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HIGHLIGHTS 

• γ-MnO2 loaded on N-doped biomass carbon from grapefruit peel is firstly developed.

• The splendid cathodic properties (e.g., coulombic efficiency: ~ 100%, energy density: 553.12 Wh  kg−1) are gained.

• The biomass strategy guaranteed via cytotoxicity test shows a clinical potential.

• Zn-ion storage efficiency is boosted mainly by regulating Mn–O bond and Mn domains.

ABSTRACT Developing high-performance aqueous Zn-ion 
batteries from sustainable biomass becomes increasingly vital for 
large-scale energy storage in the foreseeable future. Therefore, 
γ-MnO2 uniformly loaded on N-doped carbon derived from grape-
fruit peel is successfully fabricated in this work, and particularly 
the composite cathode with carbon carrier quality percentage of 20 
wt% delivers the specific capacity of 391.2 mAh  g−1 at 0.1 A  g−1, 
outstanding cyclic stability of 92.17% after 3000 cycles at 5 A  g−1, 
and remarkable energy density of 553.12 Wh  kg−1 together with 
superior coulombic efficiency of ~ 100%. Additionally, the cathodic 
biosafety is further explored specifically through in vitro cell tox-
icity experiments, which verifies its tremendous potential in the 
application of clinical medicine. Besides, Zinc ion energy storage 
mechanism of the cathode is mainly discussed from the aspects of 
Jahn–Teller effect and Mn domains distribution combined with theoretical analysis and experimental data. Thus, a novel perspective of the conver-
sion from biomass waste to biocompatible Mn-based cathode is successfully developed.
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1 Introduction

With the continuous global carbon emission, biomass energy 
as a kind of green renewable, biodegradable and nontoxic 
energy resource has attracted considerable attention [1–8]. 
In other words, the recycling of biomass resources as a fea-
sible way to achieve carbon neutrality shows tremendous 
potential in the field of energy [9–16], materials, health care, 
and so on [17–24]. In particular, the development of high 
safe and green large-scale energy storage technology using 
biomass is of great significance for building a clean and 
low-carbon modern energy system [25–32]. Lithium-ion bat-
teries have been widely used in new energy electric vehicles 
[33–46], but the utilization of flammable organic electrolytes 
plus high manufacturing costs for lithium batteries are not 
conducive to the application in large-scale energy storage 
[47–57]. Therefore, the inexpensive and eco-friendly aque-
ous Zn-ion batteries (AZIBs) with high-safety are consid-
ered to have great potential in massive-scale energy storage 
[58–65]. There are many factors affecting the properties of 
AZIBs, among which the development of stable cathodic 
materials becomes the key [66–73], and thereinto,  MnO2 
with the characteristics of diverse structures (α-, β-, γ-, and 
δ-, etc.), low price, and environmental friendliness has been 
widely used as cathodic materials of AZIBs [74–81]. Nev-
ertheless, the repeated insertion/extraction of  Zn2+ during 
charge–discharge process leads to the structural deforma-
tion for  MnO2 [82–88]. Meanwhile,  Mn4+ is prone to be 
reduced to  Mn3+ so as to induce the Jahn–Teller effect and 
lattice distortion [89, 90]. In addition, the disproportionation 
reaction of  Mn3+ also promotes the dissolution of  MnO2 
[91–96]. Thus, exploring sustainable and renewable biomass 
resources to improve the structural stability of  MnO2 would 
be a “Win–Win” strategy.

The recombination of carbon materials and  MnO2 has 
been identified as an important way to optimize the cathodic 
performance of aqueous Zn–MnO2 batteries [97–99]. Chen 
et al. synthesized carbon nanofiber@δ-MnO2 with a facile 
method combining solid-grinding and wet-chemical reac-
tion, and achieved a capacity of 277 mAh  g−1 and capacity 
retention of 79.78% after 700 cycles at 200 mA  g−1 [100]. Li 
et al. prepared N-doped carbon nanowires incorporated with 
δ-MnO2 by hydrothermal method, the discharge capacities 
of which were 325 mAh  g−1 at 100 mA  g−1 and 90 mAh  g−1 
at 2 A  g−1 respectively, and its cycle life after 2500 cycles 

was 95% at 2 A  g−1 [101]. Huang et al. electrochemically 
deposited α-MnO2 onto carbon nanotube as cathode, which 
achieved the specific capacities of 292.7 and 105.6 mAh  g−1 
at 0.2 and 3 mA   cm−2 respectively, and its cycling life 
remained 88.5% after 300 cycles at 0.3 mA  cm−2 [102]. 
Moreover, Kim et al. reported a carbon-coated α-MnO2 cath-
ode, which exhibits a discharge capacity of 272 mAh  g−1 
and cycle life of 69.49% after 50 cycles at 66 mA  g−1 [103]. 
Overall, carbon materials used to be compound with  MnO2 
are mainly based on the conventional commercial materials 
such as carbon nanofiber, carbon nanotube, etc. Therefore, 
the research on how to improve Zn-ion storage performance 
by constructing Mn-based cathode compounded with carbon 
materials derived from biomass, especially the inexpensive 
and renewable biomass waste, is still rare.

In this work, the abundant grapefruit peel as a natural 
biomass carbon source is adopted to synthesize N-doped 
carbon carrier powder (CP) through a simple calcination in 
 N2 atmosphere, and γ-MnO2 prepared by electro-deposition 
is uniformly loaded onto CP to obtain the composite cath-
ode (γ-MnO2@CP). A systematic study about the improving 
mechanism of Zn-ion storage efficiency via compounding 
CP is conducted from multiple perspectives of Jahn–Teller 
effect, Mn valence, and Mn domains, etc. Besides, the 
in  vitro cytotoxicity experiments of pure γ-MnO2 and 
γ-MnO2@CP are carried out to investigate the application 
prospect in the field of biomedicine. Therefore, the above 
research provides a valuable guidance for the comprehensive 
utilization of wasted biomass to design high-performance 
 MnO2-biomass carbon cathode.

2  Experimental Section

2.1  Sample Preparation

The grapefruit peel was washed three times by deionized 
water, then heated at 80 °C for 3 h and crushed into yel-
low powder, which was heated at 650 °C for 2 h under a 
nitrogen atmosphere to obtain CP. A three-electrode system 
composed of a stainless steel working electrode, a saturated 
calomel reference electrode, and a platinum plate coun-
ter electrode was used for  MnO2 electro-deposition under 
the current density of 5 mA  cm−2 for 30 min with electro-
magnetic stirring, and the electrolyte was made up of 0.5 M 
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Mn(CH3COO)2 and 0.5 M  Na2SO4, the chemical reaction 
occurred on the surface of stainless steel working elec-
trode is described as:  Mn2+  +  2H2O →  MnO2 +  4H+  +  2e−. 
Finally, the thin films of  MnO2 electrochemically deposited 
on the stainless steel electrode were scrapped off. The mix-
tures of as-prepared  MnO2 and CP (Quality percentage of 
CP: 10, 20, 30, and 40 wt%) were magnetically stirred in 
deionized water for 1 h, and then ultrasonically dispersed 
for another 1 h respectively, the above solutions were cen-
trifuged and then dried at 80 °C (Heating rate: ~ 2 °C  min−1) 
in air for 3 h to obtain the cathodic active materials, which 
were labelled as CP-10, CP-20, CP-30 and CP-40, respec-
tively. Besides, the as-prepared  MnO2 mentioned above was 
labelled as CP-0.

2.2  Materials Characterization

The X-ray diffraction (XRD) profiles were measured with 
Bruker-D8 Advance X-ray diffractometer (Cu Kα radia-
tion, 2θ step: 0.02°) and analyzed with Jade 5.0 software. 
The spectroscopic property was tested though PerkinElmer 
Spectrum 100 FTIR. The micro morphology was observed 
through JEOL JEM-2100F TEM and Nova Nano SEM 450. 
The composition and valence state were tested by Thermo 
ESCALAB 250XI XPS.

2.3  Computational Calculation

All the theoretical calculation about the models of  Zn2+ 
intercalating into the tunnel structures of pure γ-MnO2 and 
γ-MnO2@CP were performed with VASP software based on 
density functional theory (DFT) in this work. The migration 
behavior of  Zn2+ was computed by mean square displace-
ment (MSD) using the equation MSD=

1

M

∑M

i=1
��ri(t) − r

i
(0)��

2 , 
where ri (0) is the initial position of  Zn2+, ri (t) is the termi-
nal position of  Zn2+, and M is the number of simulation, then 
the diffusion coefficient (D) of  Zn2+ was calculated by fitting 
6t to MSD as the Einstein relation: D = lim

t→∞

MSD

6t
 [74]. The 

adsorption energy (Eads) values of  Zn2+ and  OH− on the tun-
nel structural surface of γ-MnO2 were calculated, and the 
bader charges of the above two models were also simulated 
respectively. Meanwhile, Mn–O bond lengths of  MnO6 octa-
hedron in the above two models were calculated for struc-
tural analysis.

2.4  Electrochemical Properties

The cathodic active materials (CP-0, CP-10, CP-20, CP-30, 
and CP-40), acetylene black and poly-vinylidene fluoride 
were mixed together in accordance with the gravimetric ratio 
of 7:2:1, and N-methyl-2-pyrrolidone was added into the 
above mixtures to produce black slurries, which were then 
painted on 5 stainless steel webs (Diameter: ~ 14 mm) and 
then heated at 80 °C (Heating rate: ~ 2 °C  min−1) in air for 
8 h to obtain the cathodic current collectors (Load quality 
of active substance: ~ 2 mg  cm−2). A CR2032 button bat-
tery configuration with a Whatman glass-fiber diaphragm 
(Grade GF/D), Zn anode, and the electrolyte of 2 mol  L−1 
 ZnSO4 and 0.1 mol  L−1  MnSO4 was used to estimate the 
cathodic active materials, the prepared button batteries 
shared the same numbers as CP-0, CP-10, CP-20, CP-30, 
and CP-40 respectively. The galvanostatic charge/discharge 
performance was tested using LANHE CT3002A equipment 
(Voltage: 0.8–1.8 V) based on the active material mass. The 
cyclic voltammetry (CV) curves were recorded using a 
CHI660E electrochemical work station (Scan rate: 0.1, 0.2, 
0.4, 0.6, and 0.8 mV  s−1), then b value was obtained accord-
ing to the equation log(i) = log(a) + blog(v) (i: Peak current; 
v: Scan rate; a and b: Adjustable values), the pseudoca-
pacitive fitting was calculated on the basis of the relational 
expression i(V) =  k1v +  k2v0.5  (k1v: Non-diffusion controlled 
contribution;  k2v0.5: Diffusion controlled contribution).

2.5  In Vitro Cytotoxicity

3T3 mouse embryonic fibroblast cells were cultured in 
DMEM medium (Gibco, USA) supplemented with 10% 
fetal bovine serum (FBS, Gibco, USA) and 1% penicillin/
streptomycin (Gibco, USA) at 37 °C. In vitro cell viability 
was evaluated by CCK-8 assay against 3T3 cells. Briefly, 
cells were seeded in 96-well plates and incubated with the 
as-synthesized materials, including CP-0, CP-10, CP-20, 
CP-30, and CP-40. 10 μL CCK-8 solution was added to each 
well and the absorbance was recorded on a microplate reader 
(EnSpire, USA) at 490 nm. Cell apoptosis assay was con-
ducted by using an Annexin V-FITC/PI apoptosis detection 
kit (Beyotime, China). For apoptosis assay, 3T3 cells were 
seeded into 6-well plates and incubated with the above-men-
tioned materials for 48 h. Thereafter, cells were stained with 
Annexin V FITC/PI for 30 min and the apoptosis percentage 
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was detected by a flow cytometer (BD FACS Calibur, USA). 
Calcein AM/PI Co-staining was performed to detect the live/
dead cells under different treatments. Following incubation 
cells were stained with calcein AM and PI for 30 min, and 
the stained cells were imaged by a fluorescence microscope 
(NIKON, Japan). For the above experiments, cells in PBS 
were set as the control group.

3  Results and Discussions

3.1  Microstructure

The preparation detail of CP is schematically illustrated in 
Fig. 1a, and the N-doped biomass carbon is expected to be 
obtained. As shown in Fig. 1b, all the samples display five 
characteristic peaks indexed to (120), (131), (300), (160), 
and (421) crystal planes, which means that γ-MnO2 is suc-
cessfully synthesized by electro-deposition correspond-
ing to JCPDS No. 14-0644 [104], and the broad peaks at 
around 26° belonging to (002) crystal plane of carbon for 
CP-10, CP-20, CP-30, and CP-40 are also observed [100]. 
Compared with CP-0, a new peak at around 1025  cm−1 cor-
responding to Mn–O–C bond is observed in the FTIR spec-
trum of CP-20 (Fig. 1c), which once again demonstrates the 
successful recombination of CP and γ-MnO2 for CP-20. The 
characteristic planes of CP and γ-MnO2 are also observed in 
SAED pattern (Fig. 1d), and the HRTEM images of CP-20 
indicate that the interplanar spacings of 0.162 and 0.241 nm 
are well indexed to the lattice planes of (160) and (131) for 
γ-MnO2 (Fig. 1e, f), which further confirms the accuracy 
of the analytical result from Fig. 1b, d. Figure 1g shows a 
successful loading of γ-MnO2 nanoparticles on the surface 
of irregular flower-like CP. The EDS result shows a uni-
form element distribution of Mn, O, C, and N for CP-20 
(Fig. 1h–k), and the XPS result once again affirms the 
coexistence of Mn, O, C, and N on the surface of CP-20 
(Fig. 1l–o). Besides, Fig. S1 certifies the existence of Mn 
and O elements for CP-0, and Figs. S2, S3, and S4 also 
reveal the existence of Mn, O, C, and N elements for CP-10, 
CP-30, and CP-40 respectively, meanwhile the coexistence 
of  Mn3+ and  Mn4+ is revealed for all the samples.

The Jahn–Teller effect primarily due to high-spin  Mn3+ 
with  (t2g)3(eg)1 electron configuration in 3d orbital usu-
ally leads to detrimental structural disorder for  MnO2, so 
 MnO2 with a higher Mn valence is promising to exhibit 

excellent long-term cycling stability [105]. Therefore, 
the compound strategy of γ-MnO2 with CP is beneficial 
to reduce the content of  Mn3+, and it’s worth noting that 
CP-20 exhibits the highest percent of  Mn4+ (93.68%) and 
the lowest percent of  Mn3+ (6.32%), which foreshadows 
the weakest Jahn–Teller effect in CP-20 (Figs. 1l and S1a, 
S2a, S3a, S4a).

3.2  Theoretical Calculation

As shown in Fig. 2a, the calculated D values of  Zn2+ in the 
internal structures of pure γ-MnO2 and γ-MnO2@CP are 
70 ×  10–6 and 174 ×  10–6 Å2  fs−1 respectively, and it can be 
seen that the CP composite strategy effectively improves 
 Zn2+ kinetics. The Eads values of  Zn2+ on the tunnel-shaped 
surface of pure γ-MnO2 and γ-MnO2@CP are − 2.968 and 
− 2.353  eV respectively, which demonstrates that  Zn2+ 
is more liable to migrate smoothly inside γ-MnO2@CP 
(Fig. 2b). Bader charge (1.11e) of  Zn2+ and γ-MnO2@CP 
group is less than that (1.323e) of  Zn2+ and pure γ-MnO2 
group, and this implies a more obvious electron transfer ten-
dency and a stronger binding interaction between  Zn2+ and 
pure γ-MnO2, which hinders the diffusion of  Zn2+ (Fig. 2c). 
Besides, the nano-sized Mn-based cathode effectively 
reduces the migration time of  Zn2+ according to the equa-
tion τeq = L2/2D (τeq: Diffusion time; L: Material size; D: 
Diffusion coefficient) [69], so the combination of nanocrys-
tallization for γ-MnO2 (Fig. 1g) and CP composite strategy 
would be helpful to boost Zn storage efficiency theoretically.

3.3  Electrochemical Property

It is worth noting that the cathodic peaks shift toward higher 
values and the anodic peaks shift toward lower values for 
CP-10, CP-20, CP-30, and CP-40 compared with those of 
CP-0 from the CV curves at 0.4 mV  s−1, which indicates 
the reduced inherent voltage polarization plausibly related 
to CP composite, and especially the smallest polarization 
is seen in CP-20, and CP-20 also shows the highest peak 
current density implying its largest electrochemical capac-
ity (Fig. 3a). CP-20 with a medium potential of ~ 1.4 V 
displays a maximum discharge capacity of 391.2 mA  g−1 
and a minimum voltage hysteresis when the current den-
sity is 0.1 A  g−1 among the samples (Fig. 3b). The high 
rate discharge ability of γ-MnO2 mixed with CP are better 
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Fig. 1   a Schematic diagram for the preparation of CP. b XRD patterns of CP-0, CP-10, CP-20, CP-30, and CP-40. c FTIR spectra of CP-0 and 
CP-20. d SAED, e and f HRTEM, g SEM, h–k EDS of CP-20. XPS high-resolution patterns of l Mn 2p, m O 1s, n C 1s, and o N 1s of CP-20.
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than that of pure γ-MnO2 when the current density increases 
from 0.1 to 5 A  g−1 and then reduces to 0.1 A  g−1, besides 
CP-20 also exhibits the optimal discharge capability of 
189.8 mAh  g−1 at 5 A  g−1 compared with other samples 
(Fig. 3c). The cyclic stability of CP-0 is only 24.54% after 
200 cycling times at 0.1 A  g−1, while CP-20 demonstrates 
the best cycling performance (89.47%) and coulombic 

efficiency (~ 100%) (Fig. 3d). In particular, the 3000 times 
cycling life of CP-20 achieves even high up to 92.17%, and 
its coulombic efficiency still maintains at ~ 100% at 5 A  g−1 
(Fig. 3e). Furthermore, the specific energy density of CP-20 
at 0.1 A  g−1 reaches 553.12 Wh  kg−1, which is superior to 
that of CP-0 (250.32 Wh  kg−1), CP-10 (383.08 Wh  kg−1), 
CP-30 (427.00 Wh  kg−1) and CP-40 (307.21 Wh  kg−1). 

Fig. 2  Theoretical calculated results of a MSD, b Eads, and c bader charge about the models of  Zn2+ intercalating into the tunnel structures of 
pure γ-MnO2 and γ-MnO2@CP
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More importantly, the energy density of CP-20 in our work 
is also superior to those reported in literatures (Fig. 3f). To 
sum up, the recombination strategy with CP is of benefit to 
the electrochemical performance enhancement for γ-MnO2.

As shown in Figs. S5a, S6a, S7a, S8a, and S9a, the phe-
nomenon that the cathodic and anodic peaks of CV curves 
for all the samples shift toward negative and positive poten-
tials respectively as the scan rate increases reveals a distinct 
insertion/deinsertion energy storage behavior of  Zn2+ [74]. 
The CP-20 sample, by contrast, has a stronger redox peak 
and smaller gap between cathodic and anodic peak, which 
indicates that CP-20 is promising to have faster dynamics, 
less polarization and better long cycle performance among 
the samples. The calculated pseudocapacitive proportion 
results (Figs. S5b, S6b, S7b, S8b, and S9b) show that CP-20 
exhibits the maximum pseudocapacitance contribution, and 
it is again verified that the reinforced pseudocapacitance 
behavior by CP composite strategy is beneficial to amelio-
rate the electrochemical characteristics of γ-MnO2. Usu-
ally, a larger b-value (close to 1.0) is deemed to be advan-
tageous for strengthening pseudocapacitance behavior so 
as to improve energy storage dynamics, obviously b-value 
of CP-20 is lager than that of other samples according to 
Figs. S5c, S6c, S7c, S8c, and S9c, and this also reveals 
the effectively promoted pseudocapacitance behaviour of 
CP-20. Furthermore, The fact that the peak1 and peak2 off-
set values of CP-20 are the smallest demonstrates again its 
enhanced intercalation pseudocapacitance (Figs. S5d, S6d, 
S7d, S8d, and S9d), which strongly supports the above fit-
ting conclusions about pseudocapacitive and b-value. More 
significantly, the presence of pyridinic-N and pyrrolic-N is 
considered to be responsible for boosting the pseudocapaci-
tance behavior of electrode materials [106], and this might 
be another key factor to improve the pseudocapacitance 
characteristics of γ-MnO2 via CP composite. (Figs. 1o and 
S2d, S3d, S4d).

3.4  Mechanism Analysis

Under the current density of 0.1  A   g−1, the by-
product  Zn4SO4(OH)6·4H2O (JCPDS No. 44-0673) 
emerges at the fully discharged (F-D) state and almost 
completely fades away at the fully charged (F–C) 
state on the 10th cycle for CP-20, and the revers-
ible reaction is represented by the following equa-

tion:γ −MnO
2
+ SO

2−
4

+ 4Zn
2+ + 2OH

− + 6H
2
O + 2e

−
↔ Mn

2+ + Zn
4
SO

4
(OH)

6
⋅ 4H

2
O 

, while  Zn4SO4(OH)6·4H2O always exists at F–D and 
F–C states for CP-0 (Fig. 4a). Noticeably, the calculated 
Eads values of  OH− with the surfaces of pure γ-MnO2 and 
γ-MnO2@CP are − 3.166 and − 1.568 eV respectively 
(Fig. 4b), this obvious difference illustrates that  OH− is 
more liable to be adsorbed on the surface of pure γ-MnO2 
to promote the formation of  Zn4SO4(OH)6·4H2O, which 
reconfirms the conclusion from Fig. 4a. Herein, the CP 
composite strategy effectively inhibits the side effect and 
ultimately increases the reversibility and efficiency of Zn-
ion energy storage.

The O 1 s XPS spectra of CP-0 and CP-20 are fitted into 
tetravalent Mn–O–Mn bonds, trivalent Mn–OH bonds, 
and H–O–H bonds for residual water, correspondingly 
the average Mn valences of CP-0/CP-20 are estimated to 
be 3.6 +/3.8 + at F–D state and 3.75 +/3.95 + at F–C state 
on the 10th cycle according to the area contributions of 
Mn–O–Mn and Mn–OH components respectively (Fig. 4c). 
More precisely, the average oxidation state (AOS) of Mn 
can be computed based on the equation AOS = 8.95–1.13 
ΔEMn3s, where ΔEMn3s is the energy difference between the 
main and satellite peaks in Mn 3s XPS spectra [107], so 
the AOS of Mn in CP-0 (F–D), CP-0 (F–C), CP-20 (F–D), 
and CP-20 (F–C) on the 10th cycle are also 3.6 +, 3.75 +, 
3.8 +, and 3.95 + respectively (Fig. 4d), thus the calculated 
Mn valence from Mn 3s and O 1s XPS spectra are entirely 
the same, which further illustrates that the CP composite is 
beneficial to suppress the Jahn–Teller effect by regulating 
Mn valence, besides the Zn 3p peak of CP-0 is also lower 
than that of CP-20. Meanwhile, the Zn 2p peaks of CP-20 
are apparently stronger than that of CP-0 on the 10th cycle 
at F-D state (Fig. 4e), which reconfirms the conclusion in 
Fig. 4d. Different from the Mn–O bonds of γ-MnO2@CP 
nearly without distortion, the Jahn–Teller effect induces a 
geometric distortion with two longer (O5 and O6) Mn–O 
bonds of pure γ-MnO2 according to theoretical calculation 
(Fig. 4f). The formation of Mn domains is supposed to dis-
rupt the cooperativity of Jahn–Teller effect as schematically 
shown in Fig. 4g [108], and the Mn domains with different 
orientation are also visually identified in CP-20 (Fig. 4h) 
but not in CP-0 (Fig. 4i), hence the CP composite strategy 
promotes the anisotropic Jahn–Teller distortion to improve 
the structural stability of γ-MnO2.
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3.5  In Vitro Cell Toxicity

To investigate the intrinsic cytotoxicity of the above-men-
tioned samples against 3T3 cell, CCK-8 assay is performed 
to determine the relative cell viability after 24, 48, and 72 h 
of incubation, respectively. Currently, cells treated with PBS 

are set as a reference. Negligible proliferation inhibition is 
observed in cells with the treatment of CP-10, CP-20, CP-30, 
and CP-40 even up to 72 h of incubation compared with 
the control group, while exposure to CP-0 exhibits notable 
cytotoxicity to cells as the relative cell viability decreases 
over 50% after 72  h (Fig.  5a), indicating the desirable 

Fig. 3  Electrochemical test results of a CV curves, b constant current charge–discharge profiles, c high rate discharge ability, d 200 times 
cycling performance, and e 3000 times cyclic stability of CP-0, CP-10, CP-20, CP-30, and CP-40. f Comparison diagram about the energy den-
sity calculated based on cathodic active material mass between literatures and CP-20
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Fig. 4   a Ex-situ XRD of CP-0 and CP-20 at F-D/F–C states on the 10th cycle. b Sketch map at F-D state and the calculated Eads values of 
 OH− to the surface of γ-MnO2. XPS high-resolution patterns of c O 1s, d Mn 3s and e Zn 2p of CP-0 and CP-20. f Calculated Mn–O bonding 
distances of  MnO6 octahedra of pure γ-MnO2 and γ-MnO2@CP. g Schematic Mn domains and h, i actually observed Mn domains
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Fig. 5   a Relative cell viability of 3T3 cells at different time points post treatment. b Fluorescence microscopic images of 3T3 cells by Calcein 
AM/PI staining at 48 h with various treatments. c Cell apoptosis percentage of 3T3 cells upon different treatments for 48 h by flow cytometry 
(Ctrl: cells treated with PBS)
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biocompatibility of the above samples except CP-0. Besides, 
Calcein AM/PI staining is carried out to assess the live/dead 
cell after different treatments, and no evident cell death is 
noticed in cells under these above treatments other than CP-0 
as expected (Fig. 5b), which is consistent with the results 
of CCK-8 assay. Furthermore, flow cytometry is performed 
to investigate the apoptosis profile of 3T3 cells incubated 
with each sample for 48 h, and no apoptosis is induced by 
most of the as-synthesized materials with a total apoptotic 
cell rate less than 5% compared to the control group, but 
exposure to CP-0 results in severe cell apoptosis as indicated 
by nearly 40% of total apoptosis percentage (Fig. 5c), and 
it is in good accordance with the cell toxicity results. It is 
verified that CP-10, CP-20, CP-30, and CP-40 possess better 
biosafety compared with CP-0, which might be attributed to 
the loading of biocompatible CP. Therefore, the CP compos-
ite strategy shows a great potential not only in the field of 
large-scale energy storage, but also in clinical applications.

4  Conclusion

The environmental friendly AZIBs with considerable theo-
retical capacity (820 mAh  g−1) and appropriate redox poten-
tial (− 0.763 V versus standard hydrogen electrode) attract 
researchers’ broad concern recently [109–117]. Thereinto, 
biocompatible AZIBs are proposed as candidates for pow-
ering biocompatible electronics due to their excellent fea-
tures of low cost, high-level safety and high-performance 
[118–120]. Hence, the biomass CP derived from waste 
grapefruit peel is successfully prepared, and the electro-
chemical properties and biocompatibility for the composite 
cathode of γ-MnO2 loaded on CP are simultaneously inves-
tigated in the present work. The considerable electrochemi-
cal properties of 3000 times long cycle stability at 5 A  g−1 
(92.17%), energy density (553.12 Wh  kg−1), and coulom-
bic efficiency (~ 100%) for the composite cathode with CP 
quality percentage of 20 wt% are achieved, which is mainly 
ascribed to the effective regulation of Mn–O bond distance, 
Mn valence, and Mn domains combined with experimental 
and DFT computational analysis. Furthermore, the cathodic 
biosafety is also verified via in vitro test extensively. In brief, 
this work not only brings forward a feasible countermeasure 
for structural regulation of multi-function Mn-based cathode 
with inexpensive biomass-derived carbon, but also paves a 
novel way for the application of AZIBs in biomedical field.
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