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HIGHLIGHTS

• State-of-the-art research on two-dimensional material-based memristive arrays is comprehensively reviewed.

• Critical steps in achieving in-memory computing are identified and highlighted, covering material selection, device performance 
analysis, and array structure design.

• Challenges in progressing from single-device characterization to array-level and system-level implementations are discussed, along 
with proposed solutions.

ABSTRACT The conventional computing architecture faces substantial chal-
lenges, including high latency and energy consumption between memory and 
processing units. In response, in-memory computing has emerged as a promising 
alternative architecture, enabling computing operations within memory arrays to 
overcome these limitations. Memristive devices have gained significant attention 
as key components for in-memory computing due to their high-density arrays, 
rapid response times, and ability to emulate biological synapses. Among these 
devices, two-dimensional (2D) material-based memristor and memtransistor arrays 
have emerged as particularly promising candidates for next-generation in-memory 
computing, thanks to their exceptional performance driven by the unique properties 
of 2D materials, such as layered structures, mechanical flexibility, and the capability to form heterojunctions. This review delves into the 
state-of-the-art research on 2D material-based memristive arrays, encompassing critical aspects such as material selection, device perfor-
mance metrics, array structures, and potential applications. Furthermore, it provides a comprehensive overview of the current challenges 
and limitations associated with these arrays, along with potential solutions. The primary objective of this review is to serve as a significant 
milestone in realizing next-generation in-memory computing utilizing 2D materials and bridge the gap from single-device characterization to 
array-level and system-level implementations of neuromorphic computing, leveraging the potential of 2D material-based memristive devices.
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1 Introduction

In the post-Moore’s law era, the traditional von Neumann 
architecture has reached its limits in terms of computational 
capability per energy consumed, leading to a considerable 
slowdown in improvement. However, the demand for com-
putational power, especially in the field of artificial intel-
ligence, has soared while energy consumption has become 
a pressing concern. Consequently, there has been a grow-
ing momentum towards energy-efficient computing, also 
known as "green computing", and in-memory computing 
has emerged as a promising solution to address these criti-
cal challenges. In-memory computing eliminates the need to 
transfer data between memory and processing units, thereby 
significantly reducing energy consumption. Neuromorphic 
computing, inspired by the human brain’s functionality, 
stands out as an exemplar of in-memory computing that 
achieves remarkable levels of energy efficiency [1–6].

In-memory computing can be built upon transistors and 
memristive devices. Transistor-based in-memory comput-
ing chips, such as static random-access memory (SRAM), 
dynamic random-access memory (DRAM), and floating gate 
memory, are well-suited for logic computing that requires 
precise storage and processing of data. However, these 
devices have limitations in terms of their power consumption 
and response time [7–10]. A significant challenge associated 
with SRAM is its large footprint, ranging from 123 to 140 
 F2, leading to challenges in chip area downscaling when con-
structing SRAM-based crossbar arrays. Furthermore, scal-
ing the area becomes even more challenging when analog 
in-memory computing is required. This is because SRAM 
can only store binary data in a single cell, necessitating the 
stacking of multiple cells to represent multi-bit data. Addi-
tionally, owing to the low transistor barrier height (0.5 eV), 
the charges within SRAM are volatile and constantly require 
refreshment from an external power source, resulting in 
additional standby power consumption. While DRAM boasts 
a smaller footprint (6  F2), it remains a volatile memory that 
necessitates periodic refreshing (every 60 ms) to prevent 
loss of charges due to leakage current and cell readings. This 
cell refreshing process also contributes to increased power 
consumption within the DRAM crossbar array. Meanwhile, 
although being a non-volatile memory, the floating gate tran-
sistor suffers from a slow response speed (> 10 µs) and high 
functional voltage (> 10 V).

In contrast, memristive devices, which include memristors 
and memtransistors, are particularly suitable for neuromor-
phic computing [11]. A memristor is a passive electrical 
component known for its resistive switching behavior. Its 
resistance changes based on the history of electric current 
passing through it, resulting in a memory effect. A memtran-
sistor, on the other hand, is a hybrid device that combines the 
characteristics of a memristor and a transistor. Memtransis-
tors feature a gate terminal, enabling the modulation of their 
resistive switching behavior. They offer several advantages 
over transistor-based technologies, such as low power con-
sumption, support for analog computing, and the ability to 
perform massive parallelism in simulating neural networks. 
Additionally, memristive devices enable new computing 
paradigms that are difficult to emulate using traditional 
architectures, such as the spiking neural network [12]. Spe-
cifically, memristive devices excel at matrix multiplication 
and accumulation (MAC), one of the most computationally 
intensive operations in conventional digital computing and 
extensively required in artificial neural network computing 
[13–15]. Therefore, the exploration and advancement of 
memristive devices hold great promise for next-generation 
energy-efficient computing.

The development of memristive devices has been rapid in 
recent years [16–19]. The first memristor was experimentally 
demonstrated in 2008 using metal oxides [20, 21], which 
switch between high-resistance and low-resistance states 
due to oxygen migration. Since then, researchers have made 
rapid progress in developing memristors based on differen-
tial metals such as titanium oxide, tantalum oxide, and haf-
nium oxide [22, 23], as well as phase-change materials such 
as germanium-antimony-tellurium [24, 25]. Despite these 
advances, there are several challenges in meeting industrial 
requirements. For example, memristors based on metal oxide 
materials exhibit high device variation, which makes it dif-
ficult for precise control over resistance switching [26–29]. 
In addition, phase-change devices require high energy and 
long program duration for crystal structure transition, which 
limits their compatibility with advanced complementary 
metal–oxide–semiconductor (CMOS) technology [30].

Recently, memristors made up of two-dimensional (2D) 
materials have emerged as a promising area of research 
[31–36]. 2D materials offer several advantages as func-
tional materials for memristors, such as low switching volt-
age, reduced power consumption due to their ultra-thin body 
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[34, 37–42], and absence of dangling bonds that can cause 
scalability issues with ultrathin oxides [43]. The ultrathin 
body of the 2D semiconductor channel allows for precise 
control of the gate voltage and potential immunity to the 
short-channel effect, making it possible to create multitermi-
nal memtransistors [31, 44–46]. Additionally, the abundance 
and stackable nature of 2D materials enables the creation of 
van der Waals heterostructures by combining different 2D 
materials in a designed order, overcoming limitations related 
to lattice matching or processing [36, 47–51]. Furthermore, 
the high surface-to-volume ratio of 2D materials allows for 
excellent sensing capabilities [52, 53], and they exhibit prop-
erties such as flexibility, shorter response time, and broader 
temperature ranges for device operation [34, 48, 54–56].

In this review, we will focus exclusively on the advances 
made in the past three years (since 2019), which represent 
the current frontier of research in this field. Within this time-
frame, we have witnessed not just the continuous develop-
ment of single memristor and memtransistor devices, but 
even more importantly, the successful integration of devices 
and the realization of crossbar arrays in experimental set-
tings. This crucial milestone marks a significant step forward 
in the direction of achieving artificial neural networks and 
functional devices with potential commercial applications in 
the future. It is noteworthy that such advancements were not 
evident three years ago, when the primary research empha-
sis was still on individual devices, and array performance 
was largely reliant on simulations. Consequently, our review 
centers on these crossbars realized memristive devices and 
meticulously assesses their performance within the context 
of integrated arrays. For a wider perspective on memris-
tive device performance based on 2D materials, readers may 
refer to the extensive reviews in the literature [31, 57–63]. 
Those keen on exploring the crossbar array performance 
based on numerical simulation may also refer to the reviews 
[9, 64, 65].

This review will be organized as shown in Fig. 1. We 
will begin with a summary of the 2D material platforms 
that have been developed for memristive device array fab-
rication. Subsequently, we will discuss the application-
dependent device performance metrics of 2D material-based 
memristive devices in arrays. We will also explore various 
array structures that have been demonstrated to achieve in-
memory computing functionalities. Furthermore, we will 
examine the potential computing applications based on 
these arrays, including neural networks and information 

processing. Finally, we will provide a brief overview of the 
current challenges and potential solutions for the develop-
ment of 2D material-based memristive arrays and their sys-
tem-level implementation of in-memory computing.

2  2D Material Platforms for Memristive 
Device Array Fabrication

2D materials exhibit several shared characteristics that ren-
der them highly suitable for the fabrication of memristive 
devices, particularly for device arrays.

Firstly, the monolayer structure of functional 2D materials 
reduces device thickness to the sub-nanometer scale, allow-
ing for exceptional scalability and controllability in the crea-
tion of high-density three-dimensional (3D) crossbar array 
[15, 66, 67]. For example, Wu et al. reported a monolayer 
h-BN-based non-volatile memory with a record thickness of 
0.33 nm [42]. Additionally, in memtransistor devices based 
on 2D materials like molybdenum disulfide, the ultra-thin 
atomic layer permits effective gate control in multiterminal 
devices, leading to enhanced device selection in crossbar 
arrays [68].

Secondly, the capability of large-area wafer-based fabri-
cation and uniform thickness transfer has been successfully 
demonstrated for many 2D materials, including the well-
studied ones like hexagonal boron nitride [55, 69], molyb-
denum disulfide [70]. Recently, Li et al. have developed a 
wafer-scale growth technique for  HfSe2 using molecular 
beam epitaxy (MBE) in conjunction with a metal-assisted 
van der Waals transfer process [71]. These advanced fabri-
cations and transfer techniques empower the fabrication of 
large-scale memristor crossbar arrays utilizing 2D materials 
as functional components.

Lastly, the layered structure of 2D materials, with weak 
interactions between layers and an absence of dangling 
bonds, opens up abundant possibilities for forming func-
tional heterostructures and achieving effective electrode 
contract in the design of memristive devices [59].

In addition to these shared characteristics, various 2D 
materials possess unique properties that make them well-
suited for designing memristive devices. These material-spe-
cific properties should be discussed together with the switch-
ing mechanisms of the memristors and memtransistors, as 
different switching mechanism will impose distinct require-
ments on the material properties. The switching mechanism 
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Fig. 1  A schematic of critical steps in 2D material-based in-memory computing applications. First, unique 2D material properties and the fun-
damental memristive device fabrication and switching mechanisms. Second, different device performance requirements for various applications, 
including artificial synapses and neurons. Third, different array configurations for integration design, including memristor and memtransistor 
crossbar array and 3D integration. Last, system-level evaluation of in-memory computing hardware, consisting of the basic computation func-
tionalities and the overall neural network performance
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of memristive devices based on 2D materials includes con-
ductive filament formation [34, 51, 71–76], vacancy migra-
tion [44, 48, 77–80], photon responses [53, 81, 82], phase 
change [32, 83] and ferroelectricity [84, 85]. In the following 
sections, we will discuss the distinctive properties of various 
2D materials within the context of the different switching 
mechanisms and analyze their specific advantages.

2.1  Conductive Filament Formation: h‑BN,  MoS2, 
 PdSe2  HfSe2 and BP

Conductive filament formation is a common switching 
mechanism in vertical memristors, where a 2D insulator or 
semiconductor is sandwiched between two metal electrodes, 
as shown in Fig. 2a. Initially, these devices exhibit a high-
resistance state (HRS) due to the insulating layers. However, 
the application of an electric field can lead to the creation of 
a conducting filament between the two electrodes by allow-
ing metal atoms to penetrate, causing the device to switch 
from HRS to a low-resistance state (LRS). This process is 
analogous to the release of neuro-transmitters in biological 
synapse. Reversing the electric field results in the rupture 
of the filament, returning the device from LRS to HRS. Fig-
ure 2a shows these two switching processes when palladium 
diselenide is placed between Ti and Au electrodes, with var-
ious palladium diselenide thicknesses. In some cases, the 
filament’s rupture occurs spontaneously without the need 
for a reverse electric field, making the memristor volatile 
in nature.

Hexagonal boron nitride (h-BN) is a widely used as an 
insulating material for metal–insulator–metal (MIM) mem-
ristors due to its various advantageous properties. Firstly, 
h-BN possesses high insulation with a substantial bandgap 
of 5.9 eV, resulting in an initial high resistance state (HRS) 
for achieving large resistive switching (RS) ratios, which is 
a key consideration for large-scale crossbar array fabrica-
tion as it helps compensate for the sensing margin reduction 
caused by the array’s leakage current [45, 86, 87]. Secondly, 
it exhibits high mechanical, chemical, and thermal stability 
across various thicknesses, ranging from multilayer to mon-
olayer sheets. The high thermal stability of h-BN, stemming 
from strong boron nitride bond and low thermodynamic 
energy, ensures smooth and predictable relaxation processes 
when driven forces are removed. This enhances the retention 

characteristics of h-BN-based memristors [69]. In addition, 
its chemical inertness to oxidation and excellent adhesive 
properties to metals contributes to the structural stability of 
devices [88]. Last but importantly, Shen et al. have recently 
shown that the cross-plane conductance of h-BN-based 
memristors is dominated by the most conductive locations 
where a conductive path can be quickly established. At these 
specific defect sites, facilitated by the intrinsic defect region 
in the h-BN film, resulting in the low formation energy of fil-
aments, results in a low set voltage and power consumption, 
leading to proposed switching energies at the zeptojoule 
level for h-BN memristors, significantly lower than those 
of other materials [55, 56, 69, 86]. Furthermore, the local 
conductivity overwrites the effects of other defects within 
the h-BN layer, so that they showcase low device-to-device 
variance and high yield. Shen et al. have shown that h-BN 
memristors can achieve a yield of around 50% even at a scale 
of 320 nm × 420 nm, overcoming most of the artifacts during 
the fabrication process, such as the thicker islands, impurity 
particles and wrinkles. Such scaling property is promising 
for high-density crossbar arrays and integration with CMOS 
transistors [89].

Molybdenum disulfide (MoS2) also received significant 
attention for filament-formation vertical memristors. These 
devices typically utilize  MoS2 in the semiconducting 2H 
phase sandwiched between two electrodes. The advantage of 
 MoS2 is attributed to its grain boundaries in polycrystalline 
 MoS2 for a guided filament formation and hence provides 
better controllability. Feng et al. demonstrated a fully printed 
 MoS2 memristor crossbar array, showing the existence of 
inter-layer grain boundaries in the printed  MoS2 film [34]. 
Density functional theory (DFT) calculation and conductive-
atomic force microscope (CAFM) confirmed the facilitating 
effect of grain boundaries on the migration of Ag atoms dur-
ing filament formation and rupture. Additionally, Tang et al. 
revealed that the sulfur vacancies percolation along the flake 
edges of  MoS2 is able to further modulate the resistance 
switching behavior [90]. The temperature-dependent meas-
urements verified the change in barrier height during the 
transition between the LRS and HRS. Therefore, the switch-
ing behavior of vertical  MoS2 memristors can be tailored by 
engineering the density of grain boundaries and the sulfur 
vacancy diffusion barrier at the edge.

Palladium diselenide (PdSe2) is another semiconductor 
material that offers guided conductive filament formation at 
grain boundaries. Selenide vacancies in  PdSe2 play a crucial 
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Fig. 2  2D material platforms for memristors and memtransistors with different switching mechanisms: a conductive filament formation, b 
vacancy migration, c photon response, d phase change and e ferroelectricity. The first column shows the schematic representation of the respec-
tive resistive switching mechanisms, the second column displays the measured I–V curves and the final column presents the atomic structures of 
2D materials that have been used for crossbar array fabrication. a Reproduced with permission [73], copyright © 2021 Springer Nature Limited. 
b Reproduced with permission [77], copyright © 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. c Reproduced with permission 
[82], copyright © 2022 Wiley‐VCH GmbH. d Reproduced with permission [83], copyright © 2018 Springer Nature Limited. e Reproduced with 
permission [85], copyright © 2022 Wiley‐VCH GmbH
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role as they exhibit a low diffusion barrier, facilitating local 
phase transitions of  PdSe2 that resulted in the formation of 
heterophase grain boundaries. Notably, Li et al. recently 
fabricated a crossbar array comprising  PdSe2-based mem-
ristors, wherein these heterophase grain boundaries were 
found to guide the formation of conductive filaments, result-
ing in resistive switching behavior with improved variability 
[73]. Furthermore, the utilization of  PdSeOx/PdSe2 hetero-
structures in memristor crossbar arrays has also been dem-
onstrated through ultraviolet-ozone treatment [38]. These 
devices exhibit ultra-thin switching media and uniform 
switching voltages, owing to the confinement of conductive 
filament formation within the heterostructure.

Hafnium diselenide (HfSe2) has also been utilized for 
filament-formation-based memristors [91, 92] and wafer-
scale crossbar arrays [71]. The formation of metal-HfSe2 
alloys at the electrodes contact exhibits variable resistance 
states, highlighting the potential for memristive devices [93, 
94]. On the other hand,  HfSe2 can be oxidized to form a 
high-resistance  HfSexOy film, making it suitable for low-
power devices. Recent demonstrations have shown mem-
ristors based on  HfSexOy with a low switching energy of 
114 fJ [95]. The as-grown polycrystalline  HfSe2 exhibits no 
preferred in-plane orientation, suggesting the presence of 
intrinsic defects that could serve as pathways for conductive 
filament formation during resistive switching.

Rhenium disulfide (ReS2) has shown significant potential 
as a functional material for synthesizing crossbar arrays 
through the formation of metallic  ReOx through oxidation. 
However, the low formation energy is attributed to its sul-
fur vacancies [76]. An active approach for inducing sulfur 
vacancies into  ReS2 involves Mo beam irradiation through 
MBE [76]. Both DFT calculations and experimental results 
have shown that the presence of sulfur vacancies in Mo-
irradiated  ReS2 leads to a lower energy barrier for the forma-
tion of metallic  ReOx filaments. The use of electron beam 
and Mo beam irradiation techniques offers effective methods 
for creating sulfur vacancies, opening up possibilities for the 
development of  ReS2-based memristor arrays.

Black phosphorene (BP) is an appealing semiconductor 
with an optimal bandgap, high electron mobility, and sub-
stantial anisotropy. However, its susceptibility to oxidation 
in ambient air poses a challenge to its stability against oxi-
dation. On the other hand,  POx has high electric resistance 
and therefore could be used as insulating materials for fila-
ment-formation-based memristors. Wang et al. successfully 

fabricated a BP-based crossbar array for artificial synapses 
by incorporating an ultrathin interface layer of phosphorous 
oxides  (POx) on the BP surface [96]. The switching mecha-
nism in this system is triggered by the migration of oxygen 
vacancies, leading to the formation and rupture of conduc-
tive filaments.

2.2  Vacancy Migration:  MoS2 and  ReS2

Several 2D semiconductors exhibit a low diffusion barrier 
of intrinsic vacancies, often facilitated by the grain bounda-
ries, as illustrated in Fig. 2b. At the metal–semiconductor 
contact region of these memristive devices, a Schottky bar-
rier may form. The resistance is primarily governed by the 
electrons overcoming the Schottky barrier height (SBH), 
which, in turn, depends on the vacancy concentrations in 
the contact region. Consequently, the SBH can be modulated 
through the migration of vacancies [97]. For such switching 
mechanism, the resistance switches gradually in contrast to 
the abrupt change in filament-formation-based devices. An 
additional advantage of these devices is their capability to 
introduce other control terminals, such as gates, to form a 
multiterminal memtransistors [44, 68, 77, 79, 80, 86]. Fig-
ure 2b shows a schematic of a three-terminal memtransis-
tors based on  MoS2. We may observe that its I–V curves 
can be modulated through the gate terminal. The capabil-
ity of modifying the resistance state through gate terminal 
demonstrates self-selective behavior and reduces sneak path 
currents [86].

Molybdenum disulfide (MoS2) offers an excellent can-
didate for such SBH-based memtransistors due to the low 
diffusion barrier of sulfur vacancies and effective control 
of SBH. DFT calculations have shown that sulfur vacancy 
is able to migrate in the perpendicular direction of grain 
boundaries with low diffusion barrier, resulting in a low 
set/reset voltage [77]. The presence of sulfur vacancies at 
the metal–MoS2 interfaces effectively influence the SBH 
through the hybridization of electronic states. First-princi-
ples calculations have shown that sulfur vacancies in  MoS2 
can increase the SBH when in contact with Mg, Al, and In, 
while decrease when in contact with Cu, Ag, Pd [98], Co and 
Ni [99]. Furthermore, sulfur vacancies create defect states 
near the interfaces that can be filled by electrons from the 
metal electrodes, resulting in Fermi-level pinning. Doping 
also introduces states that trap charges near the contacts, 
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leading to a doping-induced reduction of the SBH [44, 68, 
100].

Rhenium disulfide (ReS2) also shows similar SBH modula-
tion attributed to its sulfur vacancies. Notably, the creation 
of sulfur vacancies can be actively achieved through electron 
beam irradiation, which enables the drifting of these vacan-
cies under the influence of an electric field. This process 
further modulates the Schottky barrier height (SBH) at the 
contact of lateral  ReS2-based memristors [78]. In contrast 
to  MoS2 where the sulfur vacancies are positively charged 
[80], the sulfur vacancies in  ReS2 are negatively charged, so 
that the vacancies migrate in the opposite direction under a 
given electric field.

2.3  Photon Response:  WSe2,  WS2, and SnS

Semiconductors that have bandgap falling within the spec-
trum of visible light can be effectively employed for pho-
todetector in sensors. Such semiconductors include  WSe2, 
 MoS2,  WS2, and SnS. The properties of photosensitivity 
have been combined with the memristive circuits to real-
ize unified sensor-processor devices. Figure 2c shows a 
scanning image and schematic representation of a photon 
response memristors. When exposed to the UV light illu-
mination, tungsten disulfide (indicated by the pink lines 
in I–V curve) undergoes changes, resulting in the creation 
of defects such as sulfur vacancies, and hence, the device 
switches from HRS to LRS. Conversely, when exposed to 
oxygen environment, the device switches from LRS to HRS 
(indicated by the green lines in I–V curve) due to the incor-
poration of oxygen.

Tungsten diselenide (WSe2) and tungsten disulfide (WS2) 
are stable semiconductors with direct bandgap for visible 
light absorption, positioning them as a promising candidate 
for photodetector and optoelectronic applications [43, 82]. 
Wang et al. recently demonstrated the construction of a reti-
nomorphic sensor, where the photoresponses of the sensor 
are employed to act on a gate terminal within a memristive 
device, enabling the processing of image data [43]. Further-
more,  WSe2 exhibits exceptional nonlinear optical response, 
which can be exploited to realize nonlinear transistors. Tong 
et al. achieved this by integrating  WSe2 with lithium niobite, 
realizing nonlinear transistors and non-volatile memory with 
memory operating functionality [101]. Additionally, Sebas-
tian et al. utilized  WSe2 memtransistors integrated with 

circuits to implement the hyperbolic tangent and sigmoid 
activation functions in an artificial neuron [102].

Tin sulfide (SnS) is a layered semiconductor with remark-
able optical sensitivity, characterized by abundant defect 
states originating from both Sn and S vacancies, many of 
which are located within the bandgap. Sun et al. recently 
presented a noteworthy achievement in the fabrication of a 
SnS-based memristor array designed for language learning, 
wherein the memristor is directly stimulated by optical sig-
nals as the input [81]. The optical and electric stimuli effec-
tively modulate the vacancy states of SnS within the band-
gap, taking advantage of the presence of donor and acceptor 
states in SnS to enable concurrent dual-mode operation for 
processing optical and electric stimuli.

2.4  Phase Change:  MoS2

Molybdenum disulfide  (MoS2) exists in two phases: a semi-
conducting phase (2H) characterized by a trigonal prismatic 
polytype atomic configuration, and a metallic phase (1T) 
with octahedral crystal symmetry atomic configuration. 
The difference in electronic conductivity between these two 
phases is harnessed in memristive devices that employ phase 
transition through the intercalation of  Li+ ions, as reported 
by Zhu et al. [83]. Figure 2d shows the transition of  MoS2 
from 2H to 1T phases with  Li+ ions intercalated in between 
the layers, causing a switch from HRS to LRS. The process 
involves the drift of  Li+ ions toward electrodes with lower 
potential under an external electric field, and the  Li+ ion 
accumulation from different terminals, mimicking the coop-
erative behavior of synapses. In addition, the  MoS2 is dan-
gling-bond free and highly isotropic, enabling the migration 
of intercalating ions and their efficient control through elec-
tric fields. Hao et al. have realized leaky integrate-and-fire 
neurons based on  MoS2 through the injection and extraction 
of  Ag+ ions under an electric field [103].

2.5  Ferroelectricity:  In2Se3

α-In2Se3 is an anisotropic material with intriguing ferroelec-
tric properties and a direct bandgap of 1.36 eV. Figure 2e 
shows an  In2Se3-based memtransistor. The origin of ferro-
electricity arises from the displacement of Se atom, which 
switches both in-plane and out-of-plane polarization. An 
external field is applied to flip the polarization direction. 
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Due to the fading effect of the ferroelectric polarization 
in α-In2Se3, volatile α-In2Se3-based ferroelectric memory 
has been demonstrated for reservoir computing [84, 104]. 
In a significant advancement, Liu et al. demonstrated an 
α-In2Se3-based memristor array for a deep reservoir com-
puting network [85]. The switching behavior of these mem-
ristors is achieved through polarization switching, which 
is effectively controlled by a back gate. This innovative 
approach holds promise for developing advanced comput-
ing systems.

3  2D Material‑Based Device Performance 
Metrics

The concept of in-memory computing draws inspiration 
from the energy-efficient and collocated data processing and 
storage characteristics observed in the human brain, which 
operates at approximately 20 W [7]. In the brain, neural 
connections are established through synapses, and changes 
in synaptic plasticity are indicative of memorization and 
computational processes. Similarly, neuromorphic comput-
ing employs artificial synapses and neurons as fundamental 
components in constructing artificial neural networks.

It is important to note that computing systems integrate 
diverse computing units to accomplish complex tasks, with 
each unit responsible for specific functionalities. The per-
formance of such computing systems is influenced by two 
factors: (1) system-level implementation, which includes 
the design of the integration framework, integration capa-
bility, and density, and (2) the performance of individual 
computing units. These factors are interdependent, as differ-
ent integration frameworks impose varying requirements on 
computing units, thereby calibrating different performance 
merits for individual devices. For instance, the weight 
update process in artificial synapses requires minimal cycle-
to-cycle variation and high endurance, while the multiply-
and-accumulate (MAC) operation in memristive arrays 
does not necessitate stringent endurance but prioritizes data 
retention. On the other hand, understanding the strengths 
and weaknesses of basic computing units enables informed 
implementations that address limitations, such as employ-
ing a one-transistor-one-memristor (1T1R) framework to 
mitigate sneak path current issues in a memristor crossbar 
array. Therefore, this review focuses on devices that have 
demonstrated utility within an array context, while interested 

readers can refer to existing comprehensive reviews for an 
in-depth analysis of singular devices [37, 57, 105].

In this section, we discuss the performance require-
ments of 2D materials-based memristive arrays as the fun-
damental computing units in hardware implementations 
of neural networks. We will review device performance 
in two categories: (1) memristors and memtransistors for 
the application of artificial synapses and (2) volatile mem-
ristors for application of artificial neurons. Additionally, 
application-dependent device metrics and their impact on 
various computing tasks in 2D materials-based arrays will 
be discussed.

3.1  Performance of Memristive Devices as Artificial 
Synapse

Memristive devices offer a promising approach for emulat-
ing artificial synapses, providing a direct mapping between 
synapse weight and device conductance. The resistance-
switching behavior of memristors mimics the updating 
of synaptic weights during signal transmission. In neu-
ral network applications, memristive devices operate in 
two key scenarios: weight reading and weight updating. 
In weight reading, the memristive array performs MAC 
operations, where data multiplication follows Ohm’s law 
and data accumulation is governed by Kirchhoff’s law. The 
conductance of each memristive device must be accurately 
programmed prior to reading and remain stable throughout 
the process, emphasizing the crucial requirement of device 
reliability. Conversely, in weight updating, the synaptic 
weights need frequent updates based on the gradient of 
the cost function, demanding endurance and low energy 
programming during weight updates [106]. Therefore, it 
is vital to consider various performance characteristics of 
memristive devices, such as programming energy, program 
voltage, device area endurance, retention, and device vari-
ations, as they play essential roles in different working 
scenarios. Table 1 summarizes the performance metrics 
of 2D material-based memristors and memtransistors that 
have been fabricated with crossbar array structure.

3.1.1  Programming Energy

The programming energy in memristive devices is a crucial 
parameter for evaluating energy consumption during weight 
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updates. It is calculated by integrating voltage, current, and 
time during the device programming process. Figure 3a 
illustrates the programming energy of various memristive 
devices implemented in arrays. The results indicate that 
h-BN-based memristors exhibit the lowest switching energy, 
operating in the femtojoule range [55, 69]. Even when inte-
grated with CMOS transistors, the energy consumption of 
h-BN memristors remains within the low-power computing 
standards proposed by International Roadmap for Devices 
and Systems (IRDS) [89, 108]. Remarkably, Chen et al. sug-
gested that h-BN memristors have the potential to achieve 
switching energy in the zeptojoule range, approaching the 
basic thermal energy at room temperature [55]. In contrast, 
memristors based on other semiconducting 2D materials 
demonstrate significantly higher switching energy in the 
order of picojoules [57, 71, 73, 76, 90]. This can be attrib-
uted to the unique filament confinement effect within h-BN 
defects, enabling operation at low compliance currents of 
1 μA and lower programming currents of around 100 nA. 
On the other hand, memtransistors exhibit higher energy 
consumption despite their lower read currents compared to 
memristors. This is due to the reliance of memtransistors on 
vacancy diffusion along grain boundaries, which necessitates 
strong electric fields and high voltages [44, 77, 80]. Notably, 
Feng et al. have demonstrated ultra-low switching energy 
in  MoS2-based memtransistors comparable to h-BN-based 
memristors, attributed to the high grain boundary density 
and small grain size within the as-grown  MoS2 layer, facili-
tating the migration of sulfur vacancies and reducing energy 
consumption [86]. In addition to programming energy, the 
consideration of read energy or compute energy is also cru-
cial as it plays a significant role in synapse inference. The 
overall energy consumption within an array is determined by 
the collective read energy of individual devices within the 
array. Despite its significance, information regarding spe-
cific read energy values is limited in the existing literature. 
Therefore, there is a pressing need to focus research efforts 
on accurately measuring read energy in order to facilitate the 
optimization of energy consumption during synapse infer-
ence. Overall, h-BN-based memristors show the most poten-
tial for low-power computing due to their low read currents 
and insulating properties. However, further grain boundary 
engineering is required to improve the energy performance 
of  MoS2-based memtransistors. Additionally, defect engi-
neering is necessary for reducing programming currents in 
other semiconducting 2D material-based memristors.

3.1.2  Program Voltage and Device Area

The program voltage is a crucial parameter that exhibits a 
strong correlation with device size. Figure 3b illustrates the 
behavior of three kinds of devices: h-BN memristor,  MoS2 
memristor, and memtransistor, all displaying a consistent 
pattern of increasing set voltage as the device area decreases. 
This relationship can be attributed to various factors. In the 
case of memristors, the larger set voltage observed in scaled-
down devices stems from the limited availability of defect 
paths, which necessitates a higher voltage for the formation 
of conductive filaments [107]. Similarly, for memtransis-
tors, the reduction in device area leads to a decrease in the 
number of grains between the source and drain terminals, 
consequently restricting the migration of vacancies [86, 97]. 
To construct large-scale memristive arrays for hardware neu-
ral network applications, achieving high device density and 
low set voltage at the sub-micrometer range is crucial [114]. 
However, the survey depicted in Fig. 3b indicates that the 
state-of-the-art technique has not reached a set voltage of 
less than 1 V at such small device areas. This highlights the 
need for further exploration into voltage scaling and device 
area scaling to meet the requirements of future applications.

3.1.3  Endurance and Retention

Endurance refers to the ability of a memristive device to sus-
tain a certain number of operational cycles before its mem-
ristive states become unstable and difficult to maintain. On 
the other hand, retention measures the duration for which 
memristive states can persist without significant degradation 
or relaxation. In computation-intensive applications, high 
endurance is crucial to handle frequent and rapid updates of 
memristive states required for complex calculations. Con-
versely, memory devices necessitate high retention to ensure 
accurate storage of data over extended periods, mitigating 
the risk of data loss or corruption.

Figure 3c shows the endurance and retention of various 
types of memristive devices. Tang et al. show that solution-
processed  MoS2-based memristors exhibit high endurance of 
 107 cycles using voltage pulses [90]. Moreover, its retention 
is extrapolated to 10 years by showing that the memristive 
states are not degraded for a duration of  105 s at 85 °C [90]. 
Similarly, Li et al. observed stable endurance for up to 500 
cycles with retention greater than  104 s in a 4 × 4 array of 
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 MoS2-based memristors [70]. The high endurance and reten-
tion of  MoS2 are also reported in  MoS2-based memtransis-
tors [68, 110]. Zheng et al. conducted tests on a two-state 
 MoS2-based memtransistor using  109 voltage pulses without 
significant changes in its performance [110]. It is interesting 
to note that black phosphorene-based memristors also show 
high retention of up to  104 s, primarily due to the layered 
confinement between phosphorene oxides [96]. In addition, 
 PdSe2 devices have shown retention for up to  105 s with 
10 stable states maintained at room temperature [73]. Com-
pared to  MoS2 and other semiconductor-based memristive 
devices, h-BN-based memristors often exhibit lower endur-
ance and retention. One possible reason for this is that h-BN-
based memristors normally have multiple resistance states. 
Some of the states are unfavorable and may relax to other 
states once external drift is removed.

Based on the available survey data, most 2D material-
based memristive devices and arrays currently exhibit 
low endurance (<  106 cycles) and acceptable retention 
 (104 ~  105 s), indicating their potential for demonstrating 
simple synapse inference where the device retention can 
sustain synapse weights during computations. However, 
for synapse training purposes, further efforts are needed 
to enhance the endurance of 2D material-based memris-
tive devices. Figure 3d presents a radar plot comparing the 
above-mentioned five parameters with the values proposed 
by IRDS 2022, revealing that the energy consumption of 
emerging devices already meets or even exceeds the required 
performance [108]. However, there is still some dispar-
ity between other metrics and the industry’s performance 
expectations.

Fig. 3  The summary of memristive device performance. a Switching energy comparison among insulating 2D h-BN-based memristors, semi-
conducting 2D material-based memristors, and memtransistors. b The relationship between device program voltage and the device size. c The 
reported device endurance and retention and their suitable working scenarios. d Radar plot of the key merits of the memristive device and the 
comparison with International Roadmap for Devices and Systems (IRDS) requirements. e Typical cycle-to-cycle variation of 2D material-based 
memristive devices. f Typical device-to-device variation of 2D material-based memristive devices. The numbers in figures correspond to the 
number in reference list [34, 38, 55, 68–71, 73, 76, 85, 86, 89, 90, 96, 107, 109–113]
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3.1.4  Device‑to‑Device Variation and Cycle‑to‑Cycle 
Variation

Device-to-device variation is a significant constraint in 
the performance of memristive devices. While individual 
devices may exhibit excellent performance, the presence of 
device-to-device variations can hinder their overall perfor-
mance when integrated into device systems. High device 
variation not only reduces yield but also significantly 
impacts the stability of performance in crossbar arrays and 
other in-memory circuits. Cycle-to-cycle variation is another 
factor that introduces uncertainty in weight updates, and 
when integrated into arrays, it further diminishes the preci-
sion of weight updates.

Figure 3e, f shows the cycle-to-cycle variation and device-
to-device variation of various types of memristive devices, 
respectively. Notably, memristors based on h-BN show the 
lowest device-to-device variation, leading to a high yield of 
98% [55]. h-BN-based memristors also show low cycle-to-
cycle variation. This low variation is primarily due to the 
overwritten of defects by the most conductive defects, mak-
ing it less sensitive to defect formation during device fabri-
cation and also during the resistance switching processes.

On the other hand, memristors based on transition metal 
dichalcogenides (TMDCs) exhibit higher levels of device-
to-device and cycle-to-cycle variation. This can be primarily 
attributed to the uncontrollable defect density during device 
fabrication and the strong dependence of stochastic filament 
formation on these defects [71]. Tang et al. discussed that the 
variation in TMDC-based memristors is linked to edge-con-
fined sulfur vacancies, where the size of the  MoS2 nanosheet 
affects cycle-to-cycle variation [90]. Specifically, a smaller 
nanosheet size increases the edge-to-basal plane ratio and 
reduces cycle-to-cycle variation [90]. In  ReS2-based mem-
ristors, high cycle-to-cycle variation is influenced by Mo-
irradiation, which leads to the uncontrolled formation of 
defects [76]. Moreover, Li et al. demonstrated that variation 
in  PdSe2 can be improved through electron beam irradiation 
and oxidation, as the treated material exhibits better control 
of the filament [38, 73].

MoS2-based memtransistors also exhibit higher device 
variations compared to h-BN-based memristors. This is due 
to the non-uniform distribution of grain boundaries within 
the functional layer, resulting in variations in the migration 
channel. Feng et al. suggested reducing the grain size to be 
smaller than the channel area to mitigate grain boundary 

variation in each device and subsequently decrease overall 
variation [86].

It is worth noting that the aforementioned discussions pri-
marily focus on the impact of device variation on synapse 
inference and synapse training in fully connected artificial 
neural networks (ANNs). However, in probabilistic systems, 
such variations serve as a source of randomness and should 
not be eliminated. For instance, Sebastian et al. [102] and 
Zheng et al. [110] utilized the device-to-device variation in 
 MoS2-based memtransistors to develop a random number 
generator and construct a Bayesian network for applica-
tions where uncertainty plays a crucial role. Furthermore, 
Chien et al. demonstrated the utilization of cycle-to-cycle 
variation in  MoS2 memtransistors for computing security 
applications [115]. This suggests that while device variation 
presents challenges, it can also be leveraged to enable novel 
functionalities and applications.

3.2  Performance of Volatile Memristors as Artificial 
Neuron

In biological systems, neurons serve as threshold ele-
ments, transmitting output signals to postsynaptic neurons 
once input signals from presynaptic neurons accumulate 
to a certain threshold. Inspired by biological neuron, arti-
ficial neuron has been developed for various applications. 
For example, Chen et al. constructed an ultra-sensitive 
artificial neuron-like  NO2 gas-sensing structure based 
on CuS quantum dots and  Bi2S3 nanosheets [116]. The 
behavior of neurons can be accurately represented by the 
leaky integrate-and-fire (LIF) model, where the neuron’s 
input signal is typically a sequence of pulses [117]. The 
ability of LIF neurons to accumulate stimulation during 
input pulse trains and recover after pulse trains is cru-
cial. In ANNs, neurons also refer to nonlinear activation 
functions between weight layers, preventing deep neural 
networks from reducing to simple linear networks. In this 
context, the neuron’s input is static output values from 
the previous layer, and achieving high energy efficiency 
in signal processing is important due to the substantial 
energy consumption of CMOS-based analog-to-digital 
converter (ADC) and digital-to-analog converter (DAC) 
circuits [108].

Artificial neurons can be realized through volatile 
memristors, which operate based on a threshold switching 
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mechanism. When an input voltage signal is applied to 
an artificial neuron, it integrates the signal, and upon 
reaching a threshold voltage, the memristors will switch 
from HRS to LRS, resulting in the firing of an output 
current. After firing, the devices revert to their original 
HRS, owing to their volatile switching property. The time 
required for such relaxation process corresponds to the 
refractory period of a neuron.

The performance of artificial neuron is assessed using 
several criteria. Firstly, a low threshold voltage is essen-
tial in order to achieve an energy-efficient artificial neu-
ron. Most threshold switching devices have a threshold 
voltage in the range of 0.3–1.0 V (as shown in Table 2). 
Xu et al. achieved a remarkably low threshold voltage, 
approaching 0.1 V, by using  MoS2 sandwiched between 
Cu and Au electrodes [41]. This ultra-low threshold volt-
age is explained by the atomic-scale filament formation 
combined with electrochemical metallization. Another 
crucial criterion is the switching ratio, which character-
izes the leakage current in the off-state and influences the 
size of the neuron network. Currently, the switch ratio of 
threshold switching devices can reach  103 to  106 [103, 
118–120]. Another important factor for an artificial neu-
ron is its endurance, which is measured by the number 
of pulses that the artificial neuron can reliably handle. 
The reported threshold switching devices are typically 
tested over tens of pulses. It is worth mentioning that an 
 MoS2-based threshold switching memristor is reported to 
handle up to  106 pulses.

It is worth noting that these performance metrics are 
based on an individual device. However, challenges still 
remain when integrating them into an artificial neuron 

network, in which the devices fabricated so far are in the 
scale of µm2, which should be reduced for high-density inte-
gration. Recently, Hao et al. successfully demonstrated the 
realization of a network of artificial neurons using 2D planar 
 MoS2 [15]. Their devices utilized TiW and Ag electrodes 
patterned on a single crystal monolayer  MoS2 to act as the 
postsynaptic and presynaptic terminals, respectively. The 
 MoS2 channel acts as the membrane through which the Ag 
ions can migrate and diffuse under an electric field, mimick-
ing the injection and extraction of  Ca2+ ions in a biological 
neuron. This behavior is facilitated by the high mobility of 
Ag ions along the  MoS2 lattice, characterized by a low dif-
fusion barrier of 0.14 eV, resulting in a volatile device. It 
is important to note that the LIF model is more suitable for 
spiking neural networks (SNNs), although few demonstra-
tions of artificial neurons for SNNs using 2D materials have 
been reported, likely due to the complex design of peripheral 
circuits required to align the firing time with neurons in the 
previous layer [89].

For nonlinear activation functions, Sebastian et al. utilized 
memtransistor-based integrated circuits to implement hyper-
bolic tangent and sigmoid activation functions as artificial 
neurons. By employing memtransistor-based neurons, the 
Bayesian neural network (BNN) avoids the need for periph-
eral DAC and ADC components, resulting in reduced energy 
consumption. Furthermore, these nonlinear functions can 
also be utilized as hardware reservoirs, sharing the same 
characteristics as neural activation functions, namely volatil-
ity and nonlinearity. For instance, the volatile  In2Se3-based 
ferroelectric memtransistor can be employed in hardware 
reservoirs due to the fading effect of the ferroelectric polari-
zation [84].

Table 2  Performance metrics of 2D material-based artificial neurons based on volatile memristors

Functional 
2D mate-
rial

Type Fabrication method Device 
dimension 
(µm2)

Mechanism Threshold 
voltage 
(V)

Switching ratio Endurance Refs

MoS2 Memristor CVD 4 Conductive filamentary 
formation

0.35 ~ 0.4 106 5 ×  106 (PVS) [117]

MoS2 Memristor CVD  ~ 1 Conductive filamentary 
formation

1.2 104 50 (PVS) [103]

HfSe2-xOy Memristor Exfoliation  ~ 10 Conductive filamentary 
formation

0.542 106 100 (DC sweep) [118]

MoS2 Memristor CVD  ~ 1 Migration of oxygen ions NA  ~  103 NA [119]
MoS2 Memristor CVD 0.01 ~ 1 Conductive filamentary 

formation
 ~ 0.1  < 10 40 [120]
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4  Array Configuration and Integration

The performance of a memristive device array is influenced 
by various factors beyond a simple sum of individual device 
characteristics. The architectural design of the array also 
plays a vital role in determining its overall performance. 
For instance, the power consumption of the array comprises 
not only the sum of individual device power consumption 
but also other factors such as energy wasted due to leakage 
current, wire resistance, and training inefficiency. Therefore, 
to assess the overall performance of the array, several array-
level considerations need to be addressed. These include 
ensuring the controllability of each device to mitigate leak-
age current and cross-talk issues, minimizing the array’s 
footprint to enhance integration density and reduce wire 
resistance, and selecting appropriate connection morpholo-
gies to meet diverse application requirements. This section 
will discuss different memristive array configurations and 
present typical examples of memristive device integration 
for high-density crossbar array (CBA) and high energy-effi-
ciency in-memory circuits.

4.1  Passive Memristor CBA

4.1.1  One‑dimensional (1D) Memristor CBA

A 1D memristor array typically consists of multiple word 
lines (WLs) and one-bit line (BL). It receives vector inputs 
and generates a single output current. The input is sent to 
the 1D array through the WLs, and the output is collected 
at the BL. Due to the single path for current flow in the 
BL, there is no issue of sneak path leakage current in such 
an array. Additionally, by applying a voltage to the WLs 
and grounding the BL, cross-talk issues can be addressed 
as each WL controls only one device. Consequently, the 1D 
memristor array is commonly used for basic computing con-
cept verification, as it avoids uncertainties that may arise 
in large-scale arrays. For example, Xie et al. demonstrated 
a 1D h-BN-based memristor array for multiply-accumulate 
(MAC) operations, as depicted in Fig. 4a [69]. The output 
current exhibited distinct variations in response to none-
pulsed input, one-pulsed input, and both-pulsed input, 
indicating the potential for vector–matrix multiplication in 
synapse inference tasks. Moreover, Sun et al. showcased the 
application of a one-dimensional array for language learning 

using two-dimensional SnS as the functional material [81]. 
Optical signals derived from handwritten letters were con-
verted into six digital input signals received by the memris-
tors in a one-dimensional array. The electric response and 
fading memory of SnS memristors facilitated signal pro-
cessing through reservoir computing, generating output that 
could be further classified as vowels and consonants. This 
one-dimensional array achieved the integration of sensors 
and processors within a single device. Furthermore, Chien 
et al. demonstrated a 1D synaptic array employing  MoS2 as 
a true random number generator for data encryption [115]. 
Notably, this 1 × 8 array consisted of 1 WL and 8 BLs, ena-
bling the generation of multi-bit random values sequentially 
by engaging each BL electrode. However, it should be noted 
that while a 1D array is suitable for simple array-level analy-
sis, its scalability is limited by its dimension, and it is not 
suitable for parallel computing that is required in modern 
neural networks.

4.1.2  2D Memristor Passive CBA

The integration of memristive devices can be effectively 
achieved through the implementation of a crossbar array, 
as depicted in Fig. 4b. In this configuration, each memristor 
is positioned at the intersection of a WL and a BL, with the 
information regarding weights stored in the form of elec-
tric resistance within each individual memristor. To update 
these weights, a voltage pulse is selectively applied between 
a chosen bit line and word line, thereby initiating the pro-
gram/erase process. The utilization of such a crossbar array 
offers several advantages, including a compact footprint that 
facilitates high-density integration. Furthermore, owing to 
its straightforward structure and ease of fabrication, it has 
been widely employed as the predominant architecture for 
memristor crossbar arrays in various studies [34, 38, 55, 71, 
73, 76, 90, 96, 107].

However, it is important to acknowledge that this pas-
sive memristor crossbar array is susceptible to challenges 
related to sneak path current and cross-talk. The sneak path 
current denotes the unintended flow of current through other 
memristors when attempting to read a specific memristor, 
resulting in inaccurate readings and wastage of energy. The 
cross-talk issue emerges when a selected memristor receives 
a voltage pulse for weight updates, inadvertently causing 
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adjacent memristors to experience a half-voltage pulse, lead-
ing to current leakage and unintended alterations in their 
respective weights. These issues arise due to the inherent 

lack of precise control over current flow in this architec-
ture. As a result, this passive crossbar array is most suit-
able for devices exhibiting high nonlinearities in their 

Fig. 4  Memristive array configurations and integrated in-memory circuits. a 1D memristor passive CBA. b 2D memristor passive CBA. c Mem-
ristor CBA with access selector devices. d Memristor CBA with access transistor devices. e Self-selective memtransistor CBA. f CBA for 3D 
integration. g Integration between synapse CBA and neuron devices. h Integrated in-memory circuits and its CBA. i Integrated in-memory cir-
cuits for multilayer hardware reservoirs. a Reproduced from [69]. b Reproduced with permission [73], copyright © 2021 Springer Nature Lim-
ited. c Reproduced from [47]. d Reproduced from [89]. e Reproduced with permission [86], copyright © 2021, American Chemical Society. f 
Reproduced from [90]. g Reproduced with permission [103], copyright © 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. h Repro-
duced from [121]. i Reproduced with permission [85], copyright © 2022 Wiley‐VCH GmbH
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voltage-current response, in order to mitigate the occurrence 
of half-current issues.

4.2  Memristor CBA with Access Selector or Transistor

One approach commonly employed to mitigate the issue of 
current leakage is the integration of an additional device that 
handles the selection of memristors during programming 
and reading operations, such as transistors and selectors. 
These configurations are typically known as one-selector-
one-memristor (1S1R) and one-transistor-one-memristor 
(1T1R) architectures.

Selectors typically consist of a two-terminal nonlinear 
device with volatile characteristics. They exhibit high resist-
ance when the voltage is lower than the threshold voltage 
and low resistance when the voltage exceeds the threshold 
voltage. This behavior allows them to effectively control 
the leakage current of half-selected devices. Selectors often 
share a similar vertical structure as memristors, enabling 
their integration in a vertical manner to optimize device area 
utilization. For instance, Sun et al. demonstrated a self-selec-
tive Au/h-BN/graphene/h-BN/Ag memristor CBA, where 
the bottom part of the heterostructure (graphene/h-BN/Ag) 
served as the selector (Fig. 4c) [47]. The CBA achieved 
exceptional selectivity exceeding  1010 with the aid of selec-
tive devices.

Transistors are fundamental components with three ter-
minals, while memristors are commonly integrated above 
the source/drain bias of the underlying transistor. In a 1T1R 
structure, device selection is achieved by gate voltage at 
the WLs. Applying varying gate voltages to different WLs 
allows for low current in unselected devices where the tran-
sistor remains off [122, 123]. Furthermore, the devices at 
the selected WL are further controlled by the BL voltage, 
which is applied across the channel of the transistor and the 
memristor. Zhu et al. demonstrated a CMOS-based 1T1R 
crossbar array using h-BN, achieving high endurance and 
excellent switching uniformity by leveraging the precise 
compliance current control of the transistor. This work high-
lights the potential of integrating 2D materials with the Si 
platform for heterogeneous integration (see Fig. 4d) [89]. 
Additionally, Yeh et al. proposed a novel 0.5T0.5R struc-
ture to further downscale the device size of the 1T1R archi-
tecture. This structure exploits the edge contact between 

titanium (Ti) and h-BN to create a memristor at the edge of 
the underlying transistor [67].

4.3  Multiterminal Memtransistor CBA

In contrast to memristors, memtransistors exhibit additional 
terminals that enable enhanced control over their switch-
ing behavior. The architecture of a memtransistor array is 
depicted in Fig. 4e, where the functional material  (MoS2) 
is interconnected with the source, drain, and gate terminals. 
Memtransistor crossbar arrays inherently address chal-
lenges related to sneak-path current and cross-talk during 
reading and programming operations by effectively block-
ing the current flow in unselected memtransistors via their 
gate terminals. Feng et al. successfully fabricated a compact 
memtransistor crossbar array with a footprint of 3 ~ 4.5  F2, 
surpassing the performance of the 1T1R structure [86]. The 
memtransistor array demonstrated minimal sneak path leak-
age current, measuring less than 1 nA. Additionally, apart 
from the three-terminal memtransistors, dual-gate memtran-
sistors were also developed, incorporating an additional 
terminal to control device selection within the crossbar 
array [68]. The sneak path current was checked by measur-
ing the current of a neighboring half-selected device while 
the selected device underwent four switching cycles. The 
measurements revealed consistent current values in the half-
selected device, indicating the negligible impact of sneak 
path leakage in such a memtransistor array configuration.

4.4  3D Integration

Multilayer integration is essential for boosting neuron net-
work performance [124]. The utilization of 2D material-
based memristive devices offers a distinct advantage for 
vertical stacking owing to the stable nature of their layer 
structures, which are free from dangling bonds and do not 
encounter lattice mismatch issues. Building upon this con-
cept, Sivan et al. proposed a novel 3D stacking architecture 
for 2D materials between logic and memory units, aiming to 
enhance integration and performance [56]. However, despite 
the potential benefits, practical challenges associated with 
the transfer process of 2D materials continue to hinder the 
widespread implementation of 3D stacking for memristive 
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devices based on 2D materials. Recently, Tang et al. suc-
cessfully achieved the fabrication of 3D stacked memristors, 
comprising up to three layers, with each layer measuring 
approximately 10 nm in thickness [90]. Notably, the solu-
tion-processed  MoS2 was employed in this demonstration, as 
shown in Fig. 4f. An important aspect of this achievement is 
the ability to independently program each layer of memris-
tors. The successful demonstration of 3D stacking utilizing 
memristors based on 2D materials underscores the potential 
for future integration of high-density 3D structures.

4.5  Integration for In‑memory Circuits

4.5.1  Synapse CBA Integration with Neurons

In order to achieve the emulation of human brain function-
ality, the integration of artificial synapses with artificial 
neurons is crucial to establish functional computing units 
within a comprehensive neuromorphic network [125]. Hao 
et al. conducted a study where they successfully fabricated 
a 4 × 2 artificial synapse array, establishing full connectivity 
with a corresponding array of 2 × 1 neurons (Fig. 4g) [103]. 
The artificial synapse array was synthesized using Cu/GeTe, 
while the artificial neuron was synthesized utilizing  MoS2. 
By programming the weights based on offline training map-
ping, the resulting synapse-neuron device array exhibited 
the desired integration-and-fire behavior. This experimental 
work serves as a significant demonstration of the potential 
for integrating synapses and neurons to realize functional 
behavior in neuromorphic systems.

4.5.2  In‑memory Circuit Design

In addition to standalone crossbar arrays of memristors/
memtransistors, the integration of memristive devices with 
other circuit elements, such as capacitors and diodes, offers 
significant potential for achieving specialized functionalities. 
For instance, Dodda et al. conducted research on an array of 
hybrid devices capable of sensing, encoding, and decoding 
images [121]. Their device configuration involved an 8 × 8 
crossbar array (shown in Fig. 4h) consisting of  MoS2-based 
memtransistors, complemented by circuits serving as a 
Gaussian noise adder, information encoder, and decoder, 
thereby enabling multifunctionality within the array. Tong 

et al. demonstrated the amplification and operational mem-
ory capabilities of a cascaded architecture comprising 
tungsten diselenide  (WSe2) and lithium niobite  (LiNbO3), 
suitable for binary classification tasks [101]. Additionally, 
the integration of in-memory circuits lends itself well to 
the implementation of hardware reservoir computing. For 
example, Liu et al. successfully demonstrated a two-layer 
reservoir utilizing synaptic transistors based on  In2Se3 [85]. 
In this configuration, the output (Vout1 in Fig. 4i) from the 
first layer’s nonlinear response was further transmitted to the 
second layer for additional encoding of the input data (Vin1) 
into a nonlinear output (Vout2).

5  Functionality and Performance Evaluation

In-memory computing has gained significant attention due 
to its diverse applications in image classification, language 
recognition, and the internet of things. To enable these appli-
cations, the integration of memristive devices is crucial for 
the development of functional hardware systems. Neuron 
network, drawing inspiration from the human brain, exhibits 
wide applications such as sound identification [126], health 
monitoring [127], language transition [128]. Neural net-
works also serve as a common approach to integrating mem-
ristive devices for neuromorphic computing and artificial 
intelligence and demonstrate strong performance in many 
areas such as vision sensor [129], pressure sensor [130], 
flexible devices [131]. In the existing literature, several types 
of ANNs have been extensively studied, including fully con-
nected ANNs, SNNs, recurrent neural networks (RNNs), 
BNNs, and convolutional neuron networks (CNNs). Despite 
the variations in these network models, they all rely on fun-
damental functionalities provided by memristive devices. 
These functionalities encompass essential operations such 
as weight storage for memorization, matrix–vector multi-
plication and accumulation (MAC) for computation, linear 
regression for loss minimization, logistic regression with 
sigmoid activation for nonlinearity, and convolution image 
processing with programmable kernels.

While a fully hardware-based implementation of a func-
tional neural network solely relying on memristive devices 
without digital computing support has not yet been achieved 
in the current state-of-the-art literature, significant progress 
has been made in realizing these fundamental functionalities. 
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Consequently, this section aims to comprehensively review 
the achievements in utilizing 2D materials to realize these 
basic functionalities. Additionally, possible implementations 
of various artificial neural networks and their correspond-
ing applications will be discussed, highlighting the potential 
of memristive devices in advancing the field of in-memory 
computing and neural network hardware.

5.1  Basic Functionalities Based on 2D Materials

5.1.1  Pattern Memorization

Memorization is a fundamental capability exhibited by 
memristive devices, akin to the functioning of the human 
brain, where it can be categorized into two forms: short-
term memory (STM) and long-term memory (LTM). The 
successful realization of STM and LTM relies on achiev-
ing a delicate balance between retaining and relaxing resis-
tive states, corresponding to the preservation and fading 
of stored information. Li et al. conducted an experimen-
tal study utilizing electron-beam-irradiated  PdSe2 as the 
functional material, demonstrating the coexistence of 
these memory types within a single memristor [73]. In 
their investigation, a 5 × 5 crossbar array exhibited memo-
rized patterns resembling the letters "N", "U" and "S" as 
depicted in Fig. 5a. The findings revealed that when sub-
jected to a small pulse (0.9 V), the memorization gradually 
diminished over one day. Conversely, an application of 
a larger pulse (2 V) resulted in sustained memorization, 
effectively transitioning from STM to LTM. This ability to 
memorize multiple patterns and the selectivity observed 
in CBA devices holds crucial role for weight storage in 
neural networks. The demonstrated capability of multi-
pattern memorization highlights the immense potential of 
memristive devices in emulating complex neuromorphic 
behaviors and facilitating in-memory computing.

5.1.2  MAC Operation

Performing matrix multiplication and accumulation (MAC) 
operations is a computationally intensive task in traditional 
digital computers, resulting in substantial energy consump-
tion due to frequent data transfers between memory and 
processing units. However, utilizing a crossbar array offers 
a lightweight approach to executing MAC operations. In 

this approach, the weights representing matrix elements 
are programmed into memristors, while the input vector is 
converted into voltage signals applied to WLs. The result-
ing output currents from BLs represent the MAC result, 
following the principles of Ohm’s law (multiplication) and 
Kirchhoff’s current law (accumulation). This computation 
exhibits massive parallelism and high energy efficiency in 
an ideal scenario.

Nevertheless, achieving high accuracy in MAC operations 
poses challenges due to variations among memristor devices 
and discrepancies in analog-to-digital conversion. Therefore, 
ongoing research efforts are focused on enhancing the accu-
racy of these operations. Li et al. conducted an analysis of 
error probabilities in MAC operations using a  HfSe2-based 
memristor array, as illustrated in Fig. 5b [71]. They achieved 
a small error with a standard deviation of 0.29%, which is 
sufficiently low for most machine-learning applications. 
This indicates that a memristive crossbar array can fulfill 
the accuracy requirements for neuromorphic learning by 
effectively managing device variations.

5.1.3  Linear Regression

Linear regression plays a crucial role in the optimization 
process during the training of artificial neural networks, 
aiming to minimize overall loss by updating the weights. 
The effectiveness of training and the accuracy of predic-
tions heavily rely on the performance of linear regression. 
In a study conducted by Xie et al., the implementation of 
multivariable linear regression was demonstrated using a 
2 × 1 crossbar array of h-BN memristors [69]. However, due 
to challenges in hardware implementation, this particular 
linear regression approach utilized a single programming 
pulse of fixed width for weight updates. The performance of 
this approach, as illustrated in Fig. 5c, indicates successful 
loss minimization. It should be noted, though, that the cur-
rent parameter size for linear regression is relatively small, 
representing an initial attempt at hardware implementation 
of the optimization process in neuromorphic computing. 
Further advancements in linear regression within larger-
scale crossbar arrays are necessary to enable full hardware 
neural networks.
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Fig. 5  Fundamental functionalities of memristive arrays. a Pattern memorization based on a 5 × 5  PdSe2 memristor array. b MAC operation based on a 3 × 3 
 HfSe2 memristor array. c Linear regression using a 2 × 1 h-BN array. d Nonlinear regression with activation function using  WSe2 synaptic transistors and activation 
circuits. e Convolution image processing using a 6 × 3  PdSe2 memristor array. a Reproduced with permission [73], copyright © 2021 Springer Nature Limited. b 
Reproduced with permission [71], copyright © 2021 Wiley‐VCH GmbH. c Reproduced from [69]. d Reproduced with permission [101], copyright © 2021, The 
American Association for the Advancement of Science. e Reproduced from [38]



 Nano-Micro Lett.          (2024) 16:121   121  Page 22 of 30

https://doi.org/10.1007/s40820-024-01335-2© The authors

5.1.4  Nonlinear Regression

The activation function plays a crucial role in introducing 
nonlinearity within neural networks, preventing the regres-
sion task from reducing to a simple linear regression. Similar 
to the human brain, where neurons exhibit nonlinearity in 
signal processing, the leaky integrate-and-fire (LIF) model 
has been widely adopted to emulate neuronal functionality 
[103]. Within this model, neurons receive input signals from 
synapses, and if the accumulated strength of these signals 
surpasses a certain threshold, the neuron generates an output 
signal that propagates through the axon to the next neuron. 
This process modulates synaptic plasticity, leading to spike-
dependent plasticity. Activation functions, such as the com-
monly used sigmoid function, are mathematically employed 
to capture the nonlinear behavior of neurons in digital 
machine-learning models. In hardware-based neuromor-
phic computing, these activation functions can be realized 
through external circuits like voltage comparators or through 
memristive devices such as  MoS2-based artificial neurons 
[102]. Figure 5d illustrates the nonlinear response of a volt-
age comparator, closely resembling the sigmoid function 
[101]. By integrating activation functions, logistic regression 
can be performed in hardware networks and the reduction of 
cost function with training epoch can be achieved, demon-
strating the potential of employing 2D material-based deep 
neural networks for various applications.

5.1.5  Image Processing

Image processing encompasses various techniques aimed at 
extracting relevant information or features from an image, 
including filtering and segmentation. In the context of con-
volutional image processing, a kernel is employed to extract 
specific features, such as edges or patterns, from the image. 
As illustrated in Fig. 5e, an example of convolution image 
processing utilizing a 3 × 3 kernel is presented  [38]. The 
kernel values are encoded into a CBA using the column 
differential method, wherein the difference in conductance 
between a pair of memristors represents the kernel values. 
Remarkably, Li et al. achieved the programming of kernels 
with multiple bits using a  PdSeOx/PdSe2 CBA, resulting in 
convolution kernels endowed with multiple bits and realis-
tic functionalities, including Gaussian softening, sharpen-
ing, and embossing. It is worth noting that such convolution 

operations hold crucial significance in CNN applications, 
wherein these operations serve to extract image features and 
transmit them to subsequent layers.

5.2  System‑Level Implementation of Neural Network 
Applications

ANNs are computational models that integrate fundamen-
tal functions to facilitate training, learning, and prediction. 
ANNs consist of interconnected artificial neurons that 
receive input signals as applied voltage, process the signals 
in a crossbar array, and generate output signals as electric 
currents. Signal processing involves linear transformations 
facilitated by MAC operations and nonlinear modifications 
enabled by artificial neurons [38, 68, 71, 103]. The architec-
ture of a crossbar array represents the interconnected nodes 
in an ANN model. Currently, most implementations employ 
offline classification, where trained weights are programmed 
into memristive devices within the crossbar array [71, 86]. 
For offline classification, the RS ratio is crucial to the rec-
ognition accuracy. As shown in Fig. 6a, the high on/off ratio 
around 100 times can achieve high recognition accuracy of 
93.34% [71].

SNNs closely mimic the operation of biological neurons. 
In SNNs, input and output signals are represented as spiking 
pulses, and information is encoded in the timing of these 
pulses [100, 112]. The transmission of these pulses modifies 
the connections between neurons, known as synaptic plas-
ticity. SNNs find applications in areas such as time-series 
analysis and sensory processing (Fig. 6b) [89].

RNNs are designed to simulate dynamic systems like 
natural language processing or speech recognition (Fig. 6c) 
[81]. Reservoir computing is a typical example of RNN, and 
input signals are fed into reservoirs with complex structures, 
acting as black boxes that process the inputs. The readout 
mechanism is then trained to map desired outputs to the 
inputs. The dynamic nature of RNNs requires functional 
materials to exhibit volatile behavior to represent fading and 
retention of memory, enabling the simulation of real-time 
processes [81, 84, 85].

BNNs utilize random numbers as weights instead of con-
stant values. In BNNs, each weight in the neural network is 
assigned a random number following a Gaussian distribution 
(Fig. 6d). This approach enables BNNs to handle problems 
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Fig. 6  System-level implementation for neural network applications. a Fully connected neural networks for MNIST dataset pattern recognition 
using  HfSe2-based memristors. The right panel shows the relationship between offline classification accuracy and the  HfSe2-based memristor RS 
ratio. b SNN for MNIST pattern recognition using  MoS2-based memtransistors. c RNN and reservoir computing using SnS-based memristor for 
language recognition. d BNN for prediction of PIMA diabetes dataset using  MoS2-based memtransistors. e CNN for MNIST dataset pattern rec-
ognition using  MoS2-based memristors. a Reproduced with permission [71], copyright © 2021 Wiley‐VCH GmbH. b Reproduced with permis-
sion [100], copyright © 2021, American Chemical Society. c Reproduced from [81]. d Reproduced from [102]. e Reproduced from [90]
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with uncertainties and provide results in the form of prob-
abilities. Neuromorphic devices can exploit the variation of 
memristive devices to generate random numbers [102, 110], 
allowing the construction of robust and fault-tolerant neuro-
morphic systems that are less sensitive to device-to-device 
and cycle-to-cycle variations.

CNNs are designed to perform feature extraction prior to 
classification (Fig. 6e). CNNs utilize convolutional layers to 
detect local features, which are then combined in subsequent 
layers to recognize global features. In neuromorphic com-
puting, memristor arrays can be employed to realize such 
CNN architectures [90].

6  Current Challenges and Future Outlook

Memristors and memtransistors based on 2D materials 
have emerged as a rapidly advancing field with substantial 
potential for enabling neuromorphic computing and in-mem-
ory computing. Extensive research efforts have led to the 
synthesis of memristors and memtransistors with remark-
able performance, showcasing significant improvements in 
recent years [132]. As the field progresses, the synthesis 
of memristive device arrays has become a focal point in 
recent literature, representing a critical milestone toward 
the realization of future neuromorphic computing systems. 
However, the successful fabrication of high-performance 
memristive arrays presents considerable challenges that 
demand attention.

A primary challenge lies in the downscaling of memris-
tors and memtransistors. Device scaling can be divided into 
two aspects: reducing the thickness of 2D materials and scal-
ing down the device’s features. In the case of memristor-
based CBA, reducing thickness is crucial as it can lower the 
switching voltage of memristors, thereby reducing energy 
consumption in CBAs for low-power in-memory comput-
ing applications. Nonetheless, the ultra-thin nature of 2D 
materials imposes stringent demands on both the growth and 
integration techniques of these materials. Regarding growth 
methods, thinner 2D material films exhibit greater thickness 
variation, resulting in larger variations in switching volt-
age for memristors. As for integration techniques, thinner 
layers are more vulnerable to wrinkles and microscopic 
holes. These wrinkles can significantly alter the effective 
thickness of the switching medium in thin 2D layers, lead-
ing to substantial variations during the electroforming step. 

Furthermore, if the memristor switching medium contains 
microscale holes, the device will short-circuit, rendering it 
incapable of further resistive switching and resulting in low 
yield.

Scaling down the device feature size is also crucial for 
both 2D material-based memristors and memtransistors. 
This enables the construction of large-scale, high-density 
memristor CBAs, which are essential for complex neural net-
works used in real-world applications like VGG and YOLO 
[133, 134]. However, as depicted in Fig. 3b, reducing the 
size of memristors and memtransistors leads to an increase 
in the operating voltage of these devices due to the absence 
of defect paths or grain boundaries in smaller areas. The 
absence of 2D material-based memristors and memtransis-
tors with sub-micrometer dimensions and sub-1 V switching 
voltages highlights the disparity between these devices and 
the integration requirements of advanced CMOS technology. 
In summary, the challenges in scaling down 2D material-
based memristors and memtransistors predominantly stem 
from issues related to low yield, significant variations in 
operating voltage, and the escalation of switching voltage 
and energy during the scaling process. Addressing these 
challenges necessitates further technological development, 
with a focus on 2D material synthesis, integration processes, 
and defect engineering to enable controlled conductive path-
ways in small areas.

Another significant challenge in 2D material-based 
memristor technology is the integration of memristors with 
access selectors or transistors to create large-scale crossbar 
arrays. Despite the successful demonstration of high device 
selectivity in 2D material-based 1S1R and 1T1R CBAs [47, 
89, 135], they still face challenges related to operating volt-
age, device latency, and footprint. Firstly, when selectors and 
transistors are turned on, they act as resistors, necessitating 
an increase in voltage across the 1T1R and 1S1R cells to 
achieve the same switching voltage as the 1R memristor cell. 
While some memristors exhibit a low switching voltage of 
less than 1 V, they can show significantly higher switching 
voltages (3 ~ 5 V) after integration [47, 55, 72, 89]. This 
increase in switching voltage poses a challenge in reducing 
the energy consumption of the integrated device. Further-
more, the forming voltage of 2D material-based memristors 
typically exceeds 1 V, which may surpass the voltage sup-
ply tolerance of advanced CMOS transistors, thereby limit-
ing the functionality of access transistors. Secondly, device 
switching speed can be impeded by the latency in selectors 
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and transistors. For instance, in the case of state-of-the-art 
CMOS/h-BN heterogeneous integration 1T1R CBAs, a high 
latency of 230 μs during programming is demonstrated, 
which is considerably slower than memristor-only devices 
(10 ns) [89]. Moreover, the disparity between the reset cur-
rent of 2D memristors (1 mA) and the ON-state current of 
selectors/transistors (100 μA) necessitates a larger area for 
the selector and transistor arrays to provide sufficient current 
for switching 2D material-based memristors [34, 36, 55, 71, 
73, 136]. In summary, further investigation is warranted for 
selectors and transistors with a high ON-current, high ON/
OFF ratio, and low latency. Additionally, research efforts 
should be directed towards 2D material-based memristors 
exhibiting forming-free behavior and reduced reset currents.

Another key challenge involves ensuring the controllabil-
ity of device variation and switching mechanisms within 
the arrays. Achieving a high level of controllability is 
essential to address this issue, as device variation directly 
impacts yield and, consequently, the cost-effectiveness of 
the devices. Notably, the fabrication of highly uniform char-
acteristics in TMDC-based memristors and memtransistors 
remains challenging. Lack of precise control methods over 
programming voltage and I–V characteristics further exacer-
bates this problem. In addition, quantitative models for some 
switching behaviors are still unclear, including the low reten-
tion time of memtransistors and the high forming voltage 
of the memristors. To tackle these challenges, a promising 
approach involves integrating experimental work with theo-
retical investigations and simulations to identify key factors 
contributing to device variations and develop strategies to 
control them effectively [97].

Furthermore, synapse training poses a significant chal-
lenge in current technology. Synapse training is crucial for 
enabling systems to learn and adapt, thereby broadening the 
potential applications of neuromorphic computing. However, 
current applications are predominantly limited to synapse 
inference and software training, and full-hardware online 
training attempts have been scarce. The primary obstacle 
lies in achieving high accuracy with minimal programming 
errors, which is essential for generating effective training. 
The existing CBAs devices have not yet met the stringent 
standards required for online training, as programming 
errors can arise from cycle-to-cycle variation, discrepan-
cies in writing and reading margins among devices, and 
endurance limitations of certain devices. Consequently, the 
feasibility of online training remains constrained.

In conclusion, the considerable potential of memristor and 
memtransistor arrays for enabling neuromorphic comput-
ing has been demonstrated and recent years have witnessed 
remarkable progress and rapid advancements toward next-
generation neuromorphic computing systems. Building upon 
this momentum, it is believed that memristive devices based 
on 2D materials are poised to shape the future of next-gen-
eration in-memory computing systems.
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