools, such as random forest (RF) and support vec-
tor machine (SVM) models, have been used to forecast volatility. SVM model, for 
example, have been used to forecast volatility of the S&P 500 index, taking advan-
tage of its tolerance to high-dimensional inputs (Gavrishchaka & Banerjee, 2006). 
On the other hand, some authors have opted to use hybridization strategies mix-
ing SVM with other models such as GARCH, ARIMA and wavelet transform to 
improve forecasting performance, for example, in the forecast of real stock market 
data, daily changes of the pound sterling, the New York Stock Exchange composite 
index and major stocks in Colombia (Chen et al., 2010; Rubio & Alba, 2022; Tang 
et al., 2009). In addition, RF model is widely used in volatility forecasting, e.g. for 
high-frequency historical data, crude oil and electricity market volatility, obtaining 
in each case competitive forecasting in terms of error for different forecast horizons 
(Luong & Dokuchaev, 2018; Wang et al., 2022).

Regarding Bitcoin volatility, it should be noted that, historically, cryptocurrencies 
exhibit higher volatility than other traditional asset classes and their returns exhibit 
a set of structural anomalies and breaks that could generate forecasting problems for 
the mentioned models. Ramos (2021) argues that although simple in application, 
classic linear methodologies have some difficulties in dealing with events that have 
out-of-the-ordinary patterns, as Pesaran and Timmermann (2004) and Chatfield 
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(2016). Contagion spill overs are also a phenomenon in cryptocurrencies, particu-
larly in Bitcoin, which exhibit strong interdependence across different exchange 
markets. Giudici and Pagnottoni (2019, 2020) have shown that this interdependence 
persists both at high and low frequencies.

Due to the challenges, over the past decade, it has been possible to see differ-
ent Artificial Intelligence techniques, such as artificial neural networks (ANN)/deep 
neural networks (DNN) have been pointed out in the scientific literature as a promis-
ing alternative (Sezer et al., 2020; Tealab, 2020; Tkáč & Verner, 2016). Research 
on nonlinear methodologies based on neural networks, extensively discussed in the 
nineties and abandoned due to computational limitations (Bengio et al., 1994) reap-
pear in recent works. Therefore, the scientific research along with the computational 
progress seen in recent years—due to the use of graphic process units (GPUs)—has 
assumed a fundamental role in the adoption of ANN to a larger audience. This is 
seen in simpler DNN structures (e.g. multilayer perceptron (MLP)) or more complex 
DNN structures (e.g. recurrent neural networks (RNN) and long short-term memory 
(LSTM) (Ramos et al., 2022).

In fact, many applications of DNN have appeared in the scientific literature in 
solving some problems related to the modeling and forecasting of time series, refer-
ring to its success (Balcilar et al., 2017; Kristjanpoller & Minutolo, 2018; Lahmiri 
& Bekiros, 2019; Mallqui & Fernandes, 2019; Pichl et  al., 2017; Ramos et  al., 
2022). Part of these works points into that direction when forecasting volatility and 
prices of cryptocurrencies and/or financial time series using methodologies such as 
deep learning and hybrid models with both classical and neural network techniques. 
These techniques have shown significant improvements over classical approaches 
(Smyl, 2020).

However, the lack of interpretability in DNN models, commonly referred to as 
the "black box" problem, is a major challenge in adopting these models, particu-
larly in finance where interpretability is crucial for regulatory compliance, risk 
management, and stakeholder communication. Previous studies, such as Bracke 
et  al. (2019), have applied Shapley values to compare the explainability of neural 
network-based models with logistic regression models for default risk analysis. The 
Shapley values provided a useful tool to interpret the neural network model, high-
lighting the importance of individual input variables in predicting the model output. 
In a recent study, Giudici and Raffinetti (2021) proposed a novel approach, called 
Shapley-Lorenz explainable artificial intelligence (SLXAI), which combines Shap-
ley values and Lorenz curves to provide a more nuanced measure of model explain-
ability. The effectiveness of their approach in explaining the predictions of a random 
forest model for credit rating was demonstrated. On the other hand, there are other 
methodologies such as Recurrent Neural Networks (RNN) with Temporal Attention 
and Bayesian Neural Networks (BNN). Each of these methodologies allows assign-
ing weights in the recurrent neural networks based on relevance and probability dis-
tribution, thus solving problems of interpretability, overfitting, and low data (Miriki-
tani & Nikolaev, 2010; Qin et al., 2017).

Despite these advances, the trade-off between model performance and interpret-
ability remains an open question, and further research is needed to develop more 
effective approaches to model explainability.
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This highlights the importance of this article to make literature contributions that 
generates awareness of such methodologies to researchers in business and financial 
markets, so that these tools are used on a daily basis in research.

3 � Methodology and data

3.1 � ARCH and GARCH models

An ARCH/GARCH model for the daily return yt is given by Eq. (1)

where Zt is a random variable that is an i.i.d. process such that, E
(
Zt
)
= 0 and 

Var
(
Zt
)
= 1. The �t and �t represent measurable functions related to a �-field Σt−1 

produced by historical returns yt−k, k ≥ 1.
Engle (1982) selected the following representation for �2

t

where � , �j, j = 1,… , p are positive real values. The Eq. (2) is frequently known as 
the ARCH(p) model. The strength of the model defined by Eq. (2) resides in how it 
handles positive serial correlation �2

t
 , that is, large (small) �2

t
 values is followed with 

large (small) �2
t+1

 values.
Bollerslev (1986) extended the ARCH(p) method to introduce the GARCH(p, q) 

defined by Eq. (3)

allowing an improved expression for �2

t
 based on lagging �2

t
 values (constants � , 

�i, i = 1,… , q , �j, j = 1,… , p, are each positive). The seasonal and non-market 
impact are integrated to GARCH models by treating γ as function of the time.

3.2 � Deep neural networks models

The MLP architectures is nowadays one of the most widely used network structures 
for classification and regression (Bishop, 1995). MLP model is defined by Eq. (4)

where y′ represent de vector of inputs, y�
=
(
1, yT

)T , �j is the weight vector, 
�0, �1,… , �N are the output weights and ŷ is the network output. Function fA is 
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the hidden node output, and is expressed as a squashing function, e.g. the logistic 
function.

From a data set of predefined outputs, neural networks can rapidly auto-learn and 
adapt themselves, allowing them to model and forecast non-linear and highly com-
plex structures. RNNs are a group of neural networks that, because of more than 
one connection(s) among neurons, create cycles. The RNN cycles save and trans-
mit information between neurons, building an inner memory which permits learning 
sequential information. In this way RNNs differ from standard neural networks since 
memory allows them to detect sequential correlations.

RNNs may be trained via backpropagation through time (BPTT) algorithm 
(Pineda, 1987). To calculate outputs in the hidden layer units, the following proce-
dure shall be followed

where fA is named the activation function for the occult layer, yt the entry corre-
sponding to the preceding layer, M l  is the binding weights in the prior layer, ht−1 
is a return output determined from the previous step and M f  its weight (Hopfield, 
1982; Rumelhart et  al., 1986). Different researchers demonstrated that RNNs can 
collect only limited data, causing long-term dependency issues. To address this 
problem, RNN frameworks as the LSTM architectures are available (Hochreiter & 
Schmidhuber, 1997; Malhotra et al., 2015).

The LSTM model pioneered by Hochreiter and Schmidhuber (1997) is probably 
the preferred deep learning method for natural language processing problems as it 
can handle long term dependencies inherent in the data and overcome gradient van-
ishing issues. Equations for calculating outputs and state values for the LSTM mod-
ule are given by

where fA represents the activation function, yt the input data, ht−1 the prior output, 
Mf,Mi,Mo and bf , bi, bo represent weights and input, forget and output gate biases 
(Chung et al., 2014; Hochreiter & Schmidhuber, 1997).

3.3 � Cross‑validator and performance metrics

The methodology proposed by Hodrick and Prescott (1997) was used to remove the 
cycle and trend components, and the CUSUM algorithm by Duarte and Watanabe 

(5)ht = fA

(
Ml yt +Mf ht−1

)

(6)ft = fA

(
Mf ⋅

(
yt, ∁t−1, ht−1

)
+ bf

)

(7)it = fA
(
Mi ⋅

(
yt, ∁t−1, ht−1

)
+ bi

)

(8)ot = fA
(
Mo ⋅

(
yt, ∁t−1, ht−1

)
+ bo

)

(9)Ct = Ct−1 + ft + C̃ ⋅ it
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(2018) to study structural breaks. For inferential analysis, several hypothesis tests 
were applied, to study normality (Jarque–Bera, Skewness and Kurtosis) and BDS 
test to study data independence.

To systematically assess the quality of forecasting models, error metrics are used. 
The most common performance/error metrics are the following: mean absolute error 
(MAE) and mean absolute percentage error (MAPE) (Willmott & Matsuura, 2005). 
Considering the time series 

{
yt
}
t∈T

 and the past observations from period 1,… , t , 
and being yt+h an unknown value in the future t + h and ŷt+h its forecast, the predic-
tion error corresponds to the difference of these two values, that is,

where MAE and MAPE are defined, respectively, by

where s corresponds to the number of observations in the forecasting samples (fore-
casting window).

In addition, a Diebold–Mariano test (Diebold & Mariano, 2002) was performed 
with the most efficient model for each category (ARCH/GARCH vs Neural Net-
works). The Diebold–Mariano test is in fact the most used instrument to estimate 
significance differences for forecasting precision. This is a z-test for the statistical 
hypothesis for the loss differential series mean defined by Eq. (13)

where �Z
k
= yk − ỹk , is the prediction error for the Z model at timestep k and L , is the 

function of loss. To provide forecast at k , loss function is defined as L
(
�Z
k

)
=
|||
�Z
k

||
|

p

 , 
for p = 1, 2.

3.4 � Data

Data used on this study was obtained from the Yahoo Finance public API by calling 
the ticker ‘’BTC-USD’’ from 07-09-2014 to 01-05-2022 and obtaining the “Close 
Price” values expressed in U.S. Dollars. Using this time series, daily logarithmic 
returns were calculated given by the expression

where, Pt denote the close price at time t . For time series forecasting there is a prec-
edent for transforming non-iid returns to a closer approximation using log normali-
zation (or the Fisher Transform) for the prediction process. The inverse transform 
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is then performed on the output to restore the original distribution ready to use pre-
dicted returns that allows for calculation of the predicted volatility. With the goal of 
achieving the research purpose of this study, two-time series variables are defined: 
BTC-USD that represents Bitcoin’s Daily Closing Prices (Fig.  1) and BTC-USD-
RET that represents Bitcoin’s Daily Returns (Fig. 2).

4 � Empirical findings

Initial steps in this study involved performing statistical calculations to better 
describe the BTC-USD-RET series. Results presented in Table 1, showed a strongly 
positively skewed time series with an extremely high positive leptokurtic kurto-
sis, and non-normal distribution confirmed by rejecting all the null hypothesis for 
normality. In addition, both the Augmented Dickey–Fuller (ADF) and the Kwiat-
kowski–Phillips–Schmidt–Shin (KPPS) tests confirmed the series’ stationarity and 
independence and therefore the data is i.i.d. highlighting the importance of imple-
menting nonlinear models for forecasting time series.

Several structural break situations were identified by applying the CUSUM algo-
rithm, where shifts along the time series were observed in several regimes, as can 
be seen in Pratas (2022) for the same data set. As pointed out, the high number of 
structural breaks might represent forecasting difficulties for the classical economet-
ric models and an advantage for the deep learning methodologies.

The subsequent step in the analysis involves model implementation, with the sta-
tionary nature of the time series allowing for the use of autocorrelation and par-
tial autocorrelation test functions to determine the optimal number of lags for the 
models. It was found that the ARCH(4) and GARCH(4, 2) models had the best 
expected generalization properties, with both AIC and BIC showing lower values 
for the given parameters. This finding is contrary to the literature’s preference for 
GARCH(1, 1) but in conformity in volatility forecasting for Bitcoin, as noted by 
Senarathne (2019).

In terms of forecasting itself, the forecasting out-of-sample for the ARCH model 
(Fig. 3) and the GARG model (Fig. 4) do not seem to be well-adjusted to the real 
data, as the forecast line does not follow the real data line.

For the neural network study, prior to training, the entire BTC-USD-RET dataset 
underwent an exponential smoothing pre-processing procedure. Three to five hid-
den layers were employed in conjunction with architecture-specific hyper parame-
ters and the ADAM optimization algorithm, as recommended Brownlee (2018) and 
Kingma and Ba (2015) respectively. Cross-validation was performed using the For-
ward Chaining methodology, as suggested by Ramos (2021). Model performance 
was assessed using the Mean Absolute Error (MAE) and Mean Absolute Percentage 
Error (MAPE), and forecasts were generated for one, three, and seven-day horizons. 
The resulting models were evaluated, and the forecasts were plotted (see Fig. 5 for 
DNN Models: (A) MLP model, (B) RNN model, (C) LSTM model).

Upon examination of the DNN models, it was found that all models exhibited 
some degree of forecasting ability. However, the MLP model performed better on 
shorter time horizons (one-day and three-days), while the RNN model had lower 
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prediction errors on the seven-day horizon. Interestingly, the LSTM model, despite 
its complexity, performed the worst in terms of accuracy. This was anticipated, as 
LSTM models tend to underperform when forecasting stationary time series, as 
pointed out by Ramos et  al. (2022). Moreover, this type of neural network is the 
one that requires the most computational cost and time, making it highly inefficient 
to use it on our forecast. Nonetheless, both the MLP and RNN models produced 
smoother forecasts with less fluctuation, but failed to capture large volatility spikes, 
such as the one that occurred on day two. In contrast, the LSTM model reacted 
strongly to such movements and attempted to adjust its forecast accordingly, due 
to its long-term memory properties that allow the model to “remember” that past 
volatility spikes may lead to high volatility spikes in the future, known as volatility 
clustering.

To compare performance of ARCH/GARCH models and DNN models, MAE and 
MAPE values for their forecasting out-of-sample were calculated for three different 
time horizons. For the DNN models, the parameters of the neural network (weights 
and bias) benefited from a pseudo-random initialization instead of using a fixed seed 
(Glorot & Bengio, 2010). To ensure the reliability of the results and avoid outli-
ers, the forecasting was conducted in a loop of 200 runs, and the 5% worst and best 
results were excluded (according Ramos, 2021). The range of MAPE values, with 
the lower and upper bounds trimmed by 5%, are presented in Table 2, along with the 
MAE values for models with intermediate forecast quality chosen from each archi-
tecture (as shown in Fig. 5).

Once all the models have been estimated, metrics calculated, and results pre-
sented, it was deemed useful to conclude with a visual representation comparing 
five models (see Fig. 6). Results indicate that ARCH (4) and GARCH (4.2) models 
are superior, with ARCH (4) being the best model in terms of forecast accuracy as 
measured by mean absolute percentage error (MAPE).

Regarding deep learning approach, MLP model demonstrated superior per-
formance for shorter time horizons (1-day and 3-days), while the RNN model 
showed lower prediction errors for seven-day horizon. This finding can be 
attributed to the basic memory capabilities of the RNN model, which produce a 

Table 1   BTC-USD-RET: main statistics, normality, stationarity and independence tests

*H0 is rejected for the significance levels of 1%, 5% and 10%

Count Mean Std

2753 0.001513 0.004576

Min Q1 Q2 Q3 Max Kurtosis Skew

0.000000 0.000038 0.000251 0.001196 0.138157 319.950 13.469

Normality tests Unit root tests Independency tests

Kurtosis Skewness Jarque–Bera ADF KPPS BDS (Dim.2–Dim. 6)

Statistic 36.4657 61.5091 11,825,693.6472 − 15.1772 0.2025 0.2417–0.4654
p value* 0.0000* 0.0000* 0.0000* 0.0000* – 0.8090–0.6416
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dynamic model with information storage, whereas MLP model produces a static 
technique of the data. While LSTM model was the most complex, was the lowest 
performer among the deep learning methodologies. These results are consistent 
with literature, which suggests that LSTM architecture may underperform when 

Fig. 5   Fitting and forecasting DNN models: A MLP; B RNN; C LSTM



300	 Eurasian Economic Review (2023) 13:285–305

1 3

the time series is stationary. However, MLP neural network model demonstrated 
highest forecasting accuracy and lowest prediction error among all five models 
investigated in this study, while exhibiting lowest computational costs among the 
deep learning methodologies.

Deep learning methodologies seem to show advantages over classical method-
ologies in terms of forecast quality, since nonlinear dependencies of the data are 
better captured. However, it is noteworthy that these models are associated with 
considerably higher computational costs and greater implementation complexity 
compared to classical techniques (corroborating with the scientific literature—
Lopes et al., 2021 and Ramos et al., 2021). Despite these limitations, implemen-
tation of deep learning models in the present study yielded a substantial reduc-
tion in prediction errors. As such, it can be inferred that increased computational 

Table 2   Model prediction errors 
by accuracy metrics (MAE and 
MAPE)

a Minimum and maximum values (5% trimmed) obtain from the 200 
runs

Model Days MAE MAPE (%)

ARCH (4) 1 0.00216 343.67
3 0.00155 194.45
7 0.00198 463.81

GARCH (4, 2) 1 0.00244 388.74
3 0.00164 217.58
7 0.00219 519.65

MLP 1 0.00003 4.91–5.73a

3 0.00123 58.28–62.73a

7 0.00074 52.45–68.63a

RNN 1 0.0002 28.11–32.85a

3 0.00128 59.91–64.70a

7 0.00067 45.01–53.39a

LSTM 1 0.00043 62.46–73.42a

3 0.001517 92.32–103.77a

7 0.00089 137.38–154.80a

Fig. 6   Forecasting out-of-sam-
ple of all models
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costs associated with deep learning model implementation is justifiable, particu-
larly when considering MLP model—which is the least complex model in terms 
of computational requirements—provided highest forecast accuracy for the time 
series studied.

Finally, to infer whether forecast accuracy of these two models is the same, Die-
bold–Mariano test, with modification suggested by Harvey et  al. (1997) was imple-
mented (see Table 3).

With this, for a significance level of 5%, there is statistically significant evidence 
to suggest that forecasts do not have the same precision and one is significantly better 
than the other. According to previous information, the MLP model has better forecast 
accuracy.

These facts are consistent with previous research findings and highlight the impor-
tance of these new methodologies and how researchers must be equipped with knowl-
edge about how these models can help to understand economic reality.

5 � Conclusion

In recent years, Bitcoin has received significant attention from scholars due to its dis-
tinctive patterns and characteristics, including high volatility, multiple structural breaks, 
and unusual probability distributions. However, academic literature has noted a lack of 
research on this topic. This study contributes to understanding factors underlying Bit-
coin volatility by examining price of production (electricity costs), programmed scar-
city, programmed supply shocks (halvings), demand shocks (price-hash rate spirals), 
hash rate, network trust, and liquidation cascades.

Our findings suggest that ARCH(4) and GARCH(4, 2) models are the most effective 
to forecasting Bitcoin returns. ARCH(4) model performed best in terms of the MAPE 
metric. Among deep learning approaches, MLP model showed the best performance on 
shorter time horizons (one-day and three-days), while RNN model had the lowest pre-
diction errors on seven-day horizon. LSTM model, being the most complex, performed 
weakly among the deep learning methods. Deep learning models have advantages 
over classical methods in terms of forecast quality, providing an effective capability to 
capture nonlinear dependencies in the data. However, higher computational costs and 
implementation difficulties are also involved. Nonetheless, the improvement in predic-
tion errors justifies their implementation, especially considering that the MLP model 
used in this study is not the most complex or computationally expensive. Our results 
are consistent with prior research and underscore the significance of these new method-
ologies for understanding economic reality.

Table 3   Diebold–Mariano test Diebold–Mariano

Statistic − 3.2724894
p value 0.03345
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Although this study has made valuable contributions to understand Bitcoin’s returns 
and volatility factors is also important to recognize its limitations. One limitation is that 
it focuses on internal mechanisms of protocols as drivers of volatility, with less atten-
tion given to market dynamics specific to the cryptocurrency market such as low liquid-
ity, market microstructure, high leverage, and market manipulation. Another limitation 
is the limited range of ARCH/GARCH models, which may not be the most advanced 
or effective for forecasting. In addition, models in this study used only one variable and 
did not consider external factors, which could be important in financial time series with 
nonlinear properties. Future research could consider a multi-variable perspective that 
considers derivatives data, on-chain data, and market sentiment data, as well as the use 
of hybrid models to better understand Bitcoin volatility.

In addition to this, this work also makes a reflective contribution to scientific lit-
erature by comparing classical methodologies (ARCH and GARCH models) and 
deep learning methodologies (DNN models) for returns and volatility forecasting. 
According to the scientific literature, classical methodologies are still the most used 
by professionals in economic, financial, and business fields (Wilson & Spralls, 
2018). As expected, the results of the analysis show that DNN models have better 
forecast quality. However, it is important to highlight not only the potential of deep 
learning methodologies, but also the significant difference in forecast quality. In the 
economic and financial field, it is noteworthy that professionals often deal with high 
error rates. Therefore, in an increasingly competitive economic environment, those 
who use robust tools to support decision-making have an advantage. Therefore, it is 
important to encourage the training and awareness of these professionals, particu-
larly investors in the cryptocurrency market, to use more accurate methodologies 
(e.g., deep learning). This is a challenge that this work aims to highlight.

In conclusion, this study aims to provide a valuable contribution to the under-
standing of Bitcoin’s daily returns and the potential of deep learning methodologies. 
While many researchers have traditionally used classical approaches to volatility 
models, the recent advancements in computational power suggest that deep learn-
ing methodologies may offer a promising option for improving forecast quality. It is 
important for researchers to consider the use of these advanced methodologies, not 
only in the study of crypto assets but in other areas as well.
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